ERC Consolidator Grants der Universität Münster
Mit einem Consolidator Grant fördert der ERC vielversprechende Early Career Researcher (7–12 Jahre nach der Promotion) darin, ihre wissenschaftliche Unabhängigkeit zu festigen.
Mit einem Consolidator Grant fördert der ERC vielversprechende Early Career Researcher (7–12 Jahre nach der Promotion) darin, ihre wissenschaftliche Unabhängigkeit zu festigen.
Laufzeit
2024–2028
Abstract
In DIONISOS, we aim to develop new analytical relationships for ion- and heat-transport in ionic conductors, and thus heal significant inconsistencies of the current understanding. Currently ion- and heat transport are interpreted as unrelated phenomena; ion transport being based on local jumps, whereas heat transport being mediated by dynamic lattice vibrations called phonons.
Laufzeit
2023–2028
Abstract
In vielen relevanten realen Problemen ist es fundamental wichtig, Bewertungen von hochdimensionalen Funktionen näherungsweise zu berechnen. Deterministische Standard-Approximationsverfahren leiden in diesem Zusammenhang häufig unter dem sogenannten Fluch der Dimensionalität in dem Sinne, dass die Anzahl der Rechenoperationen des Approximationsverfahrens mindestens exponentiell mit der Problemdimension wächst. Das Hauptziel des ERC-finanzierten Projekts MONTECARLO ist es, mehrstufige Monte-Carlo-Methoden und Methoden des stochastischen Gradientenabstiegs einzusetzen, um Algorithmen zu entwerfen und zu analysieren, die den Fluch der Dimensionalität bei der numerischen Approximation verschiedener hochdimensionaler Funktionen nachweislich besiegen. Dazu zählen Lösungen für bestimmte stochastische optimale Kontrollprobleme einiger nichtlinearer partieller Differentialgleichungen sowie für bestimmte überwachte Lernprobleme.
Laufzeit
2022–2027
Abstract
Partielle Differentialgleichungen bilden die Grundlage zur Beschreibung von Prozessen, bei denen eine Variable von zwei oder mehreren anderen abhängig ist – wie bei den meisten Situationen im Leben. Stochastische partielle Differentialgleichungen beschreiben physikalische Systeme, die Zufallseffekten unterliegen. Bei der Beschreibung der Skalierungsgrenzen von interagierenden Partikelsystemen und bei der Analyse von Quantenfeldtheorien resultiert die Zufälligkeit aus Schwankungen aufgrund von Störtermen auf allen Längenskalen. Das Vorhandensein eines nichtlinearen Terms kann zu Abweichungen führen. Finanziert über den Europäischen Forschungsrat wird das Projekt GE4SPDE das globale Verhalten von Lösungen einiger der bekanntesten Beispiele semilinearer stochastischer partieller Differentialgleichungen beschreiben. Dabei bezieht das Team sich auf die systematische Behandlung des Renormierungsverfahrens, das auf diese Abweichungen angewandt wird.
Laufzeit
2021–2026
Abstract
Babylonien, die älteste Gesellschaft der antiken Welt, durchlief zwei große Regimewechsel und unterlag nacheinander der Herrschaft dreier Imperien: dem Assyrischen Reich, dem Chaldäerreich und dem (ersten) Perserreich. Es ist bisher wenig darüber bekannt, wie die imperiale Herrschaft vor Ort ausgehandelt wurde und wie die Strategien, die Herrschende und Beherrschte bei der Verfolgung ihrer Interessen einsetzten, zusammenwirkten und zu Instabilität oder Stabilität führten. Das EU- finanzierte Projekt GoviB wird die Politik und Macht in der antiken Stadt Babylon untersuchen. Durch die Analyse von neu verfügbarem Text- und archäologischem Material wird das Projekt Aufschluss darüber geben, warum Staaten stabil oder instabil sind und warum Regimewechsel scheitern oder gelingen.
Laufzeit
2019–2025
Abstract
Der Begriff „Gleichheit“ bezeichnet den Zustand des Gleichseins und zugleich das Recht unterschiedlicher Gruppen auf eine gleichwertige soziale Stellung und gleiche Behandlung. Doch obwohl alle wesentlichen nationalen und internationalen Menschenrechtsinstrumente Normen zum Schutz der Gleichstellung vorsehen, herrscht nach wie vor Uneinigkeit darüber, was Gleichstellung eigentlich genau bedeutet oder umfasst. Vor diesem rechtlichen Hintergrund wird das EU-finanzierte Projekt EQUALITY untersuchen, inwieweit rechtliche Zusicherungen der Gleichstellung Raum für Ungleichheit lassen. Dabei wird das Projekt insbesondere analysieren, wie Gerichte den Begriff der Gleichstellung im Verfassungsrecht und im internationalen Menschenrecht konzeptualisieren. Unter anderem wird es auch die Faktoren untersuchen, die für Gerichte bei Entscheidungen über Fälle, in denen es um Ungleichheit geht, ins Gewicht fallen.
Laufzeit
2022–2024 (begonnen 2018 an der Technischen Universität München)
Abstract
The Langlands programme is a far-reaching web of conjectural or proven correspondences joining the fields of representation theory and of number theory. It is one of the centerpieces of arithmetic geometry, and has in the past decades produced many spectacular breakthroughs, for example the proof of Fermat’s Last Theorem by Taylor and Wiles. The most successful approach to prove instances of Langlands’ conjectures is via algebraic geometry, by studying suitable moduli spaces such as Shimura varieties. Their cohomology carries actions both of a linear algebraic group (such as GLn) and a Galois group associated with the number field one is studying. A central tool in the study of the arithmetic properties of these moduli spaces is the Newton stratification, a natural decomposition based on the moduli description of the space. Recently the theory of Newton strata has seen two major new developments: Representation-theoretic methods and results have been successfully established to describe their geometry and cohomology. Furthermore, an adic version of the Newton stratification has been defined and is already of prime importance in new approaches within the Langlands programme. This project aims at uniting these two novel developments to obtain new results in both contexts with direct applications to the Langlands programme, as well as a close relationship and dictionary between the classical and the adic stratifications. It is subdivided into three parts which mutually benefit from each other: Firstly we investigate the geometry of Newton strata in loop groups and Shimura varieties, and representations in their cohomology. Secondly, we study corresponding geometric and cohomological properties of adic Newton strata. Finally, we establish closer ties between the two contexts. Here we want to obtain analogues to results on one side for the other, but more importantly aim at a direct comparison that explains the similar behaviour directly.
Laufzeit
2020–2024 (begonnen 2018 am Imperial College London)
Abstract
The present proposal is concerned with the analysis of the Einstein equations of general relativity, a non-linear system of geometric partial differential equations describing phenomena from the bending of light to the dynamics of black holes. The theory has recently been confirmed in a spectacular fashion with the detection of gravitational waves. The main objective of the proposal is to consolidate my research group by developing novel mathematical techniques that will fundamentally advance our understanding of the Einstein equations. Here the proposal builds on mathematical progress in the last decade resulting from achievements in the fields of partial differential equations, differential geometry, microlocal analysis and theoretical physics.
Prof. Dr. Gustav Holzegels Profil an der Universität Münster
Laufzeit
2019–2024
Abstract
Zur Herstellung hochwirksamer Pharmazeutika, Kontrastmittel, Agrochemikalien und verschiedener Werkstoffe werden häufig Organofluorverbindungen verwendet. In diesen organischen Molekülen sind Kohlenstoff-Fluor-Bindungen vorhanden. Zahlreiche Pharmazeutika werden fluoriert, um ihnen eine verbesserte metabolische und oxidative Stabilität, Lipophilie und Membranpermeabilität zu verleihen. Jedoch kennen wir in Bezug auf das Potenzial der Organofluorverbindungen bislang wahrscheinlich nur die Spitze des Eisbergs. Haupthindernis waren Einschränkungen in der Steuerung der Fluorierungsstellen und die daraus resultierende zwei- und dreidimensionale Molekulararchitektur. RECON arbeitet mit rationalem Strukturdesign in Bezug auf hochspezifische und einzigartige Funktionen an der Enträtselung des Potenzials der komplexen fluorierten Verbindungen. Positiv dabei ist, dass diese Methoden auf kostengünstigen und kommerziell verfügbaren Fluorid-Rohstoffen basieren.
Laufzeit
2018–2023
Abstract
Light is an excellent external regulatory element that can be applied to cells and organisms with high spatio-temporal precision and without interfering with cellular processes. Optochemical biology exploits small photo-responsive chemical groups to cage and activate or to switch biomolecular functions in response to light of a defined wavelength. Caged antisense agents have enabled down-regulation of gene expression with spatio-temporal control at the messenger-RNA (mRNA) level in vivo, however approaches for triggering translation of exogenous mRNA lack efficient turn-on effects. To explore the effects of conditional and transient ectopic gene expression in a developing organism it is vital to fully abrogate and restore translational efficiency. The goal of this project is to bring eukaryotic mRNA under the control of light to trigger efficient ectopic translation with spatio-temporal resolution in cells and in vivo. To achieve this, eukaryotic mRNA will be photo-caged at its 5′ cap using a highly promiscuous methyltransferase capable of transferring very bulky moieties from synthetic analogs of the cosubstrate S-adenosylmethionine (AdoMet). A single 5′ cap modification will block translation of the respective mRNA. Its light-triggered removal will release unmodified capped RNA, which in cells will be efficiently remethylated to form the canonical 5′ cap resulting in uncompromised translation. In addition to labeling and tracking subpopulations of cells, we will use our technology to control and to manipulate cell fate by locally producing proteins responsible for cell death, genome engineering, and cell migration. We will use cultured cells and one-cell stage zebrafish embryos that can be easily injected with mRNA to study the function of ectopic gene expression in early development. Our approach will overcome current limitations of photo-inducible mRNA translation and enable us to manipulate a developing organism at the molecular level.
Prof. Dr. Andrea Rentmeisters Profil an der Universität Münster
Laufzeit
2018–2021
Abstract
Epithelial polarity is one of the most fundamental types of cellular organization, and correct cellular polarization is vital for all epithelial tissue. Failure to establish polarity leads to severe phenotypes, from catastrophic developmental deficiencies to life-threatening diseases such as cancer. Despite knowing much about the signalling and trafficking machinery vital for polarity, we lack quantitative knowledge about the intracellular mechanical processes which organize and stabilize epithelial polarity. This presents a critical knowledge gap, as any elaborated understanding of intracellular organization needs to include the forces and viscoelastic mechanical properties that position organelles and proteins. As such, the main aim of POLARIZEME is to determine the intracellular mechanical processes relevant for epithelial polarization, thus providing a mechanical understanding of polarity. We will combine advanced optical tweezers technology with cutting-edge molecular biology tools to rigorously test new intracellular transport concepts such as the active, diffusion-like forces that can position organelles or the recently introduced cortical actin flows that can drag polarity-defining proteins around the cell. Thus we propose (i) to quantify active forces and intracellular mechanics and their relation to organelle positioning, (ii) to quantify polarized cortical and cytoplasmic flows, and (iii) to measure the forces and mechanical obstacles relevant for direct vesicle trafficking. These quantitative biophysics experiments will be supported by mathematical modelling and the development of two new instruments which (a) allow for automated intracellular mechanics measurements over extended time periods and (b) combine multi-view light-sheet microscopy with optical tweezers and UV ablation. Overall, we will provide a new access to understand and describe polarity by merging the physical and biological aspects of its initiation, maintenance and stability.
Laufzeit
2017–2023
Abstract
Chemical transformations comprise the polarization of the reacting species. As a consequence, partially or fully charged reagents and intermediates are omnipresent in chemistry. Although anion-binding processes are well-known for their crucial role in molecular recognition, this type of phenomenon has only recently been utilized for catalysis. Since catalytic reactions are of utmost relevance to construct valuable chemicals and materials, this mode of catalytic chemical activation might be the key for the future design of original and more efficient synthetic transformations. However, the effects of anions in catalytic processes are still largely unknown. Aiming at providing a novel general synthetic toolbox, in this project I propose several anion-binding activation concepts to solve current challenging catalytic synthetic problems. To achieve this goal, structurally different chiral anion-binding catalysts will be developed and incorporated into the existing limited palette of catalyst library. Furthermore, I propose a significant expansion of the application scope of anion-binding catalysis based on the activation and modulation of anionic nucleophiles and oxidants to develop organocatalytic reactions such as halogenations and oxidations, including the asymmetric functionalization of C-H bonds. In addition, anion-binding processes will be used to facilitate key steps in cross-coupling reactions such as the transmetallation, as well as the photoactivity modulation of readily available photosensitizers and the introduction of asymmetric photocatalysis involving radical-anions.The proposed groundbreaking approaches will revolutionize not only anion-binding catalysis but also all the scientific areas relying on catalytic synthetic methods. Thus, the results derived from this project will have a tremendous impact in diverse fields such as catalysis, organic synthesis and material sciences, as well as in economical, environmental and industrial issues.
Prof. Dr. Olga Garcia Manchenos Profil an der Universität Münster
Laufzeit
2017–2021
Abstract
Quantum processors are envisioned to conquer ultimate challenges in information processing and to enable simulations of complex physical processes that are intractable with classical computers. Among the various experimental approaches to implement such devices, scalable technologies are particularly promising because they allow for the realization of large numbers of quantum components in circuit form. For upscaling towards functional applications distributed systems will be needed to overcome stringent limitations in quantum control, provided that high-bandwidth quantum links can be established between the individual nodes. For this purpose the use of single photons is especially attractive due to compatibility with existing fibre-optical infrastructure. However, their use in replicable, integrated optical circuits remains largely unexplored for non-classical applications.In this project nanophotonic circuits, heterogeneously integrated with superconducting nanostructures and carbon nanotubes, will be used to realize scalable quantum photonic chips that overcome major barriers in linear quantum optics and quantum communication. By relying on electro-optomechanical and electro-optical interactions, reconfigurable single photon transceivers will be devised that can act as broadband and high bandwidth nodes in future quantum optical networks. A hybrid integration approach will allow for the realization of fully functional quantum photonic modules which are interconnected with optical fiber links. By implementing quantum wavelength division multiplexing, the communication rates between individual transceiver nodes will be boosted by orders of magnitude, thus allowing for high-speed and remote quantum information processing and quantum simulation. Further exploiting recent advances in three-dimensional distributed nanophotonics will lead to a paradigm shift in nanoscale quantum optics, providing a key step towards optical quantum computing and the quantum internet.
Prof. Dr. Wolfram Persnices Profil an der Universität Münster
Laufzeit
2016–2021
Abstract
Human Papillomavirus Type 16 (HPV16), the paradigm cancer-causing HPV type, is a small, nonenveloped, DNA virus characterized by its complex life cycle coupled to differentiation of squamous epithelia. Due to this complexity, how HPV16 infects cells is an understudied field of research. Our previous work to define the cellular pathways that are hijacked for initial infection revealed uptake by a novel endocytosis mechanism, and the requirement for mitosis for nuclear delivery. Our findings indicated that nuclear envelope breakdown was required to access the nuclear space, and that the virus associated with mitotic chromatin during metaphase. This prolonged mitosis, a process beneficiary for infection. The viral L2 protein as part of incoming viruses mimics this on its own. The aim of this proposal is to reveal how HPV16 differentially modulates or takes advantage of the mitotic machinery for nuclear import in cells, tissues or during aging, and whether malignant cellular consequences arise. On the viral side, we will define the minimal properties of L2 to mediate association with cell chromatin and mitosis prolongation. On the cellular side, we will identify the protein(s) that mediate recruitment, and how it occurs in a detailed temporal/spatial manner. To elucidate the mechanism of mitotic prolongation and consequences thereof, we will identify which regulatory complex of mitosis is targeted, how it is induced, and whether it causes DNA damage or segregation errors. Finally, we will ascertain the influence of tissue differentiation and aging on this process. Using systems biology, proteomics, virology, cell biology, biochemistry, and a wide range of microscopy approaches we will unravel the complex interactions between HPV and the host cell mitosis machinery. In turn, as viruses often serve as valuable tools to study cell function, this work is likely to uncover new insights into how cells spatially and temporally regulate mitosis in differentiation and aging.
Prof. Dr. Mario Schelhaas' Profil an der Universität Münster
Laufzeit
2015–2019
Abstract
Our proposed research lies at the interface of Geometry, Group Theory, Number Theory and Combinatorics. In recent years, striking results were obtained in those disciplines with the help of a surprise newcomer at the border between mathematics and logic: Model Theory. Bringing its unique point of view and its powerful formalism, Model Theory made a resounding entry into several different fields of mathematics. Here shedding new light on a classical phenomenon, there solving a long-standing open problem via a completely new method. Recent examples of concrete mathematical problems where Model Theory interacted in a fruitful manner abound: the local version of Hilbert's 5th problem by Goldbring and van den Dries, Szemeredi's theorems in combinatorics and graph theory, the André-Oort conjecture in diophantine geometry (Pila, Wilkie, Zannier), etc. In this vein, and building on Hrushovski's model-theoretic work, Green, Tao and myself recently settled a conjecture of Lindenstrauss pertaining to the structure of approximate groups. Our plan in this project is to put these methods into further use, to collaborate with model theorists, and to start looking through this prism at a small collection of familiar problems coming from combinatorics, group theory, analysis and spectral geometry of metric spaces, or from arithmetic geometry. Among them: extend our study of approximate groups to the general setting of locally compact groups, obtain uniform estimates on the spectrum of Cayley graphs of large finite groups, prove an analogue for character varieties of the Pink-Zilber conjectures in relation with rigidity theory for discrete subgroups of Lie groups, and clarify the links between uniform spectral gaps and height lower bounds in diophantine geometry with a view towards Lehmer's conjecture.
Prof. Emmanuel Breuillards Profil an der Universität Münster
Laufzeit
2014–2018
Abstract
This project will develop novel techniques for solving inverse problems in life sciences, in particular related to dynamic imaging. Major challenges in this area are efficient four- dimensional image reconstruction under low SNR conditions and further the quantification of image series as obtained from molecular imaging or life microscopy techniques. We will tackle both of them in a rather unified framework as inverse problems for time-dependent (systems of) partial differential equations. In the solution of these inverse problems we will investigate novel approaches for the following aspects specific to the above-mentioned problems in the life sciences: 1. Solution of inverse problems for PDEs in complex time-varying geometries 2. Development of appropriate variational regularization models for dynamic images, including noise and motion models 3. Improved forward and inverse modelling of cellular and intracellular dynamics leading to novel inverse problems for nonlinear partial differential equations 4. Construction and implementation of efficient iterative solution methods for the arising 4D inverse problems and their variational formulation All tasks will be driven by concrete applications in biology and medicine and their success will be evaluated in applications to real problems and data. This is based on interdisciplinary work related to electrocardiology and developmental biology. The overall development of methods will however be carried out in a flexible and modular way, so that they become accessible for larger problem classes.
Laufzeit
2014–2019
Abstract
The project 'New isotope tracers for core formation in the terrestrial planets (ISOCORE)' will investigate the differentiation and volatile accretion history of the Earth. The two main research themes are (i) the mechanisms and timescales of accretion and core formation in the Earth, Moon and Mars, and (ii) the origin of Earth's volatiles (including water) with a particular focus on the time of volatile delivery to the Earth. The key concept of ISOCORE is to combine precise measurement of stable isotope fractionations in natural samples with a calibration of the fractionations in high temperature metal-silicate equilibration experiments. The work on the project will be subdivided into five strongly interlinked subprojects, all of which share the overarching goal of constraining core formation and volatile accretion on Earth and other planetary bodies.
Prof. Dr. Thorsten Kleines Profil an der Universität Münster