Research snippets from the Cluster of Excellence

CiM
|

My research about the coronary vasculature

© CiM/S. Marschalkowski

Biologist Dr. Guillermo Luxán investigates in the Cells-in-Motion Cluster of Excellence what roles the molecular signals in the coronary vasculature play in cardiovascular disease. To do so, he analyses thin tissue sections under the microscope. In this guest contribution, he gives an insight into his daily life in the laboratory.

CiM/sr
|

New insights into pruning

© S. Herzmann et al./Development

When an organism develops, non-specific connections between nerve cells degenerate. Researchers at the Cells-in-Motion Cluster of Excellence have now discovered that the spatial organization of a nerve cell influences the degeneration of its cell processes. The study has been published in “Development”.

CiM/sis
|

Restricting overwhelming immune reactions

© T. Vogl et al./ J Clin Invest

Researchers at the Cells-in-Motion Cluster of Excellence have decoded a mechanism found at the beginning of almost every inflammatory response. Their study provides a new approach to develop novel treatment options for many inflammatory disorders with many fewer side effects compared to current drugs.

CiM/sr
|

How scientists analyse cell membranes

© L. Rakers et al/Cell Chem Biol

In an interdisciplinary collaboration, researchers at the University of Münster have developed a method of visualizing an important component of the cell membrane in living cells. Therefore, they synthesized a family of new substances. The study has been published in “Cell Chemical Biology”.

CiM
|

Migrating cells and their environment

© CiM/T. Hauss

Phd student Sargon Groß-Thebing investigates in a research group at the Cell-in-Motion Cluster of Excellence how the cells’ environment affects their migration. As a biologist he works closely with mathematicians. In a guest contribution, he explains his research in a way that everyone can understand.

CiM
|

How do neuronal processes degenerate?

© CiM/J.-M. Tronquet

Adults have fewer neuronal connections than infants because during development, neurons degenerate the non-specific connections. Biologist Dr. Svende Hermann investigates a similar mechanism in the fruit fly. In a guest contribution, she explains her research in a way that everyone can understand.

|
CiM/sr

Observing inflammatory cells in the body

© S. Gran & L. Honold et al./Theranostics 2018(8)

Immunologists and imaging specialists at the Cells-in-Motion Cluster of Excellence have jointly developed a method enabling them to better evaluate and study the activity of inflammatory cells in mice. The study has been published in the “Theranostics” journal.

|
CiM/sr

Labelling and detecting RNA modifications

© CiM/E. Wibberg

Researchers at the Cells-in-Motion Cluster of Excellence have developed a new method enabling them to locate important modifications to messenger RNA. This is the result of an interdisciplinary collaboration between biochemists and molecular biologists. It has been published in “Angewandte Chemie”.

|
upm

Researchers make a fly’s heartbeat visible

© Dimitri Berh, Benjamin Risse

Researchers at the Cells-in-Motion Cluster of Excellence have developed a new method for visualizing the heartbeat of living fruit-fly pupae and automatically recording the pulse frequency. The study is the result of interdisciplinary cooperation between computer scientists and biologists.

|
CiM/sis

Transmitting stimuli in nerve cells

© J. Klingauf

Glutamate is known as an flavour enhancer. But without the body’s own glutamate, nerve cells cannot transmit any signals. Researchers at the Cells-in-Motion Cluster of Excellence have shown how glutamate gets into nerve cells to the right places, describing the key role played by chloride.

|
CiM/sr

Regeneration starts with a wound

© MPI Münster/J. Müller-Keuker

Researchers at the Cells-in-Motion Cluster of Excellence have gained new insights into the mechanisms behind regenerative processes. In flatworms and zebrafish, even small wounds can initiate complete regeneration of heads and bones. The study has been published in “Nature Communications”.

CiM/sr
|

Dynamic cell contacts

© Cao et al./Nature Communications

If new blood vessels sprout from an existing network of vessels, their endothelial cells migrate in order to rearrange themselves and form contacts with other cells. CiM researchers show which mechanisms take place in the process. The study has been published in “Nature Communications”.

CiM/sr
|

The fate of primordial germ cells

© T. Gross-Thebing et al./Dev. Cell

During the development of an organism, individual cells are directed to perform specific tasks within the body of the adult organism. Researchers at the Cells-in-Motion Cluster of Excellence show now that the function of a certain protein is responsible for the development of sperm and egg cells.

|
CiM/sr

How do cells form blebs for their motility?

© M. Goudarzi et al./Dev. Cell

In order to be able to move, some cells form protrusions in the form of blebs. How do these blebs form? Researchers at the Cells-in-Motion Cluster of Excellence have discovered that folds in the cell membrane play a decisive role. The study has been published in the journal “Developmental Cell”.

|
CiM/sis

Fish in research

© CiM/J.-M. Tronquet

At the Cells-in-Motion Cluster of Excellence there are lots of scientists doing work on and with zebrafish. These fish are perfect for research work because they grow outside the mother’s body and are transparent in the first five days of their life. What the scientists study in the tiny fish embryos is, for example, how bones, blood vessels and lymphatic vessels develop.

|
CiM

Research on the circadian clock

© WWU/L. Schenk

Prof. Ralf Stanewsky, a group leader at the Cells-in-Motion Cluster of Excellence, speaks with the University’s newspaper „wissen|leben“ about the research on the circadian clock. In December, the nobel prize for medicine will be awarded for insights into this topic. (Interview in German)

|
CiM/sr

Complicated research: easy to understand!

© Klaus Tschira Stiftung/Nikola Neven Haubner

Do chemicals that we take up from the environment impair the function of sperm? This is what Dr. Christian Schiffer, a junior researcher at the Cells-in-Motion Cluster of Excellence, is investigating. He has received the KlarText Prize for an easy-to-understand article about his research work.

|
CiM/sr/sis

One Million Euro in funding for research

© Ivan Bedzhov

Interdisciplinary research: At the Cells-in-Motion Cluster of Excellence, ten new projects are receiving funding worth a total of around one million euros. Two team leaders from different disciplines work together on each project and contribute their creative ideas to it.

|
CiM/sr

Making digital 3D images of tissue

© JCI Insight

Researchers at the Cells-in-Motion Cluster of Excellence have developed a new method for producing digital 3D reconstructions of blood and lymphatic vessels from tissue samples and then creating images of them for analysis. The study has been published in the “JCI Insight” journal.

|
CiM/sr

Samples from the desert in her luggage

© CiM - Roberto Schirdewahn

Lulit Tilahun Wolde, a visiting academic from Ethiopia, is working in a research group at the Cells-in-Motion Cluster of Excellence. She brought microorganisms with her that can survive in one of the hottest regions on Earth. She wants to find out how modifications in RNA enable the microorganisms to survive.

|
CiM/sr

Mechanisms of artery formation

© Hasan/Nature Cell Biology

During angiogenesis, new blood vessels are formed from existing ones. Research teams at the Cells-in-Motion Cluster of Excellence have shown that the Notch signalling pathway influences the sprouting of new blood vessels and the formation of arteries. Two studies have appeared in the latest issue of “Nature Cell Biology”.

|
CiM/sr

How does the nervous system develop?

© Svende Herzmann et al./Embo Journal

During development, some of the connections between nerve cells disappear. Researchers at the Cells-in-Motion Cluster of Excellence have discovered a physiological process that plays an important role in this. The study has been published in the current issue of “Embo Journal”.

|
CiM/sr

Genetic defect causes vessel malformations

© MPI Münster/Wade Sugden

What role does the correct size of endothelial cells play in the development of blood vessels? Researchers at the Cells-in-Motion Cluster of Excellence have been studying this and have identified a gene which enlarges endothelial cells and can lead to diseases. The study has been published in “Nature Cell Biology”.

|
CiM/sis

50,000 euros for junior researchers

© CiM - Jean-Marie Tronquet

Usually, interdisciplinary research is especially innovative. This is why the Cells-in-Motion Cluster of Excellence is funding five new pilot projects. Young researchers from several different disciplines have to apply for and implement the projects, for which they are themselves responsible.

|
CiM/sis

The long road to new knowledge

© CiM - Jean-Marie Tronquet

“March for Science”: On April 22, scientists and citizens around the world will demonstrate for the vital role of science. CiM Prof. Stefan Luschnig knows that knowledge does not emerge overnight. He tells how he discovered a protein – years and years of systematic research work and discussions with colleagues.

|
MPI

Emergence of nuclear architecture

© MPI Münster, Vaquerizas Lab/Clemens Hug and Alexis Grimaldi

When during development does the 3D organisation of the genom in the nucleus arise? A team of researchers around Dr. Juanma Vaquerizas, a group leader at the Cells-in-Motion Cluster of Excellence, and Clemens Hug, a CiM-IMPRS graduate student, have found new answers to this question. The study has been published in the journal "Cell".

|
MPI

Where do stem cells leave marrow vessels?

© MPI Münster / Gabriele Bixel

In stem cell transplantation, new stem cells are transferred to the recipient’s bloodstream and find their own way to the bone marrow. A research team headed by the CiM group leaders Prof. Ralf Adams and Prof. Dietmar Vestweber identified the blood flow conditions under which blood stem cells migrate from the vessels and can seek a niche in the bone marrow.

|
CiM/sr

How do cells move?

© Hörner et al./Journal of Biophotonics

Using an optical method, researchers at the Cells-in-Motion Cluster of Excellence have investigated the mechanical features of cells in living zebrafish embryos and manipulated, for the first time, several components in the cells simultaneously. The study appears in the Journal of Biophotonics.

|
CiM/sr

Tracking inflammatory processes

© Song et al./Cell Reports

Which molecular mechanisms are at work when, in the case of inflammation, immune cells migrate from the blood vessel into the tissue? Researchers at the Cells-in-Motion Cluster of Excellence have gained new insights into this question. The study has been published in the journal “Cell Reports”.

|
CiM

Stress leads to an internal reorganization of the body’s cells

© Pauline Wales et al.

If cells are under stress, for example in the case of injuries, they react to the stress and reorganize their cytoskeleton. This has been demonstrated by Prof. Roland Wedlich-Söldner and his team at the “Cells in Motion” Cluster of Excellence. Their study has been published in the journal “eLife”.

|
wissen|leben/cim

Blood vessel cells on their travels

© Mailin Julia Hamm, Bettina Carmen Kirchmaier, Wiebke Herzog

CiM group leader Prof. Wiebke Herzog is looking into the question of how cells in the blood vessels find their way to the right place in the tissue and thus make growth possible. She has now received a Heisenberg fellowship for her work from the German Research Foundation.

|
cim/sr/dn

Research from Cells to Patients

© Reprinted with permission from Gerwien & Hermann et al., Sci. Transl. Med. 8, 364ra152 (2016) 9 November 2016
© Korpos (left) / Gerwien, Faust, Sorokin, Schäfers (centre) / Sci. Transl. Med. 8 (2016), Gerwien & Hermann et al. (right)

Researchers at the Cells-in-Motion Cluster of Excellence have succeeded in visualizing, for the first time, ongoing inflammation in the brain in patients suffering from multiple sclerosis. The study has been published in the prestigious journal "Science Translational Medicine".

|
CiM/sr/dn

It went “click“

© CiM - Peter Leßmann

Researchers of the Cells-in-Motion Cluster of Excellence have succeeded in marking messenger RNA in living cells using click chemistry. A new study of CiM Professor Andrea Rentmeister and her team has been published in the specialist journal “Angewandte Chemie”.

|
w|l / Winter

FIM shows fruit flies on a shopping spree

Junior researchers from the departments of Computer Science and Biology have developed a method of making precise analyses of the behaviour of Drosophila larvae
© WWU - Peter Grewer

Using a so-called FIM table, biologists can photograph even the smallest movement the animals make. The project is being funded by the Cells-in-Motion Cluster of Excellence.

|
CiM/fs

How to Build an Organ?

CiM-scientists have found that three factors control progenitor cell positioning in zebrafish embryos

Chemical cues, physical barriers and cell adhesion control progenitor cell positioning. This is the result of a study by cell biologists Azadeh Paksa and Prof. Erez Raz, who worked with an international team of scientists from Israel, France and the USA. The study was published in the journal Nature Communications.

|
CiM/sr

Fresh wind for old stem cell niches

Researchers at the Max Planck Institute and Münster University have discovered how to increase blood-forming stem cells
© MPI Münster - A. Kusumbe

Blood vessels play a decisive role in the growth of bone tissue and in blood formation, or haematopoiesis. The blood vessels form so-called vascular niches which ensure that the blood-forming stem cells are preserved. Researchers have now found out how they can enhance the function of vascular stem cell niches in bone marrow and, as a result, increase the number of stem cells.

|
CiM/fs

Over a Million Euros of Funding for Interdisciplinary Research

“Cells in Motion“ funds twelve new interdisciplinary research projects

CiM is providing 1.1 million euros of funding for no fewer than twelve new so-called flexible funds projects. What is special about the projects is that the project partners unite laboratories and clinics from the Departments of Biology, Chemistry, Physics, Mathematics and Medicine. Objects of research are sperm, nano-capsules and high-performance scanners.

|
upm/ch

Using Trojan Horses to Combat Microorganisms

Researchers analyse potential of an approach to treating local infections
© Wiley-VCH Verlag GmbH and Co. KGaA. Reproduced with permission

Bacterial infections can have serious consequences – for example, when they colonize an artificial heart valve. There is especially problematic when the bacteria are resistant to several antibiotics. Researchers are looking for new methods of treatment as well as for ways to find centres of infection in the body, for example by means of special sugar molecules. Chemists, physicists, biologists and physicians were all involved in the study.

|
CiM/sis

If cells run out of oxygen, they start to shine green

Scientists from Münster developed a new method to indicate acute lack of oxygen in cells
© Friedemann Kiefer

Without oxygen, cells cannot survive. Until now, scientists could not observe the effect that a reduced oxygen supply can have on individual cells. This was technically not feasible before. Scientists from Münster have now developed a reporter, which allows them to see an acute lack of oxygen of cells using light microscopy.

|
CiM/fs

Blood Cells in Action

Biophysicists measure for the first time what happens when red blood cells “wriggle”

For the first time, and using physical methods, scientists from Münster, Paris and Jülich have demonstrated how red blood cells move. There had been real fights between academics over the question of whether these cells are moved by external forces or whether they actively “wriggle”. CiM Junior Research Group Leader Dr. Timo Betz and an international team have now proven that both opinions are correct. The study was published  in “Nature Physics”.

Inspired by the Chemistry of the Eye

Research team from Münster develops innovative catalytic chemistry process
© Colourbox.de/A. Tiplyashin

Doctoral student Jan Metternich and his disstertation supervisor have now succeeded in turning to their advantage a chemical reaction which takes place in the eye and enables us to see light and dark. This process could be used to create special variants (isomers) of important carbon compounds which need a lot of energy to be produced by other means.

Biology and Physics

Through CiM, these two disciplines grow closer together
© Robert Meißner, Álvaro Barroso, Christina Alpmann, Cornelia Denz

CiM brings together scientists from different disciplines to perform novel multidisciplinary research. Through a so-called pilot project programme, physicist Robert Meißner and biologist Wade Sugden will work together to directly measure the forces in blood flow that affect blood cells and their viscoelasticity. Their collaboration has already produced measurable success.

Medical Imaging with Xbox Technology

© Mirco Heß

It does not always need to be the most expensive high tech product to optimize medical technology. A scientist from a research group in the Cells-in-Motion Cluster of Excellence used the Xbox technology for an experiment. With the help of this affordable technology Mirco Heß shows scientists a way to better understand clinical images of the inside from the outside.

Ties Between Science and Clinical Practices

Prof. Dr. Georg Lenz works on treatment approaches to lymph gland cancer
© CiM - Peter Grewer

Prof. Dr. Georg Lenz mainly treats patients who suffer from aggressive cancer of the lymphatic glands. But you will not only meet him in the hospital. Prof. Lenz spends a good share of his working time in his laboratory. Holding the first CiM Clinical Translation Professorship he should, wherever possible, directly apply his scientific findings to clinical therapy and take up and intern apply impulses from the clinic to his research.

'We listen to the sound of light.'

Prof. Michael Schäfers on Photoacoustic Imaging
© CiM - Michael Kuhlmann

Just recently the Cells-in-Motion Cluster of Excellence (CiM) obtained a new device for 'photoacoustic imaging'. Prof. Michael Schäfers from the team of CiM coordinators explains in an interview with Christina Heimken why this prototype is especially important.