ERC Advanced Grants der Universität Münster

Mit einem Advanced Grant zeichnet der ERC bereits etablierte, führende Wissenschaftler*innen aus, um ein bahnbrechendes, ehrgeiziges Projekt umzusetzen.

Bildergalerie der Preisträger*innen

Prof. Dr. Frank Glorius (Organische Chemie) gewann einen ERC-Advanced Grant im Jahr 2023.
Prof. Dr. Frank Glorius (Organische Chemie) gewann einen ERC-Advanced Grant im Jahr 2023.
© Bayer Foundation
  • Prof. Dr. Amido Studer (Organische Chemie) gewann einen ERC-Advanced Grant in 2016 sowie in 2024.
    © Uni MS – AK Studer
  • Prof. Dr. Christian Weinheimer (Kernphysik) gewann einen ERC-Advanced Grant im Jahr 2022.
    © Universität MS – MünsterView
  • Prof. Dr. Lydia Sorokin (Medizin) gewann einen ERC-Advanced Grant im Jahr 2022.
    © Uni MS – Thomas Hauss
  • Prof. Dr. Wilhelm Winter (Mathematik) gewann einen ERC-Advanced Grant im Jahr 2019.
    © Uni MS – Victoria Liesche
  • 2024 | Prof. Dr. Armido Studer | Radical Chemistry with the Hydrogen Atom Through Water Activation (H-dot)

    Laufzeit

    2024–2029

    Abstract

    Water activation, which allows the transfer of universally abundant hydrogen into value added compounds, is an important research field in modern science. This task has been realized mainly by using transition-metal-based systems. Herein we will use a conceptually novel mild water activation strategy which proceeds through a photocatalytic phosphine-mediated radical process. The active species in these processes is a metal-free R3P-OH2 radical cation intermediate where both hydrogen atoms are used in the following chemical transformation through sequential heterolytic (H+) and homolytic (H•) cleavage of the two O-H bonds. The R3P-OH radical intermediate provides an ideal platform to mimic the reactivity of a "free" hydrogen atom that can be directly transferred to various π-systems to give H-adduct C-radicals, which are eventually reduced by a thiol cocatalyst leading to overall transfer hydrogenation of π-systems, with the two H-atoms of water ending up in the product. The driving force is the strong P-O bond formed in the phosphine oxide byproduct.

    Prof. Dr. Armido Studers Profil an der Universität Münster

    Projektinformationen des ERC

  • 2023 | Prof. Dr. Frank Glorius | Energy Transfer Catalysis: A Highway to Molecular Complexity (HighEnT)

    Laufzeit

    2023–2028

    Abstract

    Die Entwicklung neuartiger Synthesemethoden ist eines der wichtigsten chemischen Forschungsgebiete, da der Zugang zu organischen Molekülen die Grundlage für viele angewandte Wissenschaften ist (z.B. medizinische Chemie, Materialwissenschaften). In den letzten Jahren hat die Konstruktion von immer komplexeren molekularen Gerüsten an Bedeutung gewonnen, wobei ein besonderer Bedarf an konformativ eingeschränkten, dreidimensionalen Architekturen besteht. Die Synthese solcher molekularen Gerüste ist jedoch nach wie vor äußerst schwierig, was ihre Anwendung in anderen Forschungsbereichen einschränkt. Die Entdeckung neuartiger Strategien zur Umwandlung einfacher chemischer Ausgangsstoffe in komplexe Bausteine hat daher positive Auswirkungen auf die gesamte Gesellschaft. In HighEnT werden bahnbrechende Methoden entwickelt, die den synthetischen Werkzeugkasten der organischen Chemiker erweitern und sich auf die Erweiterung des chemischen Raums konzentrieren, um pharmakologisch relevante Strukturmotive zu entdecken.

    Prof. Dr. Frank Glorius Profil an der Universität Münster

    Projektinformationen des ERC

  • 2022 | Prof. Dr. Lydia Sorokin | Breaking into the brain - basement membranes and the perivascular niche (B3M)

    Laufzeit

    2022–2027

    Abstract

    Die Mikroumgebung um die Blutkapillaren wird als perivaskuläre Nische bezeichnet und spielt bei verschiedenen Erkrankungen, darunter auch bei Neuroinflammation, eine wichtige Rolle. Ziel des vom Europäischen Forschungsrat finanzierten Projekts B3M ist es, die perivaskuläre Nische von Hirngefäßen zu untersuchen, indem sie in vitro nachgebildet wird. Unter Verwendung von Hydrogelen mit einstellbaren Eigenschaften als Gerüst und Endothelzellen, die aus induzierten pluripotenten Stammzellen stammen, werden die Forschenden die Architektur und Funktion der perivaskulären Nische in vivo rekapitulieren. Das In-vitro-System ermöglicht die Untersuchung der zellulären und molekularen Vorgänge, die das Eindringen von Leukozyten in die perivaskuläre Nische bestimmen und zu einer Neuroinflammation führen.

    Prof. Dr. Lydia Sorokins Profil an der Universität Münster

    Projektinformationen des ERC

  • 2022 | Prof. Dr. Christian Weinheimer | Low radon and low internal radioactivity for dark matter and rare event xenon detectors (LowRad)

    Laufzeit

    2022–2027

    Abstract

    Zwei bedeutende Kooperationen – XENON/DARWIN und LUX-ZEPLIN (Flüssig-Xenon-Detektoren) –, die sich mit der Erforschung dunkler Materie befassen, schließen sich zusammen, um einen Detektor der nächsten Generation für dunkle Materie zu entwickeln. Dieser Detektor soll außerdem für andere seltene physikalische Prozesse empfänglich sein, wie etwa den neutrinolosen doppelten Betazerfall, solare Neutrinos, Axionen und so weiter. Trotz der Existenz von Abschirmungssystemen für Myonen oder Neutronen ist die Empfindlichkeit beider Detektoren durch den radioaktiven Zerfall des Xenons, insbesondere der radioaktiven Edelgasisotope 222Rn und 85Kr, begrenzt. Im Rahmen des EU-finanzierten Projekts LowRad werden kryogene Destillationsanlagen eingerichtet, um die Konzentrationen von 222Rn und 85Kr auf ein bisher nicht gekanntes Niveau zu senken. Dadurch soll ihr Hintergrundanteil am Detektor um den Faktor 10 reduziert werden.

    Prof. Dr. Christian Weinheimers Profil an der Universität Münster

    Projektinformationen des ERC

  • 2019 | Prof. Dr. Wilhelm Winter | Amenability, Approximation and Reconstruction (AMAREC)

    Laufzeit

    2019–2025

    Abstract

    Algebren stetiger linearer Operatoren über Hilberträumen wurden ursprünglich als geeigneter mathematischer Rahmen konzipiert, um die Quantenmechanik zu beschreiben. In der modernen Mathematik hat sich ihr Anwendungsbereich ausgeweitet, da Operatoralgebren äußerst flexibler Natur sind. Von besonderem Interesse sind sie in der Analyse von Gruppen und ihren Wirkungen. Bei dem Begriff „mittelbar“ handelt es sich um eine Endlichkeitseigenschaft mit zahlreichen äquivalenten Formulierungen. Das EU-finanzierte Projekt AMAREC wird eine Analyse mittelbarer Gruppen durchführen, um die Approximationseigenschaften abstrakter C*-Algebren, topologischer dynamischer Systeme und diskreter Gruppen auszuloten. Approximationseigenschaften werden als Brücke zwischen diesen Gebilden dienen und verwendet werden, um systematisch Informationen über die zugrunde liegenden Strukturen zu gewinnen.

    Prof. Dr. Wilhelm Winters Profil an der Universität Münster

    Projektinformationen des ERC

Abgeschlossene Projekte

  • 2018 | Prof. Dr. Frank Glorius | Selective Hydrogenation of Arenes - A Dream Reaction (HyDream)

    Laufzeit

    2018–2023

    Abstract

    The hydrogenation of ketones and olefins is one of the oldest synthetically used transformations. The reaction is highly sustainable and its value has been acknowledged by two Nobel Prizes. In contrast, the hydrogenation of arenes is still underexplored due to the high kinetic barrier caused by aromaticity. However, the selective arene hydrogenation constitutes a dream reaction for use in an ideal synthesis: The transformation is straightforward, uses readily available substrates, and is able to build-up an astonishing amount of complexity, with the potential to form multiple defined sterocentres, in a single step. With our first paper on selective arene hydrogenation published in 2004, we became pioneers in this field and have continuously made important contributions using metal–carbene complexes. As a world-leader in this area and with expertise in several relevant fields of catalysis, we are perfectly suited to convert arene hydrogenation into a reliable and general transformation within the frame of this project. We will provide rapid access to sought-after motifs and consequently will enable breakthroughs in material and life sciences. Key to our success will be the design of strongly electron-donating carbene ligands and deep mechanistic understanding. Specifically, we will develop solutions for the problematic hydrogenation of heteroatom-substituted arenes, and heteroarenes. Utilising the soluble nature of a homogenous catalyst, we also envision applications in the hydrogenation of polymers, offering direct access to new materials. Furthermore, the use of syngas is expected to allow for the development of a merged hydrogenation-hydroformylation reaction to yield highly functionalised cyclohexanes in a single step from minimally functionalised arenes. Finally, we aim to develop chiral versions of our highly reactive metal–carbene catalyst to enable the previously unknown but highly desirable enantioselective hydrogenation of benzene derivatives.

    Prof. Dr. Frank Glorius Profil an der Universität Münster

    Projektinformationen des ERC

  • 2016 | Prof. Dr. Armido Studer | The Electron as a Catalyst (e-Cat)

    Laufzeit

    2016–2022

    Abstract

    Is the electron a catalyst in synthesis? This fundamental question will be addressed within the frame of the suggested ERC-project. Brönsted acid catalysis is well established in organic synthesis. The electron, as compared to the proton about 1800 times smaller and omnipresent, is currently not recognized as a potential catalyst in synthesis. The concept of using the electron as a catalyst is nearly unexplored. In the suggested, challenging project this kind of catalysis and its potential in synthesis will be the target of the investigations. The aim is to establish catalysis with the electron as an independent research branch in organic synthesis. To this end, the generality and broad applicability of the concept has to be documented. Different reactions, which are currently conducted as non-chain reactions by using transition metals as redox catalysts, will be performed via electron-catalyzed radical chain processes. In view of the foreseen shortage of transition metals we consider the development of transition-metal-free chemistry as important. Guided by Mother Nature we plan to develop synthetic dehydrogenases. Unactivated aliphatic sites in complex substrates will be selectively oxidized to the corresponding alkenes. Remote regioselective C-H functionalization in complex molecules comprising C-C- and C-X-bond formation will be investigated and also transition-metal-free radical arene and alkene C-H functionalization will be explored. Furthermore, the potential of electron-catalysis in asymmetric synthesis will be elucidated. Preparative and kinetic experimental studies will be supported by theoretical chemistry, new methods for initiation of electron-catalyzed processes will be developed and also mechanistic studies will be performed.

    Prof. Dr. Armido Studers Profil an der Universität Münster

    Projektinformationen des ERC

  • 2014 | Prof. Dr. Ralf Heinrich Adams | Angiogenic growth, specialization, ageing and regeneration of bone vessels (AngioBone)

    Laufzeit

    2014–2019

    Abstract

    The skeleton and the sinusoidal vasculature form a functional unit with great relevance in health, regeneration, and disease. Currently, fundamental aspects of sinusoidal vessel growth, specialization, arteriovenous organization and the consequences for tissue perfusion, or the changes occurring during ageing remain unknown. Our preliminary data indicate that key principles of bone vascularization and the role of molecular regulators are highly distinct from other organs. I therefore propose to use powerful combination of mouse genetics, fate mapping, transcriptional profiling, computational biology, confocal and two-photon microscopy, micro-CT and PET imaging, biochemistry and cell biology to characterize the growth, differentiation, dynamics, and ageing of the bone vasculature. In addition to established angiogenic pathways, the role of highly promising novel candidate regulators will be investigated in endothelial cells and perivascular osteoprogenitors with sophisticated inducible and cell type-specific genetic methods in the mouse. Complementing these powerful in vivo approaches, 3D co-cultures generated by cell printing technologies will provide insight into the communication between different cell types. The dynamics of sinusoidal vessel growth and regeneration will be monitored by two-photon imaging in the skull. Finally, I will explore the architectural, cellular and molecular changes and the role of capillary endothelial subpopulations in the sinusoidal vasculature of ageing and osteoporotic mice. Technological advancements, such as new transgenic strains, mutant models or cell printing approaches, are important aspects of this proposal. AngioBone will provide a first conceptual framework for normal and deregulated function of the bone sinusoidal vasculature. It will also break new ground by analyzing the role of blood vessels in ageing and identifying novel strategies for tissue engineering and, potentially, the prevention/treatment of osteoporosis.

    Prof. Dr. Ralf Heinrich Adams Profil an der Universität Münster

    Projektinformationen des ERC

  • 2012 | Prof. Dr. Gerhard Erker | Development of Frustrated Lewis Pair Chemistry (FLPCHEM)

    Laufzeit

    2012–2017

    Abstract

    Frustrated Lewis pair chemistry is an exciting new field of very high current interest. Usually, Lewis acids and Lewis bases quench each other by strong adduct formation when brought together in solution. This is avoided or hindered by the attachment of sufficiently bulky substituents at these components. Non-quenched pairs of bulky Lewis acids and Lewis bases feature an unprecedented potential for cooperative small molecule activation and they induce an amazing manifold of new reactions and reactivities. This project will significantly advance this fascinating new field by the specific design and synthesis of novel advanced frustrated Lewis pairs (FLPs) and by using them for finding and developing new chemical reactions of fundamental chemical building blocks according to the following scheme: Design and Preparation of New Frustrated Lewis PairsNew FLP ReactionsNew Areas of Metal-free Catalytic HydrogenationOpening the New Field of FLP-Based Free Radical ChemistryNew Oxidation reactionsFLP-Based Carbon Dioxide ChemistryFLP Reactions of High Energy Intermediates With this project and its subdivisions we propose to tackle very timely questions in an innovative and original way by using the enormous potential that the emerging field of frustrated Lewis pairs has to offer.

    Prof. Dr. Gerhard Erkers Profil an der Universität Münster

    Projektinformationen des ERC

  • 2011 | Prof. Dr. Erez Raz | Molecular and Cellular Mechanisms Promoting Single-Cell Migration in vivo (CellMig)

    Laufzeit

    2011–2017

    Abstract

    The regulation of cell migration is central in pattern formation, homeostasis and disease. The proposed research is aimed at investigating the molecular basis for cell motility and the associated polarization of the cell. In view of the dynamic nature of these processes, we have chosen to utilize the migration of Primoridal Germ Cells (PGCs) in zebrafish - a model that offers unique experimental advantages for imaging and experimental manipulations. The fact that molecules facilitating the motility of zebrafish PGCs are evolutionary conserved and the finding that the cells are directed by chemokines, molecules that control a wide range of cell trafficking events in vertebrates, make this in vivo study of particular importance. The proposed work involves both the functional analysis of previously identified candidates and the identification of molecules, which have a presently unknown effect on the migration process. For both objectives, we will employ novel experimental schemes. We will examine the role of proteins in achieving functional cell polarity compatible with efficient motility and response to directional cues, using unique techniques and analysis tools in the context of the living organism. The precise function of the identified proteins will be determined by combining mathematical tools aimed at quantitatively gauging the role of the molecules in conferring proper cell shape, biophysical methods aimed at measuring forces, rigidity and cytoplasm flow and determination of the effect on the organization of relevant structures using cryo electron tomography. Together, this approach would provide a non-conventional understanding of cell migration by correlating structural, morphological and dynamic cellular properties with the ability of cells to effectively migrate towards their target.

    Prof. Dr. Erez Raz' Profil an der Universität Münster

    Projektinformationen des ERC

  • 2011 | Prof. Dr. Dr. h.c. Joachim Cuntz | Topological dynamics of rings and C*-algebras (ToDyRiC)

    Laufzeit

    2011–2016

    Abstract

    This project is concerned with problems in several areas. A starting point is the new concept of a ring C*-algebra associated with a countable ring without zero divisors. For special rings this C*-algebra has a very rich and surprising structure. A particularly interesting case is the ring of algebraic integers in a global field. In this context the algebra contains well known topological dynamical systems. We plan to use the analysis of ring algebras as an organizing principle for the study of many questions in C*-algebra theory, K-theory, ergodic theory and number theory. Some of these questions are well known and very difficult.

    Prof. Dr. Joachim Cuntz' Profil an der Universität Münster

    Projektinformationen des ERC

  • 2010 | Prof. Luisa De Cola | (Nano)-Materials for Cell Growth, Imaging and Communication (MaGIC)

    Laufzeit

    2010–2015

    Abstract

    MaGIC intends to explore the use of nano/micro objects, in particular zeolite L, as materials for imaging, and, when the zeolites are used as substrates, for analyzing and manipulating cells. In particular in vivo and in vitro imaging, cell growth on nano/micro patterned zeolite monolayers, and understanding some of the processes of cell-to-cell communication are the ambitious goals of this proposal. We intend to achieve these goals through 5 objectives: 1. Synthesis and characterization of zeolites and loading and trapping of dye molecules. 2. Patterned zeolite monolayers and microcontact printing for asymmetric functionalization and cells transfer. 3. Molecular imaging using nanoporous materials as multiresponsive probes. 4. Cell growth, proliferation and stimulation of processes in spatially confined areas. 5. Communication between cells and cell differentiation. The project is extremely challenging and if successful will open new horizons in the use of nanomaterials in combination with living systems and will develop new technologies for handling delicate substrates and assemblies. The numerous ideas and problems that MaGIC addresses are of fundamental importance and collectively represent an interesting approach to simply mimicking nature, connecting biological components to abiotic materials in order to understand the mechanisms of the biological systems or to take advantage of the unique properties of the ‘non-biological’ components in a natural setting (in vivo and in vitro). The stepwise approach, starting from the use of the nanomaterials for observing the surrounding environment (cell imaging), and proceeding to their assembly in functional architectures, culminates in the realization of special interfaces with the ambition to realize and study cell-to-cell communication.

    Prof. Luisa De Colas Profil an der Universität Münster

    Projektinformationen des ERC