SUSY on the lattice
DESY-Münster collaboration


Contents of this Page:


Members of the collaboration

Ali, Sajid ( sajid.ali@uni-muenster.de )
Universität Münster, Germany

Bergner, Georg ( bergner@itp.unibe.ch )
Universität Bern, Schweiz

Gerber, Henning ( h.gerber@uni-muenster.de )
Universität Münster, Germany

Giudice, Pietro ( p.giudice@uni-muenster.de )
Universität Münster, Germany    

Montvay, István ( istvan.montvay@desy.de )
DESY, Hamburg, Germany

Münster, Gernot ( munsteg@uni-muenster.de )
Universität Münster, Germany    

Scior, Philipp ( scior@uni-muenster.de )
Universität Münster, Germany    

Piemonte, Stefano ( nspiemonte@gmail.com )
Universität Regensburg, Germany    

Former members

Özugurel, Umut Deniz

Sandbrink, Dirk

Demmouche, Kamel
Centre Universitaire Ain Temouchent, Algeria

Farchioni, Federico

Feo, Alessandra
Universita di Parma, Italy

Ferling, Alexander

Galla, Tobias
University of Manchester, UK    

Gebert, Claus

Kirchner, Robert

Luckmann, Silke

Peetz, Roland

Quack, Lorenz

Scholz, Enno E.
Universität Regensburg, Germany

Spanderen, Klaus

Talkenberger, Dirk

Vladikas, Anastassios
Universitá di Roma 2, Italy    

Westphalen, Jörg

Wuilloud, Jaïr


Research topics

Our collaboration studies the SU(2) supersymmetric Yang-Mills (SYM) theory which is the zero gluino mass limit of an SU(2) gauge theory with a massive Majorana fermion in the adjoint (triplet) representation.

Algorithm development
Earlier numerical simulations have been performed by using the two-step multi-bosonic (TSMB) algorithm which is based on a two-step polynomial approximation of the function x-1/4 in an interval containing the spectrum of the gluino (fermion-) matrix. These polynomials can be determined by Maple procedures.
Presently we are using a two-step variant of the Polynomial Hybrid Monte Carlo algorithm (TS-PHMC) by Montvay and Scholz.

Glueball-gluinoball spectrum
Since the SYM theory is expected to have a mass gap and a supersymmetric spectrum of colourless confined states, it is interesting to investigate the low-lying spectrum of glueballs, gluino-glueballs and gluinoballs as a function of the gluino mass. In the limit of zero gluino mass one expects that the states are organized in degenerate supermultiplets.

Phase structure
The low energy effective Lagrangians are based on the discrete chiral symmetry of SYM theory which is assumed to be broken by the gluino condensate. This implies the existence of a first order phase transition at the supersymmetry point which can be investigated in a numerical simulation.

SUSY Ward-Takahashi identities
At finite lattice spacing the supersymmetry is broken by lattice artefacts which vanish in the continuum limit. The restauration of supersymmetry can be numerically investigated by studying various matrix elements of the SUSY WT-identities.

A more detailed review of the research topics can be found in our contributions or in the review article

Publication list

  1. I. Montvay:
    An algorithm for gluinos on the lattice,
    Nucl. Phys. B 466 (1996) 259,
    hep-lat/9510042.

  2. I. Montvay:
    Supersymmetric gauge theories on the lattice,
    Nucl. Phys. B (Proc. Suppl.) 53 (1997) 853,
    hep-lat/9607035.

  3. G. Koutsoumbas, I. Montvay:
    Gluinos on the lattice: quenched calculations,
    Phys. Letters B 398 (1997) 130,
    hep-lat/9612003.

  4. I. Montvay:
    Quadratically optimized polynomials for fermion simulations,
    Comput. Phys. Commun. 109 (1998) 144,
    hep-lat/9707005.

  5. I. Montvay:
    SUSY on the lattice,
    Nucl. Phys. B (Proc. Suppl.) 63 (1998) 108,
    hep-lat/9709080.

  6. G. Koutsoumbas, I. Montvay, A. Pap, K. Spanderen, D. Talkenberger, J. Westphalen:
    Numerical study of SU(2) Yang-Mills theory with gluinos,
    Nucl. Phys. B (Proc. Suppl.) 63 (1998) 727,
    hep-lat/9709091.

  7. I. Montvay:
    SYM on the lattice,
    in Theory of Elementary Particles, Proceedings of the 31st International Symposium Ahrenshoop, September 1997, Buckow, Germany; edited by H. Dorn, D. Lüst, G. Weigt, Wiley-VCH, 1998; p. 361,
    hep-lat/9801023.

  8. R. Kirchner, S. Luckmann, I. Montvay, K. Spanderen, J. Westphalen:
    Numerical simulation of dynamical gluinos: experience with a multi-bosonic algorithm and first results,
    Nucl. Phys. B (Proc. Suppl.) 73 (1999) 828,
    hep-lat/9808024.

  9. R. Kirchner, S. Luckmann, I. Montvay, K. Spanderen, J. Westphalen:
    Evidence for discrete chiral symmetry breaking in N=1 supersymmetric Yang-Mills theory,
    Phys. Letters B 446 (1999) 209,
    hep-lat/9810062.

  10. I. Campos, A. Feo, R. Kirchner, S. Luckmann, I. Montvay, G. Münster, K. Spanderen, J. Westphalen:
    Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos,
    Eur. Phys. J. C 11 (1999) 507,
    hep-lat/9903014.

  11. I. Montvay:
    Multi-bosonic algorithms for dynamical fermion simulations, in Proceedings of the Workshop on Molecular Dynamics on Parallel Computers, Research Center Jülich, February 1999; edited by R. Esser, P. Grassberger, J. Grotendorst, M. Lewerenz; World Scientific, 2000; p. 305,
    hep-lat/9903029.

  12. A. Feo, R. Kirchner, S. Luckmann, I. Montvay, G. Münster:
    Numerical simulation of dynamical gluinos in SU(3) Yang-Mills theory: first results,
    Nucl. Phys. B (Proc. Suppl.) 83-84 (2000) 661,
    hep-lat/990970.

  13. A. Feo, R. Kirchner, I. Montvay, A. Vladikas:
    Low-energy features of SU(2) Yang-Mills theory with light gluinos,
    Nucl. Phys. B (Proc. Suppl.) 83-84 (2000) 670,
    hep-lat/990971.

  14. R. Kirchner, S. Luckmann, I. Montvay, K. Spanderen, J. Westphalen:
    Evidence for discrete chiral symmetry breaking in N=1 supersymmetric Yang-Mills theory,
    in Proceedings of "Strong and Electroweak matter '98", Copenhagen, December 1998; edited by J. Ambjorn. P.H. Damgaard, K. Kainulainen, K. Rummukainen, World Scientific, 1999; p. 206.

  15. F. Farchioni, A. Feo, T. Galla, C. Gebert, R. Kirchner, I. Montvay, G. Münster, A. Vladikas:
    SUSY Ward identities in N=1 SYM theory on the lattice,
    Nucl. Phys. B (Proc. Suppl.) 94 (2001) 787,
    hep-lat/0010053.

  16. F. Farchioni, A. Feo, T. Galla, C. Gebert, R. Kirchner, I. Montvay, G. Münster:
    On the 1-loop lattice perturbation theory of supersymmetric Ward identities,
    Nucl. Phys. B (Proc. Suppl.) 94 (2001) 791,
    hep-lat/0011030.

  17. F. Farchioni, A. Feo, T. Galla, C. Gebert, R. Kirchner, I. Montvay, G. Münster, A. Vladikas:
    Lattice supersymmetric Ward identities,
    Nucl. Phys. B (Proc. Suppl.) 106 (2002) 938,
    hep-lat/0110110.

  18. F. Farchioni, A. Feo, T. Galla, C. Gebert, R. Kirchner, I. Montvay, G. Münster, R. Peetz, A. Vladikas:
    SUSY Ward identities in 1-loop perturbation theory,
    Nucl. Phys. B (Proc. Suppl.) 106 (2002) 941,
    hep-lat/0110113.

  19. F. Farchioni, A. Feo, T. Galla, C. Gebert, R. Kirchner, I. Montvay, G. Münster, A. Vladikas:
    The supersymmetric Ward identities on the lattice,
    Eur. Phys. J. C 23 (2002) 719,
    hep-lat/0111008.

  20. I. Montvay, F. Farchioni, A. Feo, T. Galla, C. Gebert, R. Kirchner, G. Münster, R. Peetz, A. Vladikas:
    Numerical simulation of supersymmetric Yang-Mills theory, (PostScript, PDF)
    Proceedings of the NIC Symposium 2001, December 5-6, 2001, Jülich, Germany, ed. H. Rollnik, D. Wolf, NIC Series Volume 9, Jülich, 2002, p. 201.

  21. I. Montvay:
    Supersymmetric Yang-Mills theory on the lattice,
    Int. J. Mod. Phys. A 17 (2002) 2377-2412,
    hep-lat/0112007.

  22. R. Peetz, F. Farchioni, C. Gebert, G. Münster:
    Spectrum of SU(2) SUSY Yang-Mills theory with a light gluino,
    Nucl. Phys. B (Proc. Suppl.) 119 (2003) 912,
    hep-lat/0209065.

  23. F. Farchioni, G. Münster, R. Peetz:
    The volume source technique for flavor singlets: a second look,
    Eur. Phys. J. C 38 (2004) 329,
    hep-lat/0404004.

  24. F. Farchioni: R. Peetz:
    The low-lying mass spectrum of the N=1 SU(2) SUSY Yang-Mills theory with Wilson fermions,
    Eur. Phys. J. C 39 (2005) 87,
    hep-lat/0407036.

  25. K. Demmouche, F. Farchioni, A. Ferling, I. Montvay, G. Münster, E. E. Scholz, J. Wuilloud:
    Spectrum of 4d N=1 SYM on the lattice with light dynamical Wilson gluinos,
    PoS(LATTICE 2008) 061,
    Proceedings of the XXVI International Symposium on Lattice Field Theory "Lattice 2008", Williamsburg, VA, USA.
    arXiv:0810.0144 [hep-lat].

  26. K. Demmouche, F. Farchioni, A. Ferling, I. Montvay, G. Münster, E. E. Scholz, J. Wuilloud:
    Dynamical simulation of lattice 4d N=1 SYM,
    PoS(Confinement8) (2008) 136,
    Proceedings of "Quark Confinement and the Hadron Spectrum VIII", September 1-6, 2008, Mainz, Germany.
    arXiv:0811.1964 [hep-lat].

  27. K. Demmouche, F. Farchioni, A. Ferling, I. Montvay, G. Münster, E. E. Scholz, J. Wuilloud:
    Simulations of supersymmetric Yang-Mills theory,
    PoS(LAT2009) 268,
    Proceedings of the XXVII International Symposium on Lattice Field Theory "Lattice 2009", Beijing, China.
    arXiv:0911.0595 [hep-lat].

  28. K. Demmouche, F. Farchioni, A. Ferling, I. Montvay, G. Münster, E. E. Scholz, J. Wuilloud:
    Simulation of 4d N=1 supersymmetric Yang-Mills theory with Symanzik improved gauge action and stout smearing,
    Eur. Phys. J. C 69 (2010) 147.
    arXiv:1003.2073 [hep-lat].

  29. G. Bergner:
    Supersymmetry on the lattice and the status of the Super-Yang-Mills simulations,
    PoS(Lattice 2010) 046,
    Proceedings of the XXVIII International Symposium on Lattice Field Theory "Lattice 2010", Villasimius, Italy.
    arXiv:1011.0952 [hep-lat].

  30. G. Bergner, J. Wuilloud:
    Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitean Wilson-Dirac operator,
    Comput. Phys. Commun. 183 (2012) 299
    arXiv:1104.1363 [hep-lat].

  31. G. Bergner, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink:
    Supersymmetric Yang-Mills theory: a step towards the continuum,
    PoS(Lattice 2011) 055,
    Proceedings of the XXIX International Symposium on Lattice Field Theory "Lattice 2011", Squaw Valley, USA.
    arXiv:1111.3012 [hep-lat]

  32. G. Bergner, T. Berheide, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink:
    The gluino-glue particle and finite size effects in supersymmetric Yang-Mills theory,
    JHEP 09 (2012) 108.
    arXiv:1206.2341 [hep-lat]

  33. G. Bergner, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink:
    The gluino-glue particle and relevant scales for the simulations of supersymmetric Yang-Mills theory,
    PoS(Lattice 2012) 042,
    Proceedings of the 30th International Symposium on Lattice Field Theory "Lattice 2012", Cairns, Australia.
    arXiv:1210.7767 [hep-lat]

  34. G. Bergner, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink:
    Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory,
    JHEP 11 (2013) 061.
    arXiv:1304.2168 [hep-lat]

  35. S. Musberg, G. Münster, S. Piemonte:
    Perturbative calculation of the clover term for Wilson fermions in any representation of the gauge group SU(N),
    JHEP 05 (2013) 143.
    arXiv:1304.5741 [hep-lat]

  36. G. Bergner, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink:
    N=1 supersymmetric Yang-Mills theory on the lattice,
    PoS(LATTICE 2013) 483,
    Proceedings of the 31th International Symposium on Lattice Field Theory "Lattice 2013", Mainz, Germany.
    arXiv:1311.1681 [hep-lat]

  37. S. Musberg, G. Münster, S. Piemonte:
    Clover fermions in the adjoint representation,
    PoS(LATTICE 2013) 065,
    Proceedings of the 31th International Symposium on Lattice Field Theory "Lattice 2013", Mainz, Germany.
    arXiv:1311.6312 [hep-lat]

  38. G. Bergner, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink:
    Numerical simulation of supersymmetric Yang-Mills theory,
    Proceedings of the NIC Symposium 2014, February 12-13, 2014, Jülich, Germany, ed. K. Binder, G. Münster, M. Kremer, NIC Series Volume 47, Jülich, 2014, p. 169.

  39. G. Münster, H. Stüwe:
    The mass of the adjoint pion in N=1 supersymmetric Yang-Mills theory,
    JHEP 05 (2014) 034.
    arXiv:1402.6616 [hep-th]

  40. G. Bergner, P. Giudice, G. Münster, S. Piemonte, D. Sandbrink:
    Phase structure of the N=1 supersymmetric Yang-Mills theory at finite temperature,
    JHEP 11 (2014) 049.
    arXiv:1405.3180 [hep-lat]

  41. G. Bergner, S. Piemonte:
    Compactified N=1 supersymmetric Yang-Mills theory on the lattice: Continuity and the disappearance of the deconfinement transition,
    JHEP 12 (2014) 133.
    arXiv:1410.3668 [hep-lat]

  42. G. Bergner, P. Giudice, G. Münster, S. Piemonte, D. Sandbrink:
    First studies of the phase diagram of N=1 supersymmetric Yang-Mills theory,
    PoS(LATTICE2014) 262.
    arXiv:1501.02746 [hep-lat]

  43. G. Bergner, P. Giudice, I. Montvay, G. Münster, U. D. Özugurel, S. Piemonte, D. Sandbrink:
    Latest lattice results of N=1 supersymmetric Yang-Mills theory with some topological insights,
    PoS(LATTICE2014) 273.
    arXiv:1411.1746 [hep-lat]

  44. G. Münster, H. Stüwe:
    Partially quenched chiral perturbation theory for N=1 supersymmetric Yang-Mills theory,
    PoS(LATTICE2014) 310.
    arXiv:1411.1540 [hep-lat]

  45. G. Bergner, P. Giudice, I. Montvay, G. Münster, S. Piemonte:
    Influence of topology on the scale setting,
    Eur. Phys. J. Plus 130 (2015) 229.
    arXiv:1411.6995 [hep-lat]

  46. G. Bergner, P. Giudice, I. Montvay, G. Münster, S. Piemonte:
    The low-lying spectrum of N=1 supersymmetric Yang-Mills theory,
    Proceedings of the EPS Conference on High-Energy Physics (EPS-HEP 2015), Vienna, Austria.
    arXiv:1510.04942 [hep-lat]

  47. G. Bergner, P. Giudice, G. Münster, S. Piemonte:
    Witten index and phase diagram of compactified N=1 supersymmetric Yang-Mills theory on the lattice,
    PoS(LATTICE 2015) 239,
    Proceedings of the 33rd International Symposium on Lattice Field Theory (Lattice 2015), July 2015, Kobe, Japan.
    arXiv:1510.05926 [hep-lat]

  48. G. Bergner, P. Giudice, I. Montvay, G. Münster, S. Piemonte:
    Supermultiplets of the N=1 supersymmetric Yang-Mills theory in the continuum limit,
    PoS(LATTICE 2015) 240,
    Proceedings of the 33rd International Symposium on Lattice Field Theory (Lattice 2015), July 2015, Kobe, Japan.
    arXiv:1510.08795 [hep-lat]

  49. G. Bergner, P. Giudice, I. Montvay, G. Münster, S. Piemonte:
    Lattice simulations of technicolour theories with adjoint fermions and supersymmetric Yang-Mills theory,
    PoS(LATTICE 2015) xxx,
    Proceedings of the 33rd International Symposium on Lattice Field Theory (Lattice 2015), July 2015, Kobe, Japan.
    arXiv:1511.05097 [hep-lat]

  50. G. Bergner, P. Giudice, I. Montvay, G. Münster, S. Piemonte:
    The light bound states of supersymmetric SU(2) Yang-Mills theory,
    JHEP 03 (2016) 080.
    arXiv:1512.07014 [hep-lat]

  51. G. Bergner, S. Catterall:
    Supersymmetry on the lattice,
    arXiv:1603.04478 [hep-lat]

Theses

Diploma Theses

  1. Silke Luckmann (11/97):
    Ward-Identitäten in der N=1 Super-Yang-Mills-Theorie

  2. Claus Gebert (11/99):
    Störungstheoretische Untersuchungen der N=1 supersymmetrischen Yang-Mills-Theorie auf dem Gitter

  3. Tobias Galla (12/99):
    Supersymmetrische und Chirale Ward-Identitäten in einer diskretisierten N=1-SUSY-Yang-Mills-Theorie

  4. Florian Heitger (3/2000):
    Darstellungstheorie der kubischen Gruppe in Anwendung auf Operatoren der N=1 SUSY-Yang-Mills-Theorie auf dem Gitter

  5. Sönke Wissel (1/2002) (ps) / (pdf):
    Die graphische Charakter- und Hoppingparameterentwicklung der N=1 SU(2)-Super-Yang-Mills-Theorie in d Dimensionen

  6. Kevin Johnson (2/2002):
    Darstellungstheorie der Überlagerung der kubischen Gruppe in Anwendung auf Operatoren der N=1 SUSY-Yang-Mills-Theorie auf dem Gitter

  7. Cem Pulathaneli (3/2003):
    Transfer-Matrix und Reflexionspositivität in der Gittereichtheorie

  8. Holger Schmalle (2/2004) (ps) / (pdf):
    Spin-1 Zustände der N=1 SU(2) Super Yang-Mills Theorie auf dem Gitter

  9. Henning Jürgens (5/2006):
    Methoden der Spektrumanalyse

  10. Lorenz Quack (3/2010):
    Untersuchung der skalaren Glueballmasse und der Glueball-σ-Mischung

  11. Tobias Berheide (3/2012):
    Volumen-Effekte in der N=1 supersymmetrischen Yang-Mills-Theorie auf dem Gitter

  12. Rüdiger Haake (4/2012):
    Methoden zur Bestimmung des Sommer-Parameters auf dem Gitter

  13. Sven Musberg (3/2013):
    O(a)-Verbesserung der N=1 supersymmetrischen Yang-Mills-Theorie auf dem Gitter

Master Theses

  1. Kai Sparenberg (2/2013):
    Implementierung und Test neuer Operatoren in der supersymmetrischen Yang-Mills-Theorie

  2. Hendrik Stüwe (11/2013):
    Partiell gequenchte chirale Störungstheorie für die N=1 supersymmetrische Yang-Mills-Theorie

  3. Jonathan Hendrich (09/2014):
    Einfluss der Randbedingungen auf die Supersymmetrische Yang-Mills-Theorie

Doctoral Theses

  1. Dirk Talkenberger (10/97):
    Monte-Carlo-Simulationen von Modellen der Elementarteilchenphysik mit dynamischen Fermionen

  2. Klaus Spanderen (10/98):
    Monte-Carlo-Simulationen einer SU(2) Yang-Mills-Theorie mit dynamischen Gluinos

  3. Silke Luckmann (7/2001):
    Supersymmetrische Feldtheorien auf dem Gitter

  4. Roland Peetz (12/2003) (ps) / (pdf):
    Spectrum of N=1 Super Yang Mills Theory on the Lattice with a Light Gluino

  5. Kamel Demmouche (2/2009):
    N=1 SU(2) Supersymmetric Yang-Mills theory on the lattice with light dynamical Wilson gluinos

  6. Alexander Ferling (4/2009):
    Numerische Methoden zur Erforschung einer N=1 Super Yang-Mills-Theorie mit SU(2)c und SU(3)c Wilson Fermionen

  7. Jaïr Wuilloud (2/2010):
    The Wilson-Dirac Operator Eigenspectrum for the Theories of QCD and Super Yang-Mills with One Flavour

  8. Stefano Piemonte (10/2014):
    N=1 supersymmetric Yang-Mills theory on the lattice

  9. Dirk Sandbrink (11/2014):
    Numerische Bestimmung von Quarkpotential, Glueball-Massen und Phasenstruktur in der N=1 supersymmetrischen Yang-Mills-Theorie

  10. Umut D. Özugurel (12/2014):
    Polynomial Preconditioning of the Dirac-Wilson Operator of the N=1 SU(2) Supersymmetric Yang-Mills Theory