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Abstract

The N = 1 supersymmetric Yang-Mills theory is the supersymmetric extension of the

gluonic sector of the Standard Model of particle physics, as it describes the symmetry

between gluons and their superpartners, the gluinos. In the low energy region supermul-

tiplets containing one scalar, one pseudoscalar and one fermionic particle are expected to

form. Monte-Carlo methods on the lattice can be used to examine the non-perturbative

dynamics of the theory. In this thesis the variational method together with smearing

techniques is used to determine the masses of different states of the gluino-glueball, the

fermionic parcticle in the supermultiplets.

Zusammenfassung

Die N = 1 supersymmetrische Yang-Mills-Theorie ist die supersymmetrische Erweite-

rung des gluonischen Sektors des Standardmodells der Teilchenphysik. Sie beschreibt

die Wechselwirkung zwischen Gluonen und ihren Superpartnern, den Gluinos. Im nie-

derenergetischen Bereich wird die Bildung von Supermultipletts erwartet, welche je-

weils ein skalares, ein pseudoskalares und ein fermionisches Teilchen enthalten. Mittels

Monte-Carlo-Methoden auf dem Gitter ist es möglich, die nichtperturbative Dynamik

der Theorie zu untersuchen. In dieser Arbeit wird die Variationsmethode zusammen mit

sogenannten Smearing-Techniken verwendet, um die Massen verschiedener Zustände des

Gluino-Glueballes, des Fermions in den Supermultipletts, zu bestimmen.
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1. Einleitung

Das Standardmodell der Teilchenphysik beschreibt die Elementarteilchen, aus welchen

die uns umgebende Materie aufgebaut ist, sowie die Wechselwirkungen zwischen ihnen.

Sein großer Erfolg liegt darin, dass es mathematisch in sich geschlossen und gleichzei-

tig durch viele Experimente auf unterschiedlichsten Skalen und mit großer Genauigkeit

überprüft worden ist. Trotzdem lässt auch das Standardmodell viele Fragen offen. So ist

ein Feintuning von 19 freien Parametern notwendig, um das Modell den experimentel-

len Beobachtungen anzupassen. Wenn zusätzlich massive Neutrinos betrachtet werden,

erhöht sich diese Zahl auf 27 freie Parameter [1]. Dies ist insofern unbefriedigend, als

dass innerhalb des Standardmodells keine Erklärung dafür gegeben werden kann, warum

diese Parameter genau die Werte annehmen sollten, die zur theoretischen Vorhersage

der experimentellen Ergebnisse notwendig sind [2]. Auch die Struktur der Teilchen in-

nerhalb des Standardmodells in drei Familien aus Quarks und Leptonen und der über

viele Größenordnungen gehende Massenunterschied zwischen den Elementarteilchen ist

nicht erklärbar. Weitere Probleme sind das mit der Higgsmasse verknüpfte Hierarchiepro-

blem [3] oder die Zusammensetzung der Dunklen Materie [4], von welcher auf Grundlage

kosmologischer Beobachtungen angenommen wird, dass sie etwa 23% der Energiedichte

des Universums ausmacht, im Gegensatz zur sichtbaren Materie, deren Anteil nur bei

etwa 5% liegt. Für die Lösung dieser Probleme wird eine Theorie für Physik jenseits des

Standardmodells benötigt.

Eine mögliche Erweiterung des Standardmodells ist die Supersymmetrie (SUSY), wel-

che eine Verallgemeinerung der Raumzeit-Symmetrien der Quantenfeldtheorie darstellt

und Bosonen und Fermionen ineinander überführt [2]. In dieser Theorie bekommt jedes

Teilchen des Standardmodells mindestens einen Superpartner, welcher dieselben Quan-

tenzahlen besitzt, mit Ausnahme des um 1/2 verschiedenen Spins. Durch die Einführung

dieser Superpartner und der Symmetrie zwischen Bosonen und Fermionen ist es möglich

das Hierarchieproblem zu lösen. Des Weiteren liefern supersymmetrische Teilchen Kan-

didaten für Dunkle Materie. Gleichzeitig ermöglicht die Supersymmetrie die Vereinheitli-

chung der Eichsymmetrien des Standardmodells zur sogenannten Grand Unified Theory.

Da die Superpartner bei ungebrochener Supersymmetrie dieselbe Masse wie ihre Part-

ner aus dem Standardmodell besäßen, wären sie bereits experimentell gefunden worden.

Wenn es eine Supersymmetrie gibt, ist sie also gebrochen [5]. Dennoch kann SUSY wei-

terhin einige der oben beschriebene Probleme lösen, wenn sie lediglich weich gebrochen

1



1. Einleitung

ist. Diese Brechung führt zu weiteren unbekannten Parametern, nämlich den Massen der

Superpartner. In den zur Zeit zugänglichen Energiebereichen wurde bisher noch keiner

dieser Superpartner gefunden [6].

Supersymmetrische Erweiterungen des Standardmodells wie das Minimal Supersym-

metric Standard Model (MSSM), welche auf weich gebrochenen supersymmetrischen

Theorien basieren, werden für gewöhnlich mittels störungstheoretischer Methoden un-

tersucht und mit experimentellen Ergebnissen verknüpft [7]. Hier wird angenommen,

dass diese Modelle effektive Theorien einer auf großen Energieskalen erhaltenen Symme-

trie sind. Nichtperturbative Methoden ermöglichen die Vorhersage der Parameter einer

solchen stark gekoppelten Theorie, ähnlich wie dies auch für die Quantenchromodyna-

mik (QCD) möglich ist. Dennoch ist die Simulation einer vollen supersymmetrischen

Erweiterung des Standardmodells mit heutigen Techniken noch nicht möglich. Ein erster

Baustein einer solchen Theorie ist die supersymmetrische Erweiterung des gluonischen

Sektors des Standardmodells, die supersymmetrische Yang-Mills-Theorie (SYM). Wich-

tige Eigenschaften einer vollständigen Erweiterung sind die spontane Brechung der chira-

len Symmetrie und Confinement. Diese sind auch Bestandteile der supersymmetrischen

Yang-Mills-Theorie. Durch Confinement werden farblose, gebundene Zustände erwartet,

welche in supersymmetrischen Multipletts angeordnet sind. Die Anordnung dieser gebun-

denen Zustände in den Supermultipletts kann durch die Konstruktion einer effektiven

Wirkung vorhergesagt werden [8, 9, 10]. Das Ziel dieser Arbeit ist die Massenbestimmung

für gebundene Zustände der N = 1 supersymmetrischen SU(2) Yang-Mills-Theorie, um

so die Erkenntnisse über die Supermultipletts zu erweitern.

In Kapitel 2 erfolgt eine Einführung in Feldtheorien auf dem Gitter. Dabei werden

zunächst die allgemeinen Techniken, um Bosonen und Fermionen auf dem Gitter zu be-

schreiben, hergeleitet. Die Anwendung auf die supersymmetrische Yang-Mills-Theorie

erfolgt dann in Kapitel 3, nachdem eine kurze Zusammenfassung der Eigenschaften und

der mathematischen Struktur supersymmetrischer Theorien erfolgt ist. In Kapitel 4 wer-

den die technischen Aspekte der Gittersimulationen wie die Techniken zur Massenbe-

stimmung die Behandlung von statistischen Fehlern beschrieben. Auf Grundlage dieser

Vorüberlegungen erfolgt in Kapitel 5 die Auswertung der durchgeführten Messungen.

Dabei wird die Masse des Grundzustandes und des ersten angeregten Zustandes des

Gluino-Glueballes für verschiedene Werte der Gluinomasse bestimmt. Mittels dieser Er-

gebnisse erfolgt ein Vergleich mit den bereits bekannten Massen anderer gebundener

Zustände und der Vergleich mit den vorhergesagten Multipletts. Im Anschluss erfolgt in

Kapitel 6 eine Zusammenfassung der Ergebnisse und ein Ausblick auf weitere Fragestel-

lungen im Zusammenhang mit der supersymmetrischen Yang-Mills-Theorie.
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2. Feldtheorien auf dem Gitter

Die nachfolgende Einführung in Feldtheorien auf dem Gitter orientiert sich zu großen

Teilen an [11] und [12], sowie [13], [14] und [15]. Die Formulierung einer Quantenfeldtheo-

rie auf dem Gitter wird durch Feynmans Pfadintegralformalismus und die Einführung

der euklidischen Metrik ermöglicht. Eine Einführung findet sich beispielsweise in [16].

2.1. Euklidische Feldtheorie

Der Pfadintegralformalismus lässt sich zur Formulierung der euklidischen Feldtheorie

verwenden. Dabei wird zunächst ein Lorentz-Skalarfeld φ(x) betrachtet, in dem x = (~x,t)

die Raumzeitkoordinate angibt und die zeitliche Entwicklung des Feldes durch

φ(~x,t) = eiHtφ(~x,t = 0)e−iHt (2.1)

gegeben ist. Von besonderer Bedeutung in der Feldtheorie sind die Vakuumerwar-

tungswerte zeitgeordneter Produkte von Feldoperatoren, die Greensfunktionen G. Diese

können als Funktionalintegrale wie folgt dargestellt werden:

G(x1,x2, . . . ,xn) = 〈0|Tφ(x1)φ(x2) . . . φ(xn)|0〉 =
1

Z

∫
Dφφ(x1)φ(x2) . . . φ(xn)eiS,

(2.2)

mit

Z =

∫
Dφ eiS (2.3)

und dem Zeitordnungsoperator T . Um ein reelles Integral zu erhalten und stark oszillie-

rende Beiträge zu unterdrücken, erfolgt die Wickrotation zur euklidischen Zeit τ über

t = −iτ, τ > 0. (2.4)

Damit erfolgt gleichzeitig der Übergang von der Minkowski-Metrik

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3 (2.5)
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zur vierdimensionalen euklidischen Metrik

ds2 = dτ 2 + dx2
1 + dx2

2 + dx2
3. (2.6)

Mit diesem Übergang zu imaginären Zeiten τ erhält man die sogenannten Schwinger-

funktionen oder euklidischen Greensfunktionen

GE(x1, . . . ,xn) =
1

Z

∫
Dφφ(x1) . . . φ(xn)e−SE (2.7)

mit

Z =

∫
Dφ e−SE . (2.8)

Dabei folgt für ein Skalarfeld mit der Lagrangedichte

L =
1

2
(∂µφ)(∂µφ)− m2

2
φ(x)2 − g

4!
φ(x)4, (2.9)

mit der Masse m und der Kopplungskonstanten g die euklidische Wirkung

SE = −iS
∣∣
t=−iτ

=

∫
d4x

(
1

2
(∂µφ)2 +

m2

2
φ2 +

g

4!
φ4

)
, (2.10)

welche dann bei der Berechnung der euklidischen Greensfunktionen verwendet wird.

2.2. Gitterdiskretisierung

Der nächste Schritt zur Betrachtung der Feldtheorie auf dem Gitter ist die Diskretisie-

rung der euklidischen Raumzeit. Diese Gitterdiskretisierung auf einem endlichen Gitter

ermöglicht die numerische Auswertung der Theorie auf dem Computer. Die Auswertung

erfolgt anhand diskretisierter Operatoren, welche im Kontinuumslimes mit den Operato-

ren im Kontinuum übereinstimmen. Die Zeitkomponente τ wird per Konvention und zur

Abgrenzung zur Minkowski-Metrik mit x4 bezeichnet, so dass sich für das Skalarprodukt

im euklidischen Raum

x · y = x1y1 + y2y2 + x3y3 + x4y4 (2.11)

ergibt. Die kovarianten und kontravarianten Elemente eines euklidischen Vektors sind

identisch, xµ = xµ mit µ = 1,2,3,4. Zur Diskretisierung dieser Raumzeit wird ein hyper-
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kubisches Gitter

Λ = aZ4 =

{
x

∣∣∣∣xµa ∈ Z
}

(2.12)

mit der Gitterkonstante a eingeführt. Das Skalarfeld φ(x) ist nun nur noch auf den

Gitterpunkten x ∈ Λ definiert. Partielle Ableitungen werden auf dem Gitter durch finite

Differenzen ersetzt, wobei zwischen verschiedenen Varianten, wie der Vorwärtsableitung

∆f
µφ(x) =

1

a
(φ(x+ µ̂)− φ(x)) (2.13)

und der Rückwärtsableitung

∆b
µφ(x) =

1

a
(φ(x)− φ(x− µ̂)) (2.14)

mit dem Fehler O(a) im Vergleich zur analytischen Ableitung oder der zentralen Ablei-

tung

∆c
µφ(x) =

1

2a
(φ(x+ µ̂)− φ(x− µ̂)) (2.15)

mit dem Fehler O(a2) unterschieden werden kann. µ̂ ist hier der Einheitsvektor in µ-

Richtung. Der d’Alembertoperator auf dem Gitter kann durch

�φ(x) = −∆b
µ∆f

µφ(x) =
4∑

µ=1

1

a2
(2φ(x)− φ(x+ µ̂)− φ(x− µ̂)) (2.16)

definiert werden. Raumzeit-Integrale werden bei der Diskretisierung durch Summen er-

setzt ∫
d4x −→

∑
x∈Λ

a4, (2.17)

sodass das Integrationsmaß des Funktionalintegrals lediglich die Gitterpunkte x ∈ Λ

enthält,

Dφ =
∏
x∈Λ

dφ(x). (2.18)

Für endliche Gitter enthält das Funktionalintegral also nur eine endliche Anzahl an

Integralen. Bei der Definition eines endlichen Gitters wird meist zwischen der Gitterlänge

L1 = L2 = L3 ≡ L in die Raumrichtungen und der Länge L4 ≡ T in die Richtung der

5



2. Feldtheorien auf dem Gitter

euklidischen Zeit unterschieden, sodass das Volumen des Gitters V = L3 × T beträgt

und das Gitter die Gitterpunkte

xµ = anµ mit nµ = 0,1,2, . . . ,Lµ − 1 (2.19)

enthält. Für die Ränder des Gitters werden meist periodische oder antiperiodische Rand-

bedingungen gewählt

φ(x) = φ(x+ Lµµ̂) bzw. φ(x) = −φ(x+ Lµµ̂). (2.20)

Durch die Diskretisierung sind Impulse auf dem Gitter auf die erste Brillouin-Zone

−π
a
< pµ ≤

π

a
(2.21)

beschränkt. Dadurch wird ein ultravioletter Cutoff |pµ| ≤ π
a

eingeführt, der dafür sorgt,

dass Feldtheorien auf dem Gitter automatisch regularisiert sind.

2.3. Eichtheorien auf dem Gitter

In diesem Kapitel werden Eichfelder auf dem Gitter betrachtet, eine Einführung in die

Eichtheorien im Kontinuum findet sich in Anhang B. Die Forderung einer Invarianz

unter lokalen Eichtransformationen führt zur Einführung von Eichfeldern. Die Form, mit

der diese auf dem Gitter eingeführt werden, kann aus der Invarianzforderung abgeleitet

werden. Bei einer Rotation unter SU(N) transformiert sich das Feld gemäß

φ→ φ′ = Ω(x)φ(x) mit Ω(x) ∈ SU(N). (2.22)

Produkte φφ der Felder am selben Raumzeitpunkt sind somit eichinvariant. Im Konti-

nuum werden kinetische Terme in der Wirkung durch die Einführung der kovarianten

Ableitung eichinvariant. Die diskretisierten Ableitungen in (2.13)–(2.15) enthalten jedoch

Felder an benachbarten Gitterpunkten, was dazu führt, dass kinetische Terme nicht mehr

eichinvariant sind:

φ̄(x)φ(x+ µ̂)→ φ̄′(x)φ′(x+ µ̂) = φ̄(x)Ω†(x)Ω(x+ µ̂)φ(x+ µ̂). (2.23)

Wenn in das Produkt ein weiteres Feld Uµ(x) in der Form

φ̄′(x)U ′µ(x)φ′(x+ µ̂) = φ̄(x)Ω†(x)U ′µ(x)Ω(x+ µ̂)φ(x+ µ̂) (2.24)
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x x+ µ̂
Uµ(x)

x− µ̂ x
U †µ(x− µ̂)

Abbildung 2.1.: Linkvariablen Uµ(x) und U †µ(x− µ̂).

eingefügt wird, wird dieses Produkt eichinvariant, wenn das neue Feld gemäß

Uµ(x)→ U ′µ(x) = Ω(x)Uµ(x)Ω†(x+ µ̂) (2.25)

transformiert. Dieses Feld mit Startpunkt x und Richtung µ̂ wird im Gitter auf die

Verbindung der Gitterpunkte x und x+ µ̂ gesetzt. Die Orientierung dieser sogenannten

Linkvariable Uµ(x) kann auch in negative Richtung zeigen, hier gilt

U−µ(x) = U †µ(x− µ̂). (2.26)

Beide Linkvariablen sind in Abbildung 2.1 gezeigt. Die Entsprechungen dieser Linkvaria-

blen im Kontinuum sind die Paralleltransporter, welche zum Beispiel in [17] ausführlich

eingeführt werden.

x x+ µ̂
Uµ(x)

x+ ν̂ x+ µ̂+ ν̂
U †µ(x+ ν̂)

U †ν(x) Uν(x+ µ̂)

Abbildung 2.2.: Plakette.

Die Spur über eine geschlossene Schleife aus Linkvariablen ist ein eichinvariantes Ob-

jekt [11]. Das kleinste dieser Objekte ist die sogenannte Plakette Uµν(x), welche aus vier

Links aufgebaut ist:

Uµν(x) = Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂)

= Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x) (2.27)
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2. Feldtheorien auf dem Gitter

Diese in Abbildung 2.2 gezeigte Plakette wurde von Wilson [18] genutzt, um mit der

Wilson-Wirkung SW eine Yang-Mills-Wirkung SYM auf dem Gitter zu konstruieren. Dazu

wird über alle Plaketten summiert, wobei jede Plakette lediglich in einer Umlaufrichtung

berücksichtigt wird. Die Wirkung kann dann durch

SW =
∑
x

∑
1≤µ<ν≤4

β

(
1− 1

N
ReTr[Uµν(x)]

)
für SU(N) (2.28)

dargestellt werden. Diese einfache Wirkung ist eichinvariant, reell und positiv. Wenn die

Linkvariable durch

Uµ(x) = exp(−aAµ(x)) (2.29)

mit dem Vektorfeld

Aµ(x) = −igAbµ(x)Tb (2.30)

definiert wird, so führt die Entwicklung der Wilson-Wirkung für kleine Gitterkonstanten

a auf die Form

SW ∼= −
β

4N

∑
x

a4Tr[Fµν(x)F µν(x)] +O(a5), (2.31)

welche mit der Ersetzung

β =
2N

g2
(2.32)

im Kontinuum zur Yang-Mills-Wirkung

SYM =

∫
d4x

(
−1

2
Tr[Fµν(x)F µν(x)]

)
(2.33)

übergeht. Der Erwartungswert einer Größe O kann nun mit Hilfe des Funktionalintegrals

und der Wilson-Wirkung bestimmt werden und ist durch

〈O〉 =
1

Z

∫
DU O e−SW [U ] (2.34)

mit ∫
DU =

∏
x∈Λ

4∏
µ=1

∫
dUµ(x) (2.35)
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2.4. Fermionen auf dem Gitter

und

Z =

∫
DU e−SW [U ] (2.36)

gegeben. Damit das Pfadintegral wie die Wirkung invariant unter Eichtransformationen

ist, muss auch das Integrationsmaß invariant sein. Dies ist gegeben, wenn das Haarsche

Maß auf der Eichgruppe verwendet wird [11]. Dieses erfüllt auf der Gruppe G für eine

Funktion f die Eigenschaften der Invarianz∫
G

f(U)dU =

∫
G

f(ΩU)dU =

∫
G

f(UΩ)dU für alle Ω ∈ G (2.37)

und der Normierung ∫
G

dU = 1. (2.38)

Ein weiteres eichinvariantes Objekt aus Linkvariablen ist die Wilson-Schleife, welche

später für die Verbesserung der Eichwirkung verwendet wird. Eine Wilson-Schleife WL

besteht aus zwei räumlichen Wilson-Linien S(~x,~y,0), S(~x,~y,t) und zwei zeitlichen Trans-

portern T (~x,t), T (~y,t). Die räumliche Wilson-Linie S(~x,~y,t) verbindet die Punkte ~x und

~y entlang eines Pfades C~x,~y zum festen Zeitpunkt t, während der zeitliche Transporter

T (~x,t) aus einem Produkt aus aufeinanderfolgenden Linkvariablen besteht, welche sich

auf der räumlichen Koordinate ~x befinden. Die Verbindung dieser vier Elemente ergibt

eine geschlossene Schleife L. Die Spur über diese Schleife ist die eichinvariante Wilson-

Schleife:

WL = Tr[S(~x,~y,t)T †(~y,t)S†(~x,~y,0)T (~x,t)] = Tr

 ∏
(w,µ)∈L

Uµ(w)

 . (2.39)

2.4. Fermionen auf dem Gitter

Im Gegensatz zu den oben eingeführten Skalarfeldern φ(x), die für gleiche Zeiten x0 = y0

kommutieren, also

[φ(x),φ(y)] = φ(x)φ(y)− φ(y)φ(x) = 0 (2.40)

9



2. Feldtheorien auf dem Gitter

erfüllen, müssen fermionische Felder ψ(x) antikommutieren, um Teilchen zu re-

präsentieren, die der Fermi-Dirac-Statistik gehorchen. Es muss also

{ψ(x),ψ(y)} = ψ(x)ψ(y) + ψ(y)ψ(x) = 0 (2.41)

gelten. Diese Eigenschaft ist erfüllt, wenn die Fermionfelder durch Graßmannvariablen

dargestellt werden (siehe Anhang C). Mit dem fermionischen Pfadintegral mit dem In-

tegrationsmaß

DψDψ̄ =
∏
x

∏
α

dψα(x)dψ̄α(x) (2.42)

lässt sich der Vakuumerwartungswert einer Größe O durch

〈0|O|0〉 =
1

Z

∫
DψDψ̄ O e−Sf (2.43)

ausdrücken, wobei Sf die fermionische Wirkung ist. Im Falle eines freien Diracfeldes gilt

für diese Wirkung mit den in Anhang A.2 definierten Dirac-Matrizen γµ

Sf =

∫
d4x ψ̄(x)(γµ∂

µ +m)ψ(x). (2.44)

Wenn die fermionischen Felder bilinear in der Wirkung auftreten, kann das Gaußintegral,

wie es in (C.15) eingeführt ist, verwendet werden, um das Pfadintegral auf dem Gitter

zu ∫
DψDψ̄ e−Sf =

∫
DψDψ̄ e−ψ̄xQxyψy = detQ (2.45)

zu lösen. Dabei wirdQ als Fermionmatrix und detQ als Fermiondeterminante bezeichnet.

Der analytisch schwierige Teil liegt hier also nicht in der Integration, sondern in der

Auswertung der Determinante der Matrix Q, welche bereits bei kleinen endlichen Gittern

sehr groß ist.

Die eichinvariante, diskretisierte,
”
naive“ Gitterversion der fermionischen Wirkung ist

Sf = a4
∑
x

ψ̄(x)

(
4∑

µ=1

γµ
Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂)

2a
+mψ(x)

)
. (2.46)

Da diese Wirkung bilinear in ψ̄ und ψ ist, kann sie in der Form

Sf = a4
∑
x,y

ψ̄(x)D(x,y)ψ(x) (2.47)

10



2.4. Fermionen auf dem Gitter

mit dem diskretisierten Diracoperator

D(x,y) =
4∑

µ=1

γµ
Uµ(x)δx+µ̂,y − U †µ(x− µ̂)δx−µ̂,y

2a
+mδx,y (2.48)

geschrieben werden. Diese Form des Diracoperators birgt Probleme, die deutlich werden,

wenn der Operator fouriertransformiert wird, um den Fermionpropagator zu bestimmen.

Dazu wird in beiden Raumzeitkoordinaten transformiert und Uµ(x) = 1 für alle x und

µ gewählt. Damit lässt sich die Größe

D̃(p,q) =
1

L

∑
x,y

e−ip·xaD(x,y)eiq·ya

=
1

L

∑
x

e−i(p−q)·xa

(
4∑

µ=1

eiqµa − e−iqµa

2a
+m1

)
= δ(p− q)D̃(p) (2.49)

erhalten. Dieser diskret fouriertransformierte Diracoperator kann durch

D̃(p) = m1 +
i

a

4∑
µ=1

γµ sin(pµa) (2.50)

dargestellt werden. Der Propagator wird nun durch das Invertieren des fouriertransfor-

mierten Operators erhalten,

D̃−1(p) =
m1 + ia−1

∑
µ γµ sin(pµa)

m2 + a−2
∑

µ sin2(pµa)
. (2.51)

Im Falle masseloser Fermionen (m = 0) hat dieser nicht nur einen Pol bei

p = (0; 0; 0; 0),

sondern weitere für alle Viererimpulse, bei denen die Komponenten pµ ∈ {0,π/a} erfüllen.

Damit ergeben sich für Impulse in der Brillouinzone mit pµ ∈ (−π/a; π/a] insgesamt 15

weitere unphysikalische Pole, die sogenannten Fermiondoppler. Nielsen und Ninomiya

[19, 20] haben gezeigt, dass eine freie, chiral invariante fermionische Gitterwirkung, wel-

che lokal, translationsinvariant und reell ist, notwendigerweise Fermiondoppler enthält.

Um Fermiondoppler zu vermeiden, muss also eine der obigen Eigenschaften der Git-

terwirkung gebrochen werden. Ein Weg, dies zu tun, ist die explizite Verletzung der

chiralen Invarianz durch das Hinzufügen des sogenannten Wilson-Terms zur Wirkung.

Durch diesen Term erhalten die unphysikalischen Fermionen eine Masse, während das

11



2. Feldtheorien auf dem Gitter

physikalische Fermion masselos bleibt. Der Diracoperator im Impulsraum wird zu

D̃(p) = m1 +
i

a

4∑
µ=1

γµ sin(pµa) + 1
1

a

4∑
µ=1

(1− cos(pµa)) (2.52)

verändert. Der zusätzliche Term verschwindet für alle Komponenten, für die pµ = 0

gilt, während für alle Komponenten mit pµ = π/a ein Beitrag 2/a addiert wird. Damit

erhalten alle Doppler die Gesamtmasse

m+
2l

a
,

wobei l die Anzahl an Komponenten mit pµ = π/a ist. Im Limes a→ 0 steigt die Masse

der Doppler stark an und diese entkoppeln vom niederenergetischen Bereich der Theorie.

Lediglich der physikalische Pol des Propagators D̃−1(p) bleibt bestehen. Die fermionische

Wirkung wird durch die Einführung des Wilson-Terms zu

Sf = a4
∑
x

{(
m+

4

a

)
ψ̄(x)ψ(x)− 1

2a

±4∑
µ=±1

ψ̄(x)(1 + γµ)U †µ(x− µ̂)ψ(x− µ̂)

}
(2.53)

verändert. Die Summation erfolgt hier in negativer und positiver Richtung.

Diese Wirkung kann mit der Einführung des Hoppingparameters κ mit

κ ≡ 1

2am+ 8
, (2.54)

welcher für große Massen klein wird, auf eine andere Art und Weise dargestellt werden.

Dafür werden die Felder in der Form

a3/2(am+ 4)1/2ψ(x)→ ψ(x), a3/2(am+ 4)1/2ψ̄(x)→ ψ̄(x) (2.55)

reskaliert. Mit der Kurzschreibweise
∑

µ =
∑±4

µ=±1 kann die Wirkung dann durch

Sf =
∑
x

{
ψ̄(x)ψ(x)− κ

∑
µ

ψ̄(x)(1 + γµ)U †µ(x− µ̂)ψ(x− µ̂)

}
≡
∑
x,y

ψ̄xQxyψy (2.56)

dargestellt werden. Auf der rechten Seite ist die Wirkung als Produkt der Fermionfelder

mit der Fermionmatrix gezeigt, die Matrixelemente sind damit durch

Qxy = δxy − κ
∑
µ

δx,y−µ̂(1 + γµ)U †µ(x− µ̂) (2.57)

12



2.4. Fermionen auf dem Gitter

gegeben. Diese Form der Fermionmatrix wird auch als Dirac-Wilson-Operator bezeich-

net. Um die Zweipunktfunktion zu berechnen, können nun die bereits gezeigten Tech-

niken für Pfadintegrale, die oben hergeleiteten Größen und die Integrale aus Anhang C

verwendet werden. Das erzeugende Funktional für die Greenschen Funktionen des freien

Fermionfeldes kann als Z[η,η̄]/Z[0,0] mit

Z[η,η̄] =

∫
Dψ̄Dψ exp

{
−
∑
xy

ψ̄xQxyψy +
∑
x

[η̄xψx − ψ̄xηx]

}
(2.58)

definiert werden. Analog zu (C.15) kann dieses Integral zu

Z[η,η̄] = detQ · exp

{
−
∑
xy

η̄xQ
−1
yx ηy

}
(2.59)

berechnet werden, womit für die Zustandssumme Z = Z[0,0] = detQ folgt. Die Zwei-

punktfunktion kann nun mit (C.14) berechnet werden, es ergibt sich

〈ψyψ̄x〉 = ∂η̄y∂ηx
Z[η,η̄]

Z[0,0]

∣∣∣∣
η=η̄=0

= Q−1
yx . (2.60)

Die Berechnung einer Zweipunktfunktion kann also über die Inversion der Fermionma-

trix erfolgen und muss nicht durch die explizite Integration geschehen. Dies ist jedoch für

große Matrizen lediglich numerisch möglich und ist mit großem Rechenaufwand verbun-

den. Ein größeres Problem stellt jedoch die Berechnung der Zustandssumme dar. Diese

wird mit Hilfe von Monte-Carlo-Methoden durchgeführt.
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3. Supersymmetrische

Yang-Mills-Theorie

Die folgenden Abschnitte über Supersymmetrie sollen lediglich einen Überblick über

die wesentlichen Zusammenhänge und Formeln in der Supersymmetrie als Hinführung

zur supersymmetrischen Yang-Mills-Theorie darstellen. Herleitungen sowie weitergehen-

de Zusammenhänge können in der Literatur nachgelesen werden, zum Beispiel im Buch

von Kalka und Soff [21], auf das sich diese Übersicht zu großen Teilen bezieht. Des

Weiteren stützen sich die folgenden Abschnitte, besonders die zur supersymmetrischen

Yang-Mills-Theorie, auf die Arbeiten von Luckmann [22], Demmouche [23] und Sand-

brink [24].

3.1. Poincaré-Superalgebra

Um die Poincaré-Superalgebra als Erweiterung der Poincaré-Algebra einzuführen, wird

zunächst das Konzept der Graudierung benötigt. Im hier benötigten einfachsten Fall

der Z2 graduierten Algebra besteht diese graduierte Algebra aus einem Vektorraum L,

welcher die direkte Summe aus zwei Unterräumen L0 und L1 ist

L = L0 ⊕ L1, (3.1)

und einem Produkt ◦ mit den Eigenschaften

u1 ◦ u2 ∈ L0 ∀ u1,u2 ∈ L0 (3.2)

u ◦ v ∈ L1 ∀ u ∈ L0, v ∈ L1 (3.3)

v1 ◦ v2 ∈ L0 ∀ v1,v2 ∈ L1. (3.4)

Die Z2-Graduierung der Poincaré-Algebra liefert die Poincaré-Superalgebra. Dabei wird

der Unterraum L0 von den zehn Generatoren P µ, Mµν der Poincaré-Algebra, welche die

Raum-Zeit-Translationen und Rotationen darstellen, aufgespannt und durch N Genera-

toren der Supersymmetrie Qa (a = 1, . . . ,4N ) erweitert. Für jede N -fache Erweiterung

der Supersymmetrie werden also vier Generatoren Qa eingeführt. Für den vorliegenden

Fall von N = 1 wird (Qa) als Majorana-Spinor identifiziert, da ein Majorana-Spinor vier

14



3.2. SUSY-Teilchen

Freiheitsgrade besitzt, während ein Dirac-Spinor durch seine vier komplexen Einträge

acht Freiheitsgrade besitzt. Für Majorana-Spinoren Q gilt unter Ladungskonjugation

mit C = iγ2γ0:

Q = CQ̄T , Q̄ = QTC (3.5)

Für Produkte im Unterraum L0 gelten mit P µ ◦ P ν ≡ [P µ,P ν ] die Relationen der Poin-

caré-Algebra

L0 × L0 → L0 :

[P µ,P ν ] = 0, (3.6)

[P µ,Mρσ] = i(gµνP σ − gµσP ρ), (3.7)

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ). (3.8)

Für Produkte zwischen den Räumen L0 und L1 ist es notwendig, die Kommutatoren zwi-

schen den SUSY-Generatoren und den Generatoren der Poincaré-Algebra zu definieren.

Es gilt

L0 × L1 → L1 :

[P µ,Qa] = 0, (3.9)

[Mµν ,Qa] = −σµνabQb, (3.10)

mit σµνab = i
2
[γµ,γν ]. Für das dritte Produkt kann nach einem allgemeinen Ansatz aus der

Forderung (3.4) die Beziehung

L1 × L1 → L0 :

{Qa,Q̄b} = 2γµabPµ (3.11)

gefunden werden.

3.2. SUSY-Teilchen

Die Teilchen des SUSY-Teilchenzoos leiten sich aus den irreduziblen Darstellungen

der Poincaré-Superalgebra ab. Um diese klassifizieren zu können, werden die Casimir-

Operatoren dieser Algebra betrachtet, welche mit allen Generatoren vertauschen. Wegen

(3.9) ist der Casimir-Operator

P 2 = PµP
µ (3.12)
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3. Supersymmetrische Yang-Mills-Theorie

der Poincaré-Algebra auch ein Casimir-Operator der Superalgebra. Mit diesem Operator

lassen sich Teilchen nach ihrer Masse klassifizieren. Teilchen eines Super-Multipletts

besitzen dieselbe Masse. Für die Definition eines zweiten Casimir-Operators wird der

Superspin benötigt. Um diesen zu definieren, wird zunächst der Pauli-Lubanski-Vektor

W µ betrachtet, welcher die relativistische Verallgemeinerung des Spinvektors darstellt.

Er ist über

Wµ =
1

2
εµνρσP

νMρσ (3.13)

definiert. In der Poincaré-Algebra ist W 2 ein Casimir-Operator. Die Verallgemeinerung

dieses Vektors, mit der eine Abhängigkeit von den SUSY-Generatoren geschaffen wird,

gelingt, indem aus den Weyl-Spinoren Q und Q̄ ein Vierervektor

Xµ = QσµQ̄ (3.14)

gebildet wird. Der verallgemeinerte Spinvektor Y µ wird dann über

Y µ ≡ W µ − 1

4
Xµ (3.15)

definiert. Die Betrachtung des Kommutators

[Y µ,Y ν ] = iεµνρσP
ρY σ (3.16)

zeigt, dass dessen Struktur der einer Drehimpulsalgebra ähnelt. Im Ruhesystem mit

P ρ = (m,0,0,0) geht der Kommutator in

[Y µ,Y ν ] = imε0µνσY
σ (3.17)

über. Das Produkt 1
m
~Y wird Superspin genannt. Es ist Basiselement einer Drehimpul-

salgebra. Die Eigenwerte des Superspins sind(
~Y

m

)2

= y(y + 1) mit y = 0,
1

2
, 1, . . . (3.18)

Aus Y µ und dem Generator der Translation P µ lässt sich nun mit

Cµν ≡ Y µP ν − Y νP µ (3.19)
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3.3. Superfelder

der Operator Cµν definieren, aus dem der Casimir-Operator

C2 = CµνC
µν (3.20)

gebildet wird. Im Ruhesystem lässt sich

C2 = −2m2~Y 2 (3.21)

schreiben, womit die Eigenwerte aus (3.18) folgen:

C2 = −2m4y(y + 1) mit y = 0,
1

2
, 1, . . . (3.22)

Supersymmetrische Teilchen lassen sich somit durch Masse m und Superspin y klassifizie-

ren. Innerhalb der durch diese Klassifikation gebildeten Super-Multipletts ist zusätzlich

eine Unterscheidung nach der dritten Komponente des Superspins y3, sowie dem Eigen-

wert s3 des relativistischen Spins 1
m
W 3 möglich.

Für y = 0 ergibt sich die einfachste Darstellung der SUSY-Algebra. Das Multiplett

für y = 0 wird als chirales Supermultiplett bezeichnet. Es enthält ein skalares, ein pseu-

doskalares und ein Spin-1
2
-Teilchen und beschreibt Materiefelder. Mit ihm können in der

supersymmetrischen Erweiterung der QCD Quarks und Leptonen, sowie ihre Superpart-

ner Squarks und Sleptonen dargestellt werden. Das Multiplett für den nächstgrößeren

Superspin y = 1/2 ist das Vektor-Supermultiplett. Es enthält zwei Spin-1
2
-Teilchen,

ein (Spin-1) Vektorteilchen und ein skalares Teilchen. Mit dem Vektor-Supermultiplett

können die Eichbosonen und ihre Superpartner, also Photonen, Gluonen und W- und

Z-Bosonen sowie Photinos, Gluinos, Winos und Zinos, beschrieben werden.

3.3. Superfelder

Im Folgenden wird der Superraum-Formalismus zur Beschreibung der supersymmetri-

schen Theorie genutzt. Die Elemente im Superraum setzen sich aus vier bosonischen

Koordinaten xµ, sowie vier fermionischen Koordinaten, welche durch die zweikomponen-

tigen Weyl-Spinoren θ und θ̄ ausgedrückt werden, zusammen. Das Superfeld F(x,θ,θ̄)

hängt von diesen Koordinaten ab. Durch die Abhängigkeit von den Graßmann-wertigen

Variablen lässt sich das Feld nach (C.2) vollständig nach θ und θ̄ entwickeln:

F(x,θ,θ̄) =f(x) + θφ(x) + θ̄χ̄(x) + (θθ)M(x) + (θ̄θ̄)N(x)

+ θσµθ̄Aµ(x) + (θθ)θ̄λ̄(x) + (θ̄θ̄)θα(x) + (θθ)(θ̄θ̄)d(x) (3.23)

17



3. Supersymmetrische Yang-Mills-Theorie

Durch die Forderung, dass F ein Lorentzskalar ist, lässt sich das Transformationsverhal-

ten der Komponentenfelder unter Lorentztransformationen bestimmen. Das entwickelte

Superfeld enthält

• vier komplexe skalare Felder: f(x),M(x), N(x), d(x)

• zwei linkshändige Weyl-Spinorfelder: φ(x),α(x)

• zwei rechtshändige Weyl-Spinorfelder: χ̄(x), λ̄(x)

• ein komplexes Vektorfeld: Aµ(x).

Linearkombinationen von Superfeldern liefern wieder Superfelder, womit diese eine linea-

re Darstellung der SUSY-Algebra liefern, welche jedoch reduzibel ist. Die irreduziblen

Darstellungen werden erhalten, indem Zusatzanforderungen, an das Superfeld gestellt

werden.

Das chirale Superfeld erfüllt D̄ȦF = 0, das antichirale DAF = 0, wobei D̄Ȧ und DA

die kovarianten Ableitungen im Superraum sind. Für diese gilt

DA = ∂A + i(σµθ)A∂µ, D̄Ȧ = −∂Ȧ + i(σ̄µθ)Ȧ∂µ. (3.24)

Das chirale Superfeld beinhaltet ein komplexes Skalarfeld zur Beschreibung von Slepto-

nen und Squarks, ein linkshändiges Weyl-Spinorfeld zur Beschreibung von Leptonen und

Quarks und ein komplexes Skalarfeld als Hilfsfeld.

Das Vektor-Superfeld V (x,θ,θ̄) erfüllt die Bedingung V (x,θ,θ̄) = V †(x,θ,θ̄), jedes re-

elle Superfeld ist also per Definition ein Vektor-Superfeld. Das Vektor-Superfeld enthält

zwei Weyl-Spinorfelder, zwei reelle Skalarfelder, ein komplexes Skalarfeld und ein reelles

Vektorfeld. In der Wess-Zumino-Eichung gilt

VWZ(x,θ,θ̄) = (θσµθ̄)Aµ + i(θθ)(θ̄λ̄)− i(θ̄θ̄)(θλ) + (θθ)(θ̄θ̄)d (3.25)

mit dem reellen Vektorfeld Aµ als Feld der Eichbosonen, dem komplexen Weyl-Spinorfeld

λ als Feld der SUSY-Partner der Eichbosonen und dem reellen Skalarfeld d als Hilfsfeld,

welches durch die Euler-Lagrange-Bewegungsgleichungen eliminiert werden kann.

Die supersymmetrische Feldstärke des Vektor-Superfeldes V in der adjungierten Dar-

stellung ist definiert durch

WA ≡ −
1

4
(D̄D̄)e−VDAeV . (3.26)

Sie ist invariant unter supersymmetrischen Eichtransformationen. Die Feldstärke lässt

sich mit den bekannten Komponentenfeldern d und λ sowie dem antisymmetrischen
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Feldstärketensor Fµν aus (B.11) wie folgt darstellen [25]:

W a
A = iλaA − 2daθA − (σµνθ)AF

a
µν − (θθ)(σµDµλ̄

a)A. (3.27)

Dabei ist die kovariante Ableitung Dµ in der adjungierten Darstellung durch

(Dµλ)a = ∂µλ
a + gfabcA

b
µλ

c (3.28)

definiert, wobei fabc die Strukturkonstante der Eichgruppe und g die Kopplungskonstante

ist. Im Falle der SU(2) gilt fabc = εabc. Die Lagrangedichte des Vektor-Superfeldes kann

mit dieser supersymmetrischen Feldstärke durch

L =
1

4
WAWA + h.c. (3.29)

definiert werden, wobei mit h.c. die hermitesch konjugierten Terme bezeichnet werden.

3.4. Supersymmetrische Lagrangedichten

Eine Wirkung S, die in der Form

S =

∫
d4xL (3.30)

aus einer supersymmetrischen Lagrangedichte L gebildet wird, muss invariant unter

SUSY-Transformationen sein,

δεS = 0. (3.31)

Dafür muss die Lagrangedichte invariant bis auf eine Viererdivergenz

δεL = ∂µΛµ (3.32)

sein, wobei Λµ einen Vierervektor symbolisiert, da diese Divergenz bei der Integration in

ein Oberflächenintegral übergeht. Dieses verschwindet bei großen Integrationsvolumina,

insbesondere wenn über den gesamten Raum integriert wird.

3.5. N = 1 supersymmetrische Yang-Mills-Theorie

Das in dieser Arbeit betrachtete Modell ist die supersymmetrische Erweiterung der Yang-

Mills-Theorie. Die Lagrangedichte der Kontinuumswirkung der N = 1 supersymme-
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3. Supersymmetrische Yang-Mills-Theorie

trischen Yang-Mills-Theorie in der Wess-Zumino-Eichung kann durch Betrachtung der

höchsten Komponente von WAWA in der Lagrangedichte des Vektor-Superfeldes (3.29)

durch

LSYM = −1

4
F a
µνF

a,µν +
i

2
λ̄aγµ(Dµλ)a +

1

2
dada (3.33)

dargestellt werden [25, 26]. Sie enthält in der Feldstärke das Eichfeld Aaµ(x) und ein

Majorana-Fermion λ = (λA; λ̄Ȧ)T in der adjungierten Darstellung. Das Hilfsfeld d oh-

ne kinetischen Term kann ausintegriert werden [27]. Die Lagrangedichte hat eine große

Ähnlichkeit mit dem masselosen Limes einer ein-flavor QCD. Im Gegensatz zur QCD

enthält LSYM die Fermionen jedoch in der adjungierten Darstellung, da diese die Super-

partner der Eichbosonen sind und daher in derselben Darstellung wie diese enthalten sein

müssen. Die Eichbosonen werden als Gluonen, die Superpartner als Gluinos identifiziert.

Das Hinzufügen eines Massenterms

Lm =
mg

2
λ̄λ (3.34)

mit einer Gluino-Masse mg 6= 0 bricht die Supersymmetrie weich, also so, dass keine

ultravioletten Divergenzen in Massen von Skalaren auftreten. Wenn zusätzlich die ima-

ginäre Zeit eingeführt wird, um in den euklidischen Raum überzugehen, lässt sich die

Lagrangedichte als

LSYM,E =
1

4
F a
µνF

a,µν +
1

2
λ̄aγµ(Dµλ)a +

mg

2
λ̄aλa (3.35)

schreiben [27]. Da von nun an lediglich Größen in der euklidischen Metrik betrachtet

werden, wird der Index E nicht mehr ausgeschrieben.

Ähnlich wie die ein-flavor QCD, die eine U(1)A×U(1)V-Symmetrie besitzt, wobei

die U(1)A-Symmetrie durch die Adler-Bell-Jackiw-Anomalie gebrochen ist, besitzt die

SYM ohne Massenterm neben der Supersymmetrie eine chirale U(1)A-Symmetrie, wel-

che mit der sogenannten R-Symmetrie der Supersymmetrie zusammenfällt. Diese ist

durch die Anomalie zu einer Z2N -Symmetrie gebrochen. Durch die Bildung eines Gluino-

Kondensats kommt es zu einer spontanen Symmetriebrechung zu einer Z2-Symmetrie

[7, 26]. Dies entspricht einer Erhaltung der Fermionzahl modulo zwei für die Majorana-

Fermionen.

3.6. SYM-Massenmultipletts

In Analogie zur QCD erwartet man auch bei der supersymmetrischen Yang-Mills-Theorie

ein Confinement, welches sich durch den linearen Anstieg des Potentials zwischen zwei
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3.7. Gitterdiskretisierung der N = 1 SYM

statischen Quellen äußert. Als Konsequenz daraus besteht das Spektrum der SYM aus

farbneutralen, gebundenen, hadronischen Zuständen aus den fundamentalen Feldern, den

Gluonen und Gluinos. Um das Spektrum im Niederenergiebereich zu bestimmen, haben

Veneziano und Yankielowicz [8] eine effektive Wirkung konstruiert, mit der die Teil-

chen des chiralen Wess-Zumino-Multipletts bestimmt werden konnten. Dieses Multiplett

enthält

• λ̄λ, ein aus zwei Gluinos bestehendes skalares Boson mit JPC = 0++, welches analog

zum f0-Meson in der QCD, jedoch aus Fermionen in der adjungierten Darstellung

zusammengesetzt ist und daher a-f0 genannt wird,

• λ̄γ5λ, ein aus zwei Gluinos bestehendes pseudoskalares Boson mit JPC = 0−+,

welches analog zum η′-Meson der QCD mit a-η′ bezeichnet wird,

• χ = F a,µνσµνλ
a, ein aus einem Gluino und einem Gluon bestehendes Spin-1

2

Majorana-Fermion, welches als Gluino-Glueball bezeichnet wird und kein Ana-

logon in der QCD besitzt.

In diesem Multiplett sind keine Gluebälle enthalten, obwohl es keine Begründung dafür

gibt, warum sich keine gebundenen Gluon-Gluon-Zustände bilden sollten. Aus diesem

Grund haben Farrar et al. [9, 10] einen weiteren Term in die effektive Wirkung von

Veneziano und Yankielowicz [8] integriert und damit ein weiteres, leichteres Multiplett

konstruiert, welches die Teilchen

• F µνFµν , einen skalaren Glueball mit JPC = 0++,

• εµνρσF
µνF ρσ, einen pseudoskalaren Glueball mit JPC = 0−+

• χ, einen weiteren Gluino-Glueball-Zustand mit geringerer Masse

enthält. In [28] wird mit anderen Argumenten und Hinweisen aus der QCD hergeleitet,

dass das Multiplett, welches die Gluinobälle enthält, das leichtere ist. Die Anordnung der

beiden Multipletts ist also noch nicht vollständig geklärt. Zusätzlich wird eine Mischung

zwischen den Zuständen erwartet, sodass physikalische Zustände aus Mischungen aus

Gluebällen, Mesonen und Gluino-Gluebällen aufgebaut sind. Im Falle einer gebrochenen

Supersymmetrie kommt es zur Aufspaltung der einzelnen Multipletts.

3.7. Gitterdiskretisierung der N = 1 SYM

Eine diskretisierte Form der SYM wurde von Curci und Veneziano [29] vorgeschlagen.

Dabei werden die Eichfelder der Eichgrupe SU(N) durch Linkvariablen Uµ(x) dargestellt,

die Eichwirkung Sg ist die in (2.28) eingeführte Wilson-Wirkung. Die Gluinos werden
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3. Supersymmetrische Yang-Mills-Theorie

a-f0

a-η′
χ

0++

0−+

χ

SUSY ohne Mischung SUSY mit Mischung weich gebrochene SUSY

Abbildung 3.1.: Massenmultiplett nach Farrar et al. [10]

durch Wilson-Fermionen beschrieben, jedoch werden sie im Unterschied zu (2.56) in der

adjungierten Darstellung implementiert. Die Gitterwirkung kann dann durch

SCV = Sg + Sf = β
∑
x

∑
1≤µ<ν≤4

[
1− 1

N
ReTr[Uµν(x)]

]
+

1

2

∑
xy

λ̄xQxyλy (3.36)

dargestellt werden, dabei ist die Fermionmatrix Qxy durch

Qxy,ab,αβ = δxyδabδαβ − κ
4∑

µ=1

[
(1− γµ)αβ(Vµ(x))abδx+µ̂,y +(1 + γµ)αβ(V †µ (x− µ̂))abδx−µ̂,y

]
(3.37)

mit den Orts-, Farb- und Dirac-Indizes (x,a,α) und dem Hoppingparameter

κ =
1

2mg,0 + 8
(3.38)

mit der nackten Gluinomasse mg,0 definiert [30]. Für die Implementierung der Gluinos in

der adjungierten Darstellung werden die Linkvariablen Vµ(x) verwendet. Diese hängen

mit den Linkvariablen der fundamentalen Darstellung Uµ(x) über

[Vµ(x)]ab = 2Tr[U †µ(x)T aUµ(x)T b] (3.39)

zusammen, wobei die T a die Generatoren der Eichgruppe sind, für die 2 Tr[T aT b] = δab

gilt. Im Falle der in dieser Arbeit betrachteten SU(2) gilt T a = 1
2
σa mit den Paulimatrizen
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3.8. Diskretisierungseffekte

σa (a = 1,2,3). Die einzigen Parameter, durch die die Theorie definiert wird, sind also

die nackte Eichkopplung β = 2N
g0

und die Gluinomasse mg,0

Da die Gluinofelder λ̄ und λ für Majorana-Fermionen nicht unabhängig sind, wird im

fermionischen Pfadintegral lediglich über Dλ integriert, sodass∫
Dλ e−Sf =

∫
Dλ e−λ̄Qλ = ±

√
detQ (3.40)

gilt [31]. Diese Relation lässt das Vorzeichen unbestimmt. Eine eindeutige Definition des

Pfadintegrals über das Feld eines Majorana-Fermions ist durch∫
Dλ e−λ̄Qλ =

∫
Dλ e−λMλ = Pf(M) (3.41)

gegeben, wobei die antisymmetrische Matrix M über

M ≡ CQ = −MT (3.42)

definiert ist [27]. Die Quadratwurzel der Determinanten der Fermion-Matrix wird als

Pfaffsche Determinante Pf(M) bezeichnet. Da die Determinante der Fermion-Matrix

reell und nicht-negativ ist [27], ist Pf(M) reell, kann jedoch positiv oder negativ sein.

Das erzeugende Funktional mit einer externen Quelle J(x) kann dann als Pfadintegral

über die Eichfelder geschrieben werden,

Z[J ] =

∫
DUDλ e−SCV −Jλ =

∫
DU Pf(CQ) exp

{
−Sg −

1

2

∑
xy

JxQ
−1
xyC

−1Jy

}
. (3.43)

3.8. Diskretisierungseffekte

Wie bei der Einführung der Ableitungen auf dem Gitter in Abschnitt 2.2 bereits an-

geführt, kommt es bei der Gitterdiskretisierung zu Diskretisierungseffekten im Vergleich

zur Theorie im Kontinuum. Diese Effekte haben unterschiedliche Gründe und alle Feh-

lerquellen müssen bekannt sein und berücksichtigt werden, um aus den Ergebnissen aus

Gittersimulationen eine Aussage für die Theorie im Kontinuum treffen zu können. Bei der

Betrachtung der SYM hat die Diskretisierung einen besonderen Einfluss. Die Supersym-

metrie ist, wie in (3.11) gezeigt, mit den Symmetrien der Poincaré-Algebra verknüpft.

Da es auf dem Gitter keine infinitesimalen Verschiebungen gibt, ist die Supersymme-

trie also wie auch die kontinuierlichen Symmetrien der Raumzeit gebrochen. Dies ist

mit der Verletzung der Leibnizregel durch diskretisierte Ableitungen verbunden [32].

Des Weiteren ist die Supersymmetrie, ebenso wie die chirale U(1)R-Symmetrie, durch

eine nicht-verschwindende Gluinomasse in der Curci-Veneziano-Wirkung (3.36) explizit
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3. Supersymmetrische Yang-Mills-Theorie

gebrochen. Eine weitere Ursache für eine gebrochene Supersymmetrie ist die endliche

Ausdehnung des Gitters und die damit verbundene Wahl von periodischen Randbedin-

gungen für Bosonen und antiperiodischen Randbedingungen für Fermionen [30].

Um den Einfluss der verschiedenen Effekte quantifizieren und gegebenenfalls durch

geeignete Extrapolationen korrigieren zu können, müssen Simulationen für verschiedene

Gittergrößen, Gluinomassen und Kopplungskonstanten durchgeführt werden. Für den

Übergang zum Kontinuum muss dann zuerst die Extrapolation zum Limes eines unend-

lich großen Volumens vorgenommen werden. Anschließend folgt die Extrapolation zum

Limes einer verschwindenden Gluinomasse. Dies ist durch die Veränderung des Hopping-

parameters κ (3.38) möglich [29]. Wenn dieser auf den kritischen Wert κc eingestellt wird,

verschwinden alle Terme, die die Gluinomasse enthalten und somit explizit die Symme-

trie brechen. Der Wert für κc kann auf verschiedene Arten bestimmt werden. Zum einen

ist er erreicht, wenn die Masse des adjungierten Pions a-π, eines Teilchens, das keinem

physikalischen Zustand der SYM entspricht, verschwindet [33]. Zum anderen kann er mit

Hilfe der supersymmetrischen Ward-Identitäten bestimmt werden [34]. Da eine Simula-

tion am kritischen Punkt numerisch zu aufwändig ist, ist eine Extrapolation notwendig.

Um schließlich die von der Gitterkonstanten abhängigen Fehler zu korrigieren, ist der

Grenzfall a → 0 oder entsprechend β → ∞ notwendig. Dafür werden die gemessenen

Größen für verschiedene Werte der Eichkopplung bestimmt, anschließend erfolgt erneut

eine Extrapolation zum gewünschten Limes.

Wenn alle Extrapolationen erfolgt sind, ist die Supersymmetrie wieder hergestellt. Aus-

sagen über die Theorie im Kontinuum, wie der Bildung von SUSY-Multipletts, können

erst dann erfolgen.

3.9. Verbesserung der Wirkung

Die oben präsentierte Art, die Wirkung der supersymmetrischen Yang-Mills-Wirkung

SSYM zu diskretisieren, ist nicht die einzig zulässige. Jede Gitterwirkung, die im Konti-

nuumslimes in SSYM übergeht, kann zur Beschreibung der Theorie auf dem Gitter ver-

wendet werden. Daher ist es möglich, die diskretisierte Wirkung SCV durch zusätzliche

Terme zu verändern, um somit die Konvergenz zum Kontinuumslimes für β → ∞ zu

verbessern. Hier wird dazu die Eichwirkung Sg, welche die (1×1)-Plaketten enthält, mit

(1 × 2)-Wilson-Schleifen, welche aus sechs Linkvariablen zusammengesetzt sind, erwei-

tert. Die tree-level Symanzik (tlSym) verbesserte Eichwirkung lautet dann [35, 36, 37]

StlSym
g = β

∑
x

(
c0

∑
1≤µ<ν≤4

[
1− 1

N
ReTr[U1×1

µν (x)]

]
+ c1

4∑
µ 6=ν,µ,ν=1

[
1− 1

N
ReTr[U1×2

µν (x)]

])
(3.44)
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mit den Faktoren c0 = 1− 8c1 und c1 = − 1
12

.

Der fermionische Anteil der Wirkung kann durch die Anwendung von Stout-Smearing

[38] verbessert werden. Dabei werden die Linkvariablen im Dirac-Wilson-Operator

verändert. Die neuen Linkvariablen sind durch

U ′µ(x) = Uµ(x) exp

{
1

2
(Ωµ(x)− Ω†µ(x))− 1

2N
Tr[Ωµ(x)− Ω†µ(x)]

}
(3.45)

definiert, wobei Uµ(x) die originale Linkvariable und Ωµ(x) über

Ωµ(x) = ρU †µ(x)Cµ(x) (Keine Summation über µ) (3.46)

mit der Summe

Cµ(x) =
∑
ν 6=µ

(
U †ν(x+ µ̂)Uµ(x+ ν̂)Uν(x) + Uν(x− ν̂ + µ̂)Uµ(x− ν̂)U †ν(x− ν̂)

)
(3.47)

definiert ist. Dabei ist der Parameter ρ bei den in dieser Arbeit genutzten Konfiguratio-

nen auf ρ = 0,15 festgelegt. Das Smearing kann im Prinzip mehrfach angewendet werden,

dies sorgt jedoch für eine größere Ausdehnung der fermionischen Wirkung auf dem Git-

ter. Um die Wirkung lokalisiert zu halten, wird nur ein Smearing-Schritt angewendet

[37].

3.10. Korrelator des Gluino-Glueballes

Gluino-Gluebälle der N = 1 SYM werden, wie in Abschnitt 3.6 eingeführt, durch

χ =
1

2
F a,µνσµνλ

a = σµνTrc[F
µνλ] (3.48)

dargestellt und sind Bestandteil beider Multipletts der effektiven Wirkung von Curci

und Veneziano [29] und Farrar et al. [10]. Der entsprechende Operator auf dem Gitter

wird nach [30, 37] durch

Oα
χ =

∑
i<j

σαβij Trc[Pij(x)λβ(x)] (3.49)

dargestellt. Dabei werden nur die Raumkomponenten i,j = 1,2,3 betrachtet, es wer-

den also keine Linkvariablen in Richtung der euklidischen Zeit mit einbezogen. Der
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3. Supersymmetrische Yang-Mills-Theorie

Feldstärketensor Fµν wird durch den Clover-Plaketten-Operator Pµν mit

Pµν(x) =
1

8ig0

(
U (c)
µν − (U (c)

µν )†
)

(3.50)

repräsentiert, welcher dieselben Eigenschaften in Bezug auf Paritäts- und Zeitum-

kehrtransformationen besitzt. Dabei ist U
(c)
µν die Summe von Plaketten mit dem Eckpunkt

x in der fundamentalen Darstellung,

U (c)
µν = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x)

+ U †ν(x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂)U †µ(x)

+ U †µ(x− µ̂)U †ν(x− µ̂− ν̂)Uµ(x− µ̂− ν̂)Uν(x− ν̂)

+ Uν(x)U †µ(x+ ν̂ − µ̂)U †ν(x− µ̂)Uµ(x− µ̂). (3.51)

Die Verwendung von Zweipunkt-Korrelatoren zur Massenbestimmung wird in Abschnitt

4.3 beschrieben. Der Korrelator des Gluino-Glueball-Operators verbindet zwei Plaketten,

eine an der Quelle und eine an der Senke, mit einem Gluino-Propagator, wie in Abbildung

3.2 skizziert. Er hat die Form

Cαβ
χ (∆t) = −1

4

∑
~x,~y

∑
i,j,k,l

〈
σαα

′

ij Tr[Uij(x)σa]Q−1
xaα′,ybβ′Tr[Ukl(y)σb]σβ

′β
kl

〉
, (3.52)

wobei Uij(x) die Plakette in Raumrichtung ist und 1
2
σa die Generatoren der SU(2) sind,

welche in dieser Arbeit als Eichgruppe gewählt ist.

Der Korrelator ist eine Matrix im Diracraum und kann in der Form

Cαβ
χ (∆t) = C1(∆t)δαβ + Cγ4(∆t)γ

αβ
4 (3.53)

dargestellt werden [39]. Dabei haben die beiden reellen Komponenten C1 = 1
4
TrD[Cχ]

und Cγ4 = 1
4
TrD[γ4Cχ] unter Zeitumkehr die Eigenschaften

C1(∆t) = −C1(T −∆t), Cγ4(∆t) = Cγ4(T −∆t). (3.54)

Die Komponenten können unabhängig voneinander gemessen und zur Massenbestim-

mung verwendet werden, C1 liefert jedoch bei der Massenbestimmung des Grundzustan-

des das bessere Signal [30, 37].

Für die Verwendung des Korrelators bei den für diese Arbeit durchgeführten Messun-

gen werden verschiedene Veränderungen des Korrelators vorgenommen, um das Signal

zu verbessern. Die Linkvariablen können mittels APE-Smearing (siehe Abschnitt 4.4.1)

verändert werden. Ohne Smearing entsprechen die Links U in Pµν denen im Eichfeld-Teil
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x

Q−1

y

Abbildung 3.2.: Darstellung des Gluino-Glueball-Korrelators.

der Wirkung Sg. Gemäß der Definition des Dirac-Wilson-Operators in der verbesserten

Wirkung der SYM enthält dieser durch Stout-Smearing (3.45) veränderte Linkvariablen

V in der adjungierten Darstellung. Zusätzlich kann Stout-Smearing auf die Linkvaria-

blen U im Korrelator angewendet werden. Dabei muss beachtet werden, dass zwei Smea-

ringlevel die ersten beiden Punkte des Korrelators beeinflussen, da hier ein Smearing in

zeitlicher Richtung stattfindet. Die fermionischen Feldvariablen können mittels Jacobi-

Smearing (siehe Abschnitt 4.4.2) verschmiert und somit angepasst werden.
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Die Berechnung des Erwartungswertes eines von den Feldvariablen abhängigen Operators

O[U ] beruht, wie in (2.34) gezeigt, auf der Auswertung des Pfadintegrals

〈O〉 =
1

Z

∫
DU e−S[U ]O[U ] mit Z =

∫
DU e−S[U ] (4.1)

mit der Wirkung S[U ]. Dabei wird hier aus Gründen der Übersichtlichkeit nur die In-

tegration über rein bosonische Felder U betrachtet. Dieses im Kontinuum unendlich-

dimensionale Integral über die Feldvariablen geht bei der Gitterdiskretisierung über in

ein Integral über die Feldvariablen auf den Gitterpunkten∫
DU =

∏
x∈Λ

4∏
µ=1

∫
dUµ(x). (4.2)

Dennoch ist eine analytische Berechnung des Pfadintegrals außer bei sehr kleinen Gittern

aufgrund der großen Anzahl an nötigen Integrationen nicht möglich [11]. Die zurzeit

einzige Möglichkeit das Integral auszuwerten ist die Monte-Carlo-Integration. Dabei wird

das Integral durch die endliche Summe über N Feldkonfigurationen U (n) approximiert,

〈O〉 ≈ O =
1

N

N∑
n=1

O[U (n)]. (4.3)

Hier wird das sogenannte Importance Sampling der Feldkonfigurationen mit der Gewich-

tung ∝ e−S[U(n)] angewendet. Dies bedeutet, dass die Verteilung der Konfigurationen,

welche für die Monte-Carlo-Integration generiert werden, dem Boltzmannfaktor e−S[U(n)]

folgt. Die Wahrscheinlichkeitsverteilung ist dann

dP (U) =
e−S[U ]DU∫
DU e−S[U ]

. (4.4)
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4.1. Markow-Ketten

Um möglichst effizient Konfigurationen mit der gewünschten Verteilung zu generieren,

wird ausgehend von einer Startkonfiguration mithilfe des Metropolisalgorithmus eine

Markow-Kette aus Konfigurationen erzeugt. Dabei kann die Startkonfiguration U (0)

willkürlich gewählt werden. Mittels des Markow-Prozesses wird dann eine Folge von

Konfigurationen

U (0) −→ U (1) −→ U (2) −→ . . . (4.5)

generiert, die ab einer genügend großen Kettenlänge der Gleichgewichtsverteilung P [U ]

folgen. Die Konfigurationen werden anhand ihrer Position in der Kette durchnummeriert.

Der Index n wird dabei als Monte-Carlo-Zeit bezeichnet und darf nicht mit der eukli-

dischen Zeit der vierdimensionalen Raumzeit verwechselt werden. Der Schritt von einer

Konfiguration U (n) zur nachfolgenden Konfiguration U (n+1) wird als Update bezeichnet.

Die Übergangswahrscheinlichkeit von einer Konfiguration in eine andere

P
(
U (n) = U ′|U (n−1) = U

)
≡ T (U ′|U) (4.6)

hat die Eigenschaften

0 ≤ T (U ′|U) ≤ 1,
∑
U ′

T (U ′|U) = 1. (4.7)

Die Übergangswahrscheinlichkeit ist nicht von der Position in der Markow-Kette, also der

Monte-Carlo-Zeit n, abhängig, sondern hängt lediglich von der Ausgangskonfiguration U

und der Zielkonfiguration U ′ ab. Der Markow-Prozess ist ergodisch, das heißt, dass jede

Konfiguration in einer endlichen Anzahl an Schritten erreichbar ist. Um Gleichgewicht

zu gewährleisten, wird die Bedingung∑
U

T (U ′|U)P (U) = P (U ′) (4.8)

gestellt. Dieses Kriterium ist auf alle Fälle erfüllt, wenn die Bedingung des detaillierten

Gleichgewichts

T (U ′|U)P (U) = T (U |U ′)P (U ′) (4.9)

erfüllt wird, die Bedingung (4.8) also nicht mehr an alle Übergänge zusammen, sondern

an jeden einzelnen Übergang gestellt wird. Es kann gezeigt werden, dass die Gleichge-

wichtsverteilung P (U) einen Fixpunkt des Markow-Prozesses darstellt [11]. Dieser Fix-
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punkt wird von jeder beliebigen Startkonfiguration aus erreicht. Nach einer genügend

großen Anzahl an Updates liegt also die gewünschte Verteilung vor. Bevor die Berech-

nung einer Observablen mittels der Approximation des Pfadintegrals vorgenommen wird,

müssen zunächst also genügend Schritte in der Markow-Kette erfolgt sein. Wenn dies der

Fall ist, verbleibt das System jedoch im Gleichgewicht.

4.2. Metropolis-Algorithmus

Ein oft verwendeter Algorithmus, mit dem die Markow-Kette gemäß der obigen Vorgaben

erzeugt werden kann, ist der Metropolis-Algorithmus [40]. Wenn dieser auf ein Eichfeld

mit einer SU(N)-Wilson-Wirkung angewendet wird, besteht der Unterschied zwischen

zwei aufeinanderfolgenden Konfigurationen in der Änderung einer Linkvariable an der

Position x in Richtung µ,

U ′µ(x) = XUµ(x). (4.10)

Dabei ist X ebenfalls ein Element der Eichgruppe, welches sich nur gering von 1 unter-

scheidet. Der Metropolis-Algorithmus besteht aus drei Schritten. Im ersten Schritt wird

durch die Änderung einer Linkvariablen gemäß (4.10) aus der Konfiguration U eine neue

Konfiguration U ′ erzeugt. Wenn X und X−1 mit derselben Wahrscheinlichkeit gewählt

werden, besteht eine symmetrische Auswahlwahrscheinlichkeit T0 für den Übergang zwi-

schen den beiden Konfigurationen,

T0(U |U ′) = T0(U ′|U). (4.11)

In diesem Fall wird die neue Konfiguration im zweiten Schritt mit der Akzeptanzwahr-

scheinlichkeit

TA(U ′|U) = min(1, exp(−∆S)) mit ∆S = S[U ′]− S[U ] (4.12)

angenommen. Um zu entscheiden, ob der Übergang zur neuen Konfiguration erfolgt, wird

TA mit einer Zufallszahl r aus dem Intervall [0,1) verglichen. Im Falle r ≤ TA wird der

Schritt angenommen. Im Falle einer kleineren neuen Wirkung ∆S ≤ 0 wird der Schritt

also in jedem Fall akzeptiert. Damit die Markow-Kette nicht in den Zustand minimaler

Wirkung läuft und dort bleibt, was (4.9) verletzen würde, findet im Falle einer größer wer-

denden Wirkung der Vergleich mit r statt, welcher es ermöglicht, zu einer Konfiguration

mit größerer Wirkung zu wechseln. Somit können alle Zustände der Boltzmannvertei-

lung abgedeckt werden. Im Falle der Wilson-Wirkung in vier Dimensionen müssen zur

Berechnung der Wirkungsdifferenz lediglich die sechs Plaketten betrachtet werden, in
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denen die geänderte Linkvariable U ′µ(x) enthalten ist [11]. Nach dem Vergleich mit r

und der Entscheidung, ob die neue Konfiguration angenommen wird, wird der Algorith-

mus mit der Veränderung einer Linkvariablen gemäß (4.10) fortgesetzt. Auf diese Weise

werden Schritt für Schritt neue Konfigurationen in der Markow-Kette erzeugt. Da eine

Konfiguration durch die Änderung einer Linkvariable lediglich lokal geändert wird, wird

der Metropolis-Algorithmus als lokaler Algorithmus bezeichnet, welcher lediglich kleine

Schritte in der Markow-Kette erzeugt und daher nur wenig effizient ist. Um Konfiguratio-

nen zu erzeugen, die weniger korreliert sind und eine hohe Akzeptanzwahrscheinlichkeit

besitzen, existieren verschiedene nicht-lokale Monte-Carlo-Algorithmen. Zur Erzeugung

der hier verwendeten Konfigurationen wird der Two-Step Polynomial Hybrid Monte Car-

lo (TS-PHMC) Algorithmus [41] verwendet, welcher in der Lage ist, Majorana-Fermionen

zu berücksichtigen und welcher effizient Konfigurationen mit kurzer Autokorrelationszeit

erzeugt [37].

4.3. Korrelatoren und Massenbestimmung

Wie in Abschnitt 3.6 beschrieben, werden für den niederenergetischen Bereich der su-

persymmetrischen Yang-Mills-Theorie Teilchen in verschiedenen Supermultipletts erwar-

tet. Um die Massen dieser gebundenen Zustände zu bestimmen, werden Zweipunkt-

Korrelatoren

C ′(x,y) = 〈O(x)O†(y)〉 (4.13)

eingeführt. Dieser Korrelator beschreibt ein Teilchen, das im Ort y, der Quelle, erzeugt

und in x, der Senke, wieder vernichtet wird. Der Operator O beschreibt dabei das zu

betrachtende Teilchen, indem er dieselben Quantenzahlen JPC , also Spin, Parität und

Ladung wie dieses besitzt. Es ist also möglich ein Teilchen durch verschiedene Operatoren

zu beschreiben, die alle einen unterschiedlich großen Überlapp mit der Wellenfunktion des

Teilchens besitzen, jedoch durch dieselben Quantenzahlen klassifiziert werden können.

Nach (4.3) kann der Wert des Korrelators in Monte-Carlo-Simulationen über

〈O(x)O†(y)〉U ≈
1

N

N∑
n=1

(O(x)O†(y))[U (n)] (4.14)

approximiert werden, wobei über die Auswertung der Operatoren auf N Konfigurationen

gemittelt wird. Für die Extraktion der Masse wird die zeitliche Veränderung des Kor-

relators betrachtet. Die Fouriertransformation des Korrelators in den Ortskomponenten
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des euklidischen Raumes wird auf dem Gitter mit dem Volumen V = L3 × T über

C(t,~p) =
1

L3/2

∑
~x

e−i~p·~xC ′(x,y = 0) (4.15)

berechnet. Aufgrund der Translationsinvarianz des Korrelators kann hier y = 0 verwen-

det werden. Diese Transformation ist gleich der Korrelationsfunktion der Zeitscheiben

S(t,~p) mit

S(t,~p) =
1

L3/2

∑
~x

e−i~p·~xO(~x,t). (4.16)

Mit den Zeitscheiben ohne räumlichen Impuls (~p = 0)

St =
1

L3/2

∑
~x

O(~x,t) (4.17)

lässt sich der Korrelator bei der zeitlichen Differenz ∆t = x4 − y4 durch

C(∆t) = 〈S†t+∆tSt〉 (4.18)

ausdrücken. Mit dem Einfügen eines vollständigen Satzes von Eigenzuständen∑
n

|n〉〈n| = 1 (4.19)

in den Korrelator wird die Spektralzerlegung

C(∆t) =
∑
n=0

(
| 〈n|St|0〉 |2e−En∆t ± | 〈0|S†t |n〉 |2e−En(T−∆t)

)
= a2

0 +
∑
n=1

(
a2
ne−En∆t ± a2

ne−En(T−∆t)
)

(4.20)

erhalten. Das Vorzeichen des jeweils zweiten Terms in der Summe hängt von den Randbe-

dingungen in zeitlicher Richtung ab. Für periodische Randbedingungen wird der zweite

Term addiert, für antiperiodische wird er subtrahiert. Die Größe a2
0 ist für Operatoren,

die mit dem Vakuum überlappen, ungleich Null. In diesem Fall ist es üblich, die Größe

durch die Transformation

St → S̃t = St − 〈St〉U (4.21)

zu subtrahieren. Dabei ist 〈St〉U der Vakuumerwartungswert des Zeitscheibenoperators.

Der neue Operator S̃t kann dann in die Korrelationsfunktion eingesetzt werden. Für
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4.3. Korrelatoren und Massenbestimmung

große Zeiten t → ∞ ist der Korrelator exponentiell gedämpft und die Terme, welche

zum Zustand n = 1 der geringsten Energie E1 ≡ m1 gehören, dominieren. Dies legt die

Grundlage dafür, die Masse des Grundzustands m1 über einen Fit an die Funktion

C(∆t) = a2
1

(
e−m1∆t ± e−m1(T−∆t)

)
(4.22)

im Fitintervall ∆t ∈ [t1,t2] bestimmen zu können. Dabei ist die richtige Wahl des In-

tervalls von entscheidender Bedeutung. Für zu kleine Zeiten t1 sind die Beiträge der

höheren Zustände mit m > m1 noch nicht genug abgeklungen. Der Wert des Korre-

lators wird für diese Zeiten noch zu stark von den angeregten Zuständen beeinflusst

und ein hinreichend genauer Fit ist nicht möglich. Gleichzeitig verschlechtert sich das

Signal-Rausch-Verhältnis mit größer werdenden Zeitdifferenzen, sodass zu große ∆t den

Fit ebenfalls verschlechtern, obwohl der Korrelator für große t2 von den Beiträgen des

Grundzustandes dominiert wird.

Einen guten Anhaltspunkt für die Wahl des Fitintervalls liefert die effektive Masse

meff(∆t) = ln
C(∆t)

C(∆t+ 1)
, (4.23)

welche, wenn sie gegen die Zeitdifferenz ∆t aufgetragen wird, unter idealen Bedingungen

ein Plateau in dem Bereich bildet, in dem der Wert des Korrelators vom Grundzustand

dominiert wird. In diesem Bereich sollte der Fit an (4.22) durchgeführt werden. Gleich-

zeitig kann aus dem Wert der effektiven Masse im Plateau bereits eine Abschätzung der

Masse gewonnen werden, die jedoch für jede Masse meff(∆t) nur von zwei Zeiten eines

Korrelators C(∆t) abhängt und damit nicht so viel Information enthält, wie die aus der

Fitprozedur gewonnene Masse.

Um das Signal-Rausch-Verhältnis zu verbessern, ist es möglich, den Korrelator, je nach

Randbedingungen, zu (anti-)parallelisieren. Statt des Korrelators C(∆t) im Intervall

[0,T ] wird dann

C ′(∆t) =
1

2
(C(∆t)± C(T −∆t)) (4.24)

im Intervall [0,T
2
] betrachtet. Diese Symmetrisierung wird bei allen untersuchten Kor-

relatoren vorgenommen, weshalb im weiteren Verlauf auf die explizite Kennzeichnung

C ′(∆t) verzichtet und C(∆t) verwendet wird.
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4.4. Smearing

Aufgrund der oben beschriebenen Probleme bei der Massenbestimmung erscheint es

wichtig, die Prozedur so zu optimieren, dass die Genauigkeit erhöht werden kann, ohne

den numerischen Aufwand zu stark zu vergrößern. Eine Methode, dies zu erreichen, ist

die Verbesserung des Überlapps der verwendeten Operatoren mit der Wellenfunktion

des Grundzustandes des zu untersuchenden Teilchens. Bei manchen Teilchen sind lokale

Operatoren nicht gut geeignet, um diesen Überlapp zu erreichen. Eine Methode, die

verwendeten Operatoren zu verbessern, ist das sogenannte Smearing, welches zusätzlich

unphysikalische Fluktuationen auf kurzen Distanzen entfernt.

4.4.1. APE Smearing

−→ +εAPE×

Abbildung 4.1.: APE Smearing in eine Raumrichtung.

Beim APE Smearing [42] werden die einzelnen räumlichen Linkvariablen Ui(x), i = 1,2,3

durch die Summe der sie umgebenden, orthogonalen räumlichen Links erweitert,

Ui(x)→ U ′i(x) = Ui(x) + εAPE

±3∑
j=±1,j 6=i

Uj(x)Ui(x+ ĵ)U †j (x+ î) (4.25)

mit dem Parameter εAPE, der die Stärke des Smearings beeinflusst. Die Prozedur ist durch

die Linkvariablen in Abbildung 4.1 veranschaulicht. Die neu entstehende Linkvariable ist

im Allgemeinen kein Element der Eichgruppe mehr, weshalb anschließend eine Projektion

in die Eichgruppe erfolgen muss. Im Falle der SU(2) erfolgt diese mit

U s
µ(x) = PSU(2)[U

′
µ(x)] (4.26)
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4.4. Smearing

mit der Projektionsmatrix

PSU(2)[U
′
µ(x)] =

U ′µ(x)√
1
2
Tr[U ′†µ (x)U ′µ(x)]

. (4.27)

Das Smearing kann mehrfach iterativ angewendet werden, die Anzahl an Smearingschrit-

ten, auch Smearinglevel genannt, wird mit NAPE angegeben. Durch wiederholtes Smea-

ring wächst die räumliche Ausdehnung des Operators. Der Smearingradius kann mit

[23]

RAPE = εAPENAPE (4.28)

abgeschätzt werden. Aufgrund der periodischen Randbedingungen sollte er nicht größer

als die halbe räumliche Ausdehnung des Gitters sein. Durch ein zu großes NAPE kann es

außerdem dazu kommen, dass Informationen über den zu untersuchenden gebundenen

Zustand verloren gehen. Daher ist es sinnvoll, die Qualität der Massenbestimmung bei

unterschiedlichen Smearingleveln zu beobachten, um das optimale NAPE zu bestimmen.

4.4.2. Jacobi-Smearing

Eine Verbesserung des Signals der fermionischen Variablen λ ist mittels Jacobi-Smearing

möglich [43, 44]. Die eichinvariante, verschmierte Quelle SS des Propagators erfüllt∑
~x

K(~x,t; ~x′,t)SS(~x′,t) = S0(~x,t) (4.29)

mit der unverschmierten Quelle S0 und K = 1− κJF mit

F ab
αβ(~x,t; ~y,t) = δαβ

3∑
i=1

[
V ab
i (~x,t)δ~x+î,~y + V †abi (~x− î,t)δ~x−î,~y

]
. (4.30)

Um die verschmierte Quelle zu bestimmen, wird also K−1 benötigt. Zur Bestimmung

wird jedoch keine explizite Inversion von K durchgeführt. Stattdessen wird die Quelle

durch die Jacobi-Iteration

S
(n)
S (~x,t) = S0(~x,t) + κJFS

(n−1)
S (~x,t), n = 1,2, . . . (4.31)

mit NJ Schritten angenähert. Das Smearing wird dann durch die beiden Parameter κJ
und NJ beeinflusst. Für genügend kleine κJ konvergiert die Iteration zur gewünschten

Lösung, doch auch für κJ größer als der für die Konvergenz kritische Wert liefert die

Prozedur trotz der Divergenz der Summe eine geeignete verschmierte Quelle für ein be-
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liebiges NJ . Die Anzahl der Iterationsschritte NJ beeinflusst die Größe des verschmierten

Objektes, dabei ist es gewünscht, die Größe der physikalischen Wellenfunktion zu errei-

chen. Der Smearingradius r kann mit

r2 =

∑
~x

~x2 |SS(~x,t)|∑
~x

|SS(~x,t)|
(4.32)

abgeschätzt werden, wobei ~x2 auf einem periodischen Gitter der minimale quadratische

Abstand zum Ursprung ist.

4.5. Variationsmethode

Um die Massenbestimmung des Grundzustandes weiter zu verbessern, kann die Va-

riationsmethode verwendet werden, welche es ermöglicht, die Informationen mehrerer

Operatoren gleicher Quantenzahlen zu berücksichtigen. Durch diese Verbesserung hat

die Variationsmethode einen deutlichen Einfluss auf die Massenbestimmung angeregter

Zustände.

Wie in (4.20) gezeigt, werden die Korrelatoren vom Grundzustand dominiert, jedoch

durch Beiträge von Zuständen höherer Energie beeinflusst, welche mit größerer Zeit ex-

ponentiell gedämpft werden. Die Untersuchung eines spezifischen angeregten Zustandes

gestaltet sich aufgrund der Dominanz des Grundzustandes auf der einen und der Beein-

flussung durch höhere Zustände auf der anderen Seite als schwierig. Der direkte Fit einer

Funktion

f(∆t) =
N∑
n=1

ane−mn∆t (4.33)

an einen Korrelator, um die Massen von N Zuständen zu bestimmen, ist aufgrund der

fehlerbehafteten Messdaten der Monte-Carlo-Simulation nicht zuverlässig [11].

Mithilfe der Variationsmethode ist es möglich, durch die Verwendung der Informa-

tion mehrerer Operatoren auch Massen angeregter Zustände zu extrahieren. Allge-

mein kann diese Methode in einem beliebigen physikalischen System mit bekanntem,

zeitabhängigem Hamiltonoperator H = H(t) eingesetzt werden, um die Eigenwerte und

zugehörigen Eigenzustände zu bestimmen [45] und kann auf beliebige hermitesche Ope-

ratoren O erweitert werden. Für den normierten Erwartungswert 〈O〉 eines hermiteschen

36



4.5. Variationsmethode

Operators in einem beliebigen Zustand |ϕ〉 gilt

〈O〉 =
〈ϕ|O|ϕ〉
〈ϕ|ϕ〉

mit |ϕ〉 =
∑
n

cn|n〉, (4.34)

wobei |n〉 die Eigenzustände von O sind. Durch Variation des Zustands |ϕ〉 kann gezeigt

werden, dass der Erwartungswert von O in der Umgebung seiner diskreten Eigenwerte

stationär ist. Dafür wird (4.34) in der Form

〈O〉 〈ϕ|ϕ〉 = 〈ϕ|O|ϕ〉 (4.35)

geschrieben. Wenn nun eine kleine Variation eingeführt wird, ergibt sich

〈ϕ|ϕ〉 δ 〈O〉+ 〈O〉 [〈δϕ|ϕ〉+ 〈ϕ|δϕ〉] = 〈δϕ|O|ϕ〉+ 〈ϕ|O|δϕ〉
⇔ 〈δϕ|[O − 〈O〉]|ϕ〉+ 〈ϕ|[O − 〈O〉]|δϕ〉 = 〈ϕ|ϕ〉 δ 〈O〉 . (4.36)

Der Erwartungswert wird also stationär, δ 〈O〉 = 0, wenn

O|ϕ〉 = 〈O〉 |ϕ〉 (4.37)

gilt, der Zustand |ϕ〉 also einen Eigenzustand von O darstellt. In diesem Fall ist der

Erwartungswert ein Eigenwert des Operators. Durch die Variation des Zustandes |ϕ〉
können also die Extrema des Erwartungswertes gefunden werden, welche die Eigenwerte

liefern.

Zur Bestimmung der Energieeigenwerte eines Teilchens für die Massenbestimmung

wird als Operator nun eine Korrelationsmatrix C(t) der Form

Cij(t) = 〈Oi(t)O
†
j(0)〉 (4.38)

verwendet. Die Operatoren Oi haben dabei alle die Quantenzahlen des zu untersuchenden

gebundenen Zustandes. In der Spektralzerlegung hat die Korrelationsmatrix die Form

Cij(t) =
∞∑
n

〈0|Oi|n〉 〈n|O†j |0〉 e−mnt. (4.39)

Die Variation des Ausdrucks

〈ϕ|e−H(t−t0)|ϕ〉
〈ϕ|ϕ〉

=
〈ϕ|C(t)|ϕ〉
〈ϕ|C(t0)|ϕ〉

(4.40)

mit C(t) = (Cij)(t) führt analog zu obigen Ausführungen zum verallgemeinerten Eigen-
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wertproblem

C(t)v(n) = λ(n)(t,t0)C(t0)v(n), (4.41)

wobei λ(n)(t,t0) die verallgemeinerten Eigenwerte und v(n) die entsprechenden verallge-

meinerten Eigenvektoren sind. Dieses verallgemeinerte Eigenwertproblem kann für eine

positiv definite Korrelationsmatrix in ein reguläres Eigenwertproblem umgeschrieben

werden. Für den Fall, dass die Eigenwerte λ(n)(t) des Eigenwertproblems

C(t)v(n) = λ(n)(t)v(n) (4.42)

für jedes t ≥ 0 gemäß λ(1) ≥ λ(2) ≥ · · · ≥ λ(r) geordnet sind, haben Lüscher und Wolff

[46] gezeigt, dass diese sich gemäß

lim
t→∞

λ(n)(t) ∝ e−mnt(1 +O(e−∆mnt)) (4.43)

verhalten, wobei ∆mn die kleinste Differenz zu den anderen Spektralwerten ml ist. Die

Lösung des verallgemeinerten Eigenwertproblems (4.41) mit t0 < t führt hier jedoch zu

besseren Ergebnissen, da hier das zeitliche Verhalten der Eigenwerte dasselbe, die Am-

plitude der Fehlerterme aber kleiner ist [11]. Dadurch dominieren die führenden Terme

bereits für kleine Zeiten t. Um dieses verallgemeinerte Eigenwertproblem nun für die

Eigenwerte λ(n) mit n = 1, . . . ,A zu lösen, ist eine r × r Korrelationsmatrix C ′ij(t) mit

r ≥ A notwendig. Dafür wird die Korrelationsmatrix aus r verschiedenen Operatoren

aufgebaut. Diese können durch explizite Konstruktion oder durch Smearing anderer Ope-

ratoren konstruiert werden. Nach Lüscher und Wolff [46] sollte die Anzahl der Operatoren

r auf einem Gitter der Länge L kleiner oder gleich L/2 sein, um sicherzustellen, dass die

Operatoren linear unabhängig sind. Ist dies nicht der Fall, so ist die Korrelationsmatrix

nicht mehr positiv definit. Für die r × r-Matrix C ′ij(t) kann das Eigenwertproblem nun

exakt für einen endlich dimensionalen Eigenraum mit den Zuständen |n〉, n = 1, . . . ,r zu

λ′(n)(t,t0) = e−(t−t0)mn (4.44)

gelöst werden. Wenn man nun den unendlich-dimensionalen Eigenraum betrachtet und

die Korrelationsmatrix in der Form C(t) = C ′(t)+Cp(t) schreibt, wobei Cp(t) als Störung

behandelt wird, so kann davon ausgegangen werden, dass die großen Eigenwerte nicht

zu stark von dieser Störung beeinflusst werden. Die Eigenwerte des verallgemeinerten

Eigenwertproblems verhalten sich dann gemäß

lim
t→∞

λ(n)(t, t0) ∝ e−mn(t−t0)(1 +O(e−∆mn(t−t0))), ∆mn = min
l 6=n
|ml −mn| . (4.45)
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Nach Blossier et al. [47] lassen sich die Fehler zu ∆mn = |mr+1 −mn| verringern, wenn

t0 möglichst groß gewählt wird und t0 ≥ t/2 gilt. In der Praxis ist jedoch meist nur ein

kleiner Wert für t0, oder sogar t0 = 0 möglich, da es sonst zu numerischen Instabilitäten

kommt [46]. Die Qualität der Analyse mittels Variationsmethoden hängt von den ver-

wendeten Operatoren ab. Diese sollten einen großen Überlapp mit der Wellenfunktion

des zu untersuchenden Zustandes haben und möglichst orthogonal zueinander sein [48].

Mit Hilfe der Lösung des Eigenwertproblems wird die optimale Kombination der Opera-

toren gefunden, durch die ein möglichst großer Überlapp mit der Wellenfunktion erreicht

werden kann. Daher können in der Korrelationsmatrix auch Operatoren enthalten sein,

die einen kleinen Überlapp haben. Eine große Korrelationsmatrix kann also vorteilhaft

sein. Da Operatoren mit kleinem Überlapp jedoch mit Rauschen zum Ergebnis beitragen,

ist es sinnvoll, die Methode zunächst für eine große Anzahl an Operatoren zu betrachten

und anschließend die Kombination mit dem besten Signal-Rausch-Verhältnis zu wählen.

Zudem muss beachtet werden, dass linear abhängige Operatoren die Lösung des Eigen-

wertproblems verhindern.

Zur Massenbestimmung nach der t-Eigenvektor-Methode wird das verallgemeinerte

Eigenwertproblem (4.41) für jede Zeit t gelöst und die entsprechenden Eigenwerte be-

stimmt. Die effektiven Massen der angeregten Zustände werden dann analog zu (4.23)

mittels

m
(n)
eff (t,t0) = ln

λ(n)(t,t0)

λ(n)(t+ 1,t0)
(4.46)

bestimmt. Die Eigenwerte können analog zum Fall der Massenbestimmung mit einzelnen

Korrelatoren für Fits zur Massenbestimmung genutzt werden [23, 24].

Im Falle von entarteten oder beinahe entarteten Energie-Eigenwerten kann es zusam-

men mit numerischen Fehlern dazu kommen, dass das eindeutige Ordnen der Eigenwerte

und ihrer Eigenvektoren nach der Größe für verschiedene Zeiten nicht eindeutig ist [49].

Um dies zu vermeiden, wird die Basis der Eigenvektoren dadurch festgelegt, dass das

Eigenwertproblem lediglich zu einer Zeit t1 > t0 gelöst wird:

C(t1)v(n) = λ(n)(t1,t0)C(t0)v(n). (4.47)

Dabei sollte t1 so klein wie möglich gewählt werden, gleichzeitig aber groß genug, um

sicherzustellen, dass die Schätzer für die Eigenvektoren v(n)(t1) sich stabilisiert haben.

Zur Bestimmung der effektiven Masse wird bei dieser fixed-vector Methode die Korrela-

tionsfunktion zur Zeit t auf den Eigenraum zur Zeit t1 projiziert. Damit ergibt sich

m
(n)
eff (t,t0) = ln

(v(n))†(t1, t0)C(t)v(n)(t1, t0)

(v(n))†(t1, t0)C(t+ 1)v(n)(t1, t0)
. (4.48)
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Dadurch, dass das Eigenwertproblem lediglich bei t1 gelöst wird, ist auch nur hier Or-

thogonalität

(vi)†(t1, t0)C(t)vj(t1, t0) = 0 i 6= j (4.49)

garantiert. Da hier also für Zeiten t > t1 Anteile des niedrigsten Zustandes enthalten

sind, wird diese Korrelationsfunktion der fixed-vector Methode für große Zeiten zum

Grundzustand abfallen [49],

(v(n))†(t1, t0)C(t)v(n)(t1, t0)
t�t1∝ e−m1t. (4.50)

Eine weitere Methode, aus einer Korrelationsmatrix die Masse eines angeregten Zu-

standes zu extrahieren, ist die Projektionsmethode [50]. Sie stellt eine Mischung aus den

vorherigen Methoden dar. Hier wird das verallgemeinerte Eigenwertproblem für jede Zeit

t gelöst, jedoch nicht mit einer festen Referenzzeit, sondern mit einer zweiten Zeit t+∆t,

so dass die Lösung von

C(t+ ∆t)v(n) = λ(n)(t,∆t)C(t)v(n) (4.51)

bestimmt werden muss. Zusätzlich wird das Eigenwertproblem für die Linkseigenvektoren

u(n) gelöst,

u(n)C(t+ ∆t) = λ(n)(t,∆t)u(n)C(t). (4.52)

Bei symmetrischen Korrelationsmatrizen fallen diese Links- und Rechtseigenvektoren

zusammen. Der projizierte Korrelator wird dann analog zur vorherigen Methode zur

Berechnung der effektiven Masse

m
(n)
eff (t,∆t) = ln

u(n)(t,∆t)C(t)v(n)(t,∆t)

u(n)(t,∆t)C(t+ 1)v(n)(t,∆t)
(4.53)

verwendet. Ein Exponentialfit kann auch hier direkt an die projizierte Funktion erfolgen.

Nach Mahbub et al. [50] sind die mittels Projektionsmethode extrahierten Massen, im

Gegensatz zu den Eigenwerten der t-Eigenvektor-Methode, nahezu unabhängig von den

verwendeten Parametern t und ∆t in der Variationsmethode.

4.5.1. Numerische Lösung der Eigenwertprobleme

Die Lösung der verallgemeinerten Eigenwertprobleme für die Korrelationsmatrizen er-

folgt numerisch. Dazu wird zunächst das verallgemeinerte Eigenwertproblem in ein re-

guläres Eigenwertproblem umgeschrieben. Eine direkte Inversion der Matrix auf der rech-
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ten Seite der Gleichung ist jedoch nicht notwendigerweise numerisch stabil. Stattdessen

wird die numerisch stabile Cholesky-Zerlegung verwendet. Eine symmetrische, positiv

definite Matrix kann in das Produkt einer unteren Dreiecksmatrix L und ihrer Trans-

ponierten LT zerlegt werden, welche numerisch effizient zu invertieren sind [51]. Damit

lässt sich das verallgemeinerte Eigenwertproblem (4.41) wie folgt umschreiben,

C(t)v(n) = λ(n)(t,t0)C(t0)v(n)

⇔ C(t)v(n) = λ(n)(t,t0)LLTv(n)

⇔
(
L−1C(t)

(
LT
)−1
)
LTv(n) = λ(n)(t,t0)LTv(n) (4.54)

um ein gewöhnliches Eigenwertproblem für die Matrix
(
L−1C(t)

(
LT
)−1
)

und die Eigen-

vektoren LTv(n) zu erhalten. Die Eigenwerte beider Eigenwertprobleme sind identisch.

Zu Problemen kann es kommen, wenn die zu invertierende Matrix nicht positiv definit ist.

Dies kann der Fall sein, wenn Operatoren in der Korrelationsmatrix im Eigenraum beina-

he parallel sind und C(t0) somit sehr kleine Eigenwerte besitzt. Dadurch, und zusätzlich

durch die Fehler durch statistische Schwankungen, kann es sein, dass die Matrix singu-

lar oder schlecht konditioniert ist. Im zweiten Falle ist die Konditionszahl, welche das

Verhältnis zwischen größtem und kleinstem Eigenwert darstellt, so groß, dass ihr Rezi-

prokes die Maschinengenauigkeit erreicht und überschreitet. Für den Datentyp double

ist dies bei einer Konditionszahl der Größenordnung 1012 der Fall [51].

4.6. Fehleranalyse

Daten, die durch Monte-Carlo-Simulationen gewonnen wurden, sind fehlerbehaftet. Da-

bei ist zwischen statistischen Fehlern und systematischen Fehlern zu unterscheiden. Sys-

tematische Fehler haben dabei mehrere Quellen. Zunächst kommen sie durch die Methode

der Gitterdiskretisierung zustande und äußern sich durch Volumen-Effekte, welche durch

die Simulation auf einem Gitter mit größerem Volumen verringert werden können, oder

durch Diskretisierungsfehler, welche durch eine Verbesserung der auf dem Gitter ver-

wendeten Größen, wie in Kapitel 3.9 gezeigt, verkleinert werden können. Des Weiteren

kann es bei der Auswertung der Daten zu systematischen Fehlern kommen, die bei der

Massenbestimmung beim Fit an den zeitlichen Verlauf des Korrelators auftreten. Hier

spielt die Wahl des Fitintervalles eine entscheidende Rolle, da die Einflüsse von ange-

regten Zuständen für kleine Zeiten und vom Rauschen für große Zeiten nur schwierig

eingeschätzt werden können. Im vorliegenden Fall sind die Bedingungen der Messungen

so gewählt, dass die systematischen Fehler kleiner sind als die statistischen Fehler.

Bei der Betrachtung des statistischen Fehlers einer Observablen muss zwischen
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4. Numerische Methoden

primären und sekundären Observablen unterschieden werden. Erstere hängen direkt von

den Feldvariablen ab, während sekundäre Observablen Funktionen von gemittelten Fel-

dern sind. Die Werte primärer Observablen x werden durch die Mittlung der Werte

gewonnen, welche auf den N genutzten Konfigurationen gemessen wurden. Dabei ist x

lediglich ein Schätzer für den wahren Wert der Größe x und muss daher immer mit

seinem statistischen Fehler angegeben werden. Für unkorrelierte Daten gilt

x =
1

N

N∑
i=1

xi, σ̂2
x =

1

N − 1

N∑
i=1

(xi − x)2 (4.55)

mit den auf den einzelnen Konfigurationen gemessenen Werten xi, dem Mittelwert x

und der Varianz σ̂2
x. Es kann gezeigt werden [11], dass für N unkorrelierte Messungen

der Messwert mit seinem Fehler als

x± σ mit σ =
σ̂x√
N

(4.56)

angegeben werden muss. Der statistische Fehler sinkt also mit 1/
√
N bei steigender

Anzahl der Messungen N .

4.6.1. Autokorrelation

Obige Angaben für den statistischen Fehler einer Messgröße gelten nur für unkorrelierte

Daten. Diese liegen bei Monte-Carlo-Simulationen nur selten vor. Aufgrund der Erzeu-

gung der Konfigurationen in einer Markow-Kette, bei der neue Konfigurationen durch

eine Änderung der vorhergehenden Konfigurationen erzeugt werden, sind viele Observa-

blen korreliert. Wenn der Fehler für korrelierte Daten nach der obigen Methode bestimmt

wird, so wird er unterschätzt. Im Folgenden wird davon ausgegangen, dass die erzeugten

Konfigurationen der Markow-Kette bereits im Gleichgewicht sind.

Die Autokorrelationsfunktion einer primären Observable x ist durch

Cx(τ) = Cx(xi,xi+τ ) = 〈xixi+τ 〉 − 〈xi〉 〈xi+τ 〉 (4.57)

definiert. Dabei ist τ nicht die euklidische, sondern die Monte-Carlo-Zeit, also der Ab-

stand in der Markow-Kette zwischen den Konfigurationen U (i) und U (i+τ). Die normierte

Autokorrelationszeit Γx fällt für große τ exponentiell ab. Es gilt

Γx(τ) ≡ Cx(τ)

Cx(0)
∝ exp

(
− τ

τx,exp

)
(4.58)

mit der exponentiellen Autokorrelationszeit τx,exp für die Messgröße x. Die exponentielle

42



4.6. Fehleranalyse

Autokorrelationszeit

τexp = sup
x
τx,exp (4.59)

ist ein Maß für die Korrelation aufeinanderfolgender Messungen, jedoch in der Praxis

schwer zu bestimmen. Einen besseren Anhaltspunkt für die Quantifizierung der Autokor-

relation bietet die integrierte Autokorrelationszeit τx,int. Diese kann mit der normierten

Autokorrelationszeit über

τx,int =
1

2
+

N∑
τ=1

Γx(τ) (4.60)

berechnet werden. Mit Hilfe der integrierten Autokorrelationszeit ist es möglich, die

Anzahl der effektiv unabhängigen Messungen über

Nunabh. =
N

2τx,int

(4.61)

zu berechnen. Bei der Berechnung des Mittelwertes können dann zwischen zwei

berücksichtigten Messwerten 2τx,int Konfigurationen übersprungen werden, um ein Re-

sultat aus unkorrelierten Messungen zu erhalten. Alternativ kann der Fehler des Mittel-

wertes, der, wie oben beschrieben, bei korrelierten Daten als zu gering eingeschätzt wird,

durch

x± σ mit σ =

√
2τx,intσ̂2

x

N
(4.62)

vergrößert und dadurch korrigiert werden, wenn alle Messungen für die Mittelwertbil-

dung berücksichtigt werden.

Bei der Berechnung der integrierten Autokorrelationszeit für reale Messungen muss die

Summierung über die normierten Autokorrelationszeiten bei einem Wert τ = W abge-

brochen werden, da sonst die Beiträge des Rauschens aufsummiert werden und den Wert

für die integrierte Autokorrelationszeit erhöhen, obwohl die Beiträge der Autokorrelation

wegen des exponentiellen Abfalls bereits vernachlässigbar sind. Die Berechnung erfolgt

dann mit

τx,int(W ) =
1

2
+

W<N∑
τ=1

Γx(τ). (4.63)

Zur Bestimmung des Abbruchkriteriums gibt es verschiedene Methoden. Die einfachste

ist es, die Summe abzubrechen, wenn der Wert von Γx(t) erstmals negativ wird. Dabei

43



4. Numerische Methoden

wird angenommen, dass an diesem Punkt die statistischen Schwankungen überhand neh-

men. Eine weitere Methode wurde von Madras und Sokal [52] eingeführt. Hier wird W

als kleinste ganze Zahl gewählt, für die

W ≥ c τint(W ) (4.64)

gilt. Dabei ist c ein Parameter, der von der Stärke des Abfalls der Autokorrelation

abhängt. Bei einem exponentiellen Abfall kann c = 4 gewählt werden, für einen lang-

sameren Abfall kann ein Wertebereich zwischen 6 und 10 gewählt werden [23, 52]. Die

Varianz der integrierten Autokorrelationszeit kann in diesem Fall mit

σ2(τint) ≈
2(2W + 1)

N
τ 2

int (4.65)

abgeschätzt werden.

Eine andere Methode wurde von Wolff [53] vorgeschlagen. Dabei wird angenommen, dass

der Zusammenhang τexp ∝ Sτint gilt, wobei S für die meisten Anwendungen im Intervall

[1; 2] liegt. Zur Berechnung des optimalen Abbruchwertes W wird die Funktion

g(W ) = exp

[
− W

τ ′(W )

]
− τ ′(W )√

WN
mit τ ′(W ) = S ln−1

(
2τint(W ) + 1

2τint(W )− 1

)
(4.66)

für alle W = 1,2,3, . . . berechnet. Der Wert W , für den g(W ) sein Vorzeichen wechselt

und negativ wird, wird als Abbruchwert gewählt. Die Varianz von τint bei dieser Methode

kann mit

σ2(τint) ≈
4

N

(
W +

1

2
− τint

)
τ 2

int (4.67)

abgeschätzt werden. Hier sollte geprüft werden, ob τint im Bereich des gewählten W ein

Plateau zeigt, anderenfalls muss S verändert werden [53].

4.6.2. Binning

Eine weitere Möglichkeit, den Fehler trotz korrelierter Daten richtig abzuschätzen, ist

das sogenannte Binning. Dabei werden die N Konfigurationen in Blöcke aus B aufeinan-

derfolgenden Konfigurationen, die sogenannten Bins, aufgeteilt. Die Messungen auf den

Konfigurationen werden dann innerhalb der einzelnen Bins gemittelt. Die so entstehen-

den

NB =
N

B

44



4.6. Fehleranalyse

vielen Mittelwerte werden dann als Resultate einzelner Messungen betrachtet und für die

Berechnung des Mittelwerts und der Varianz gemäß (4.55) verwendet. Wenn die Bingröße

B groß genug gewählt wird, sind die Bins unkorreliert und die Fehlerabschätzung ist

richtig. Für von B = 1 aus steigende Bingröße steigt die Varianz an, bis sie, von der

Größe an, für die die Bins unkorreliert sind, konstant bleibt. Die Bingröße ist dabei

durch die Anzahl der Konfigurationen beschränkt, da bei einer zu großen Bingröße zu

wenig Daten für die Berechnung des Mittelwertes verwendet werden und der statistische

Fehler stark ansteigt [12].

Zusätzlich zu den oben genannten Methoden kann auch das Binning-Verfahren für eine

Abschätzung der integrierten Autokorrelationszeit genutzt werden. Wenn das Plateau der

Varianz erreicht ist und mit σ̂2
x,B die Varianz der Binmittelwerte bezeichnet wird, also

σ̂2
B =

1

NB − 1

NB∑
i=1

(xB,i − x)2 (4.68)

gilt, so gilt mit der naiven Varianz σ̂2
x nach (4.55) die Beziehung [54]

2τint = B
σ̂2
B

σ̂2
x

. (4.69)

Diese Abschätzung der integrierten Autokorrelationszeit ist nicht so genau wie die Be-

stimmung über die Autokorrelationsfunktion, ist jedoch leicht implementier- und an-

wendbar. Der Fehler der Varianz der Binmittelwerte kann nach [55] mit

∆σ̂2
B =

√
2

NB − 1
σ̂2
B (4.70)

abgeschätzt werden. Der Fehler des Fehlers bei dieser Methode wird durch zwei Effekte

beeinflusst. Zum einen durch einen systematischen Fehler, der von der Autokorrelations-

zeit τ abhängt und mit τ/B abfällt, und zum anderen durch einen statistischen Fehler

durch die begrenzte Anzahl von Bins, der mit
√

2B/N ansteigt. Wenn diese Fehler aus-

balanciert werden, ergibt sich eine optimale Bingröße, welche durch

Bopt = τ(2N/τ)1/3 (4.71)

berechnet werden kann, wenn eine Abschätzung für τ besteht [53].

4.6.3. Jackknife-Verfahren

Obige Methoden zur Abschätzung der Autokorrelationszeit sind für primäre Observablen

anwendbar. Bei sekundären Observablen y ist dies nicht möglich, da der beste Schätzer
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4. Numerische Methoden

für eine sekundäre Observable y = y(x) und nicht y(x) ist [12]. Somit stehen nicht N

viele sekundäre Observablen für N Konfigurationen zur Verfügung und der Fehler ist

nicht über die Varianz zu bestimmen. Mit Hilfe des Jackknife-Verfahrens ist es möglich,

den statistischen Fehler der Größe y abzuschätzen. Dafür werden bei N Messungen N

Mittelwerte gebildet, in denen jeweils der n-te Wert ausgelassen wird:

xJn =
1

N − 1

∑
i 6=n

xi. (4.72)

Die entsprechenden Jackknife-Schätzer für die sekundäre Observable werden dann auf

Grundlage dieser Mittelwerte, in denen xn ausgelassen wurde, bestimmt,

yJn = y(xJn). (4.73)

Der entsprechende Mittelwert der sekundären Größe ist dann

yJ =
1

N

N∑
n=1

yJn (4.74)

und die Varianz dieser Größe kann mit

(
σJ(y)

)2
=
N − 1

N

N∑
n=1

(yJn − yJ)2 (4.75)

berechnet werden. Die sekundäre Größe mit ihrem Fehler kann dann mit

yJ ± σJ(y) (4.76)

angegeben werden. Das Jackknife-Verfahren liefert nur für unkorrelierte Daten eine zu-

verlässige Fehlerabschätzung, weshalb es bei korrelierten Daten mit anderen Methoden,

wie beispielsweise mit Binning kombiniert werden muss.

Jackknife-Binning ist eine stabile Methode zur Abschätzung des statistischen Fehlers,

hängt jedoch von der Wahl der richtigen Bingröße ab. Ein neueres Verfahren zur Bestim-

mung des statistischen Fehlers sekundärer Observablen auf der Grundlage korrelierter

primärer Observablen ist die Γ-Methode von Ulli Wolff [53]. Hier wird die Abweichung

zwischen Schätzer y und wahrer Größe y in erster Ordnung als linearer Zusammenhang

betrachtet. Die Anwendung dieser auch Linearisierung genannten Methode ermöglicht

neben der Abschätzung des Fehlers auch die Angabe einer Autokorrelationszeit für die

betrachteten sekundären Observablen. Die genaue Anwendung auf mit der Variations-

methode bestimmte Massen ist in [23] hergeleitet. Bei kleinen Eigenwerten der Korrelati-

onsmatrix kann es bei der Anwendung der Γ-Methode zu numerischen Instabilitäten bei
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4.6. Fehleranalyse

der Cholesky-Zerlegung kommen, weshalb hier für die Fehlerabschätzung das Jackknife-

Binning gewählt wird. Sandbrink [24] hat für die Massenbestimmung von Gluebällen

beobachtet, dass beide Methoden vergleichbare Ergebnisse liefern.
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5. Massenbestimmung des

Gluino-Glueballes

Die Variationsmethode wurde in der DESY-Münster-Kollaboration bereits verwendet,

um das Signal bei der Massenbestimmung für Gluebälle zu verbessern, indem die Konta-

mination durch angeregte Zustände verringert und somit ein Fit bereits bei kleinen Zei-

ten ermöglicht wurde [24, 26]. Die Massenbestimmung des Grundzustandes des Gluino-

Glueballes hingegen erfolgte durch den direkten Fit an die zeitliche Entwicklung der

Korrelationsfunktion. Dennoch wurden auch hier APE- und Jacobi-Smearing verwen-

det, um den Einfluss angeregter Zustände für kleine Zeiten zu verringern [30, 37].

Ziel dieser Arbeit ist die Bestimmung der Masse des ersten angeregten Zustandes des

Gluino-Glueballes in der N = 1 supersymmetrischen Yang-Mills-Theorie mit der Eich-

gruppe SU(2). Wie in Abschnitt 4.5 dargelegt, ist die Variationsmethode dazu geeignet,

dieses Ziel zu erreichen. Zusätzlich ist, zumindest bei gleicher Statistik, eine Verbesse-

rung der bisherigen Ergebnisse für die Bestimmung des Grundzustandes zu erwarten.

Zunächst werden dazu verschiedene verschmierte Operatoren und die aus ihnen zusam-

mengesetzten Korrelationsmatrizen untersucht, um eine optimale Wahl von Operatoren

zu finden. Durch diese Vorauswahl kann die notwendige Rechenzeit bei der Messung

der Korrelatoren verringert werden. Anschließend erfolgt die Analyse für verschiedene

Parameter und ausreichende Statistik. Zunächst wird das verallgemeinerte Eigenwertpro-

blem nach der t-Eigenvektor-Methode mit t0 = 0 gelöst, ein Vergleich mit den anderen

Methoden erfolgt für die finalen Parameter der Variationsmethode.

5.1. Einfluss und Optimierung des verwendeten

Smearings

Zunächst wird der Einfluss von APE-Smearing auf die Massenbestimmung mittels ei-

nes einzelnen Korrelators betrachtet. Dafür wird ein Gitter der Größe 323 × 64 mit den

Parametern β = 1,9 und κ = 0,14415 und einem Level Stout-Smearing gemäß (3.45)

gewählt. Bei εAPE = 0.4 gemäß (4.25) werden die effektiven Massen nach (4.23) für ver-

schiedene Smearinglevel NAPE aufgetragen. In Abbildung 5.1 sind die Massen für den

unverschmierten Korrelator und die APE-Levels 2,4,6 und 12 gezeigt. Für alle Korrelato-
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Abbildung 5.1.: Effektive Massen von Korrelatoren mit steigendem NAPE und εAPE = 0.4
für ein 323 × 64-Gitter mit β = 1,9 und κ = 0,14415. Zur besseren
Veranschaulichung der Unterschiede sind lediglich kleine Zeiten gezeigt.

ren zeigen die effektiven Massen das erwartete Verhalten: Zunächst fallen die Werte für

steigende t ab, bis sie, wenn die Spektralzerlegung (4.20) nur noch vom Grundzustand

beeinflusst ist, ein Plateau erreichen. Die verschmierten Korrelatoren erreichen dieses

Plateau mit steigendem Smearing schneller. Die Einflüsse angeregter Zustände werden

für kleine Zeiten also verringert. Für NAPE = 12 ist meff(t = 1) < meff(t = 2). Dies

wäre mit den monoton fallenden Exponentialfunktionen der Spektralzerlegung und ih-

ren positiven Koeffizienten nicht zu erklären. Diese Eigenschaften der Spektralzerlegung

beruhen auf der Forderung nach Reflexionspositivität nach Osterwalder und Schrader

[56, 57] für die euklidischen Korrelationsfunktionen. Die Reflexionspositivität kann im

Falle von Stout-Smearing für ∆t = 1 verletzt sein, womit der negative Ausschlag in der

effektiven Masse zu erklären wäre. Der Effekt wird auch später bei der Analyse mittels

Variationsmethode sichtbar. Nichtsdestotrotz hat der Ausschlag bei t = 1 keinen Ein-

fluss auf die für die Massenbestimmung relevanten zeitlichen Distanzen [30]. Aufgrund

dieses Effekts des Smearings werden Fits zur Massenbestimmung stets erst ab tmin = 2

gestartet.

Eine ähnliche Analyse ist für das Jacobi-Smearing möglich. Die Ergebnisse für ein

Gitter mit κ = 0,14335 sind in Abbildung 5.2 gezeigt. Hier wurden die APE-Level null,

fünf und 15 verwendet und mit den entsprechenden Korrelatoren mit einem Jacobi-

Smearing mit den Parametern NJ = 4 und κJ = 0.2 nach (4.31) verglichen. Der Effekt
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Abbildung 5.2.: Effektive Massen von Korrelatoren mit steigendem NAPE mit εAPE = 0.4
und NJ = 4 mit κJ = 0.2 für ein 323 × 64-Gitter mit β = 1,9 und
κ = 0,14435. Zur besseren Veranschaulichung der Unterschiede sind le-
diglich kleine Zeiten gezeigt.

durch das Jacobi-Smearing entspricht dem des APE-Smearing. Auch hier werden die

Einflüsse der angeregten Zustände für kleine Zeiten verringert.

In den Abbildungen 5.1 und 5.2 ist zu erkennen, dass die effektiven Massen aller

gezeigten Korrelatoren gegen ein gemeinsames Plateau gehen, welches die Masse des

Grundzustandes widerspiegelt. Der nächste Schritt ist die Untersuchung der effektiven

Massen, welche aus den Eigenwerten des verallgemeinerten Eigenwertproblems für die

Korrelationsmatrix gewonnen werden. Der Verlauf der effektiven Masse für Korrelati-

onsmatrizen aus wenig verschmierten Operatoren ist in Abbildung 5.3 dargestellt.

Da die Einflüsse von Jacobi- und APE-Smearing auf die Massenbestimmung sich nicht

unterscheiden, wird die Analyse auf Korrelatoren mit APE-Smearing beschränkt. Dies

ermöglicht eine ausführliche Untersuchung des Einflusses der Anzahl und Auswahl ver-

schiedener APE-verschmierter Korrelatoren zum Aufbau der Korrelationsmatrix. Dazu

wird zunächst für β = 1,9 und κ = 0,14415 die Messung für eine 21 × 21 Korrelati-

onsmatrix für eine begrenzte Statistik von 418 Konfigurationen vorgenommen. Die hier

präsentierten Ergebnisse beruhen auf Messungen auf 1671 Konfigurationen. Eine Dis-

kussion der Unterschiede zwischen den Analysen mit kleiner und verbesserter Statistik

erfolgt im Anschluss. Die Korrelationsmatrix enthält neben dem unverschmierten Korre-

lator APE-verschmierte Korrelatoren mit dem Abstand ∆NAPE = 5. Die volle gemessene
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Abbildung 5.3.: Effektive Massen m
(1)
eff (t) aus den Eigenwerten der Korrelationsmatrizen

aus den mit NAPE mit εAPE = 0.4 verschmierten Korrelatoren für ein
323× 64-Gitter mit β = 1,9 und κ = 0,14415. Zur besseren Veranschau-
lichung der Unterschiede sind lediglich kleine Zeiten gezeigt.

Korrelationsmatrix enthält also Korrelatoren der APE-Level

NAPE ∈ {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}.

Da die die Anzahl der Operatoren L/2 = 16 übersteigt, wird davon ausgegangen,

dass eine Analyse der gesamten Matrix mittels Variationsmethode nicht möglich ist,

da die Operatoren in der Matrix linear abhängig sind [46]. Daher erfolgt die Auswertung

zunächst für Submatrizen steigender Größe, in denen sukzessive der Korrelator mit dem

nächstgrößeren Smearinglevel hinzugefügt wird. Da die Massenbestimmung des ersten

angeregten Zustandes optimiert werden soll, werden im Folgenden lediglich die effektiven

Massen m2
eff aus den Eigenwerten nach (4.46) betrachtet. Auf der linken Seite von Abb.

5.4 ist in blau die effektive Masse zum Zeitpunkt t = 3 für die verschiedenen Größen der

sukzessive vergrößerten Matrix aufgetragen. Die Wahl des Zeitpunktes t = 3 liegt darin

begründet, dass für größere Zeiten die Werte der effektiven Masse bereits anfangen stark

zu schwanken und größer werdende Fehler besitzen, während sich bei t = 2 noch nicht

unbedingt ein Plateau eingestellt hat. Unter der Annahme, dass die effektive Masse zu

diesem Zeitpunkt eine erste Näherung für die aus einem Fit gewonnene Masse ist, wird

der Verlauf der effektiven Massen untersucht.

In Abb. 5.4 ist zu sehen, dass der Wert der effektiven Masse für eine steigende Größe
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Abbildung 5.4.: Effektive Massen m
(2)
eff (t = 3) für verschiedene Größen der Korrelati-

onsmatrix aus verschmierten Operatoren mit links: ∆NAPE = 5 rechts:
∆NAPE = 10 und εAPE = 0.4 für ein 323 × 64-Gitter mit β = 1,9 und
κ = 0,14415.

der Korrelationsmatrix und damit auch der verwendeten Smearinglevel abnimmt. Es ist

davon auszugehen, dass mit steigender Matrixgröße das Plateau eher erreicht wird und

somit ein Fit zu früheren Zeiten möglich ist. Gleichzeitig nimmt der Fehler bis zu einer

Größe von 14 × 14 ab und steigt danach leicht wieder an. Bei N = 16 ist der Fehler

so groß, dass nicht mehr von einer erfolgreichen Massenbestimmung gesprochen werden

kann. Für alle größeren Matrizen ist eine Lösung des Eigenwertproblems nicht möglich,

da die zu invertierende Matrix schlecht konditioniert ist. Die Aussage von Lüscher und

Wolff [46], dass die Operatoren ab N = L/2 linear abhängig sind, scheint sich also zu

bestätigen. Gleichzeitig ist auch eine Analyse von mindestens 3 Operatoren notwendig,

um ein Ergebnis für die Eigenwerte des ersten angeregten Zustandes zu erhalten.

Um die Effekte einer vergrößerten Matrix von denen großer Smearinglevel zu trennen,

wird nun eine Auswertung für eine Matrix mit großen NAPE vorgenommen. Um gleich-

zeitig das Vorhandensein von möglichst orthogonalen Operatoren zu gewährleisten, wird

hier der Grundzustand mit berücksichtigt. Ausgehend von einer Matrix mit den Smea-

ringleveln NAPE ∈ {0, 95, 100} wird nun eine Vergrößerung erreicht, indem Operatoren

mit absteigendem NAPE hinzugefügt werden. Der Verlauf der effektiven Masse für dieses
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Verfahren ist in rot ebenfalls auf der linken Seite von Abbildung 5.4 zu sehen. Bereits für

das minimale Set von 3 Operatoren ist die Masse im Vergleich zum vorherigen Fall deut-

lich verringert und hat einen kleinen Fehler. Nichtsdestotrotz sinkt auch hier die Masse

bei einer Vergrößerung der Matrix weiter ab. Der Fall von linear abhängigen Operatoren

scheint hier bereits bei acht Operatoren erreicht. Dies lässt darauf schließen, dass sich die

Operatoren bei großen NAPE weniger stark unterscheiden als dies bei kleinen NAPE der

Fall ist. Trotzdem ist die effektive Masse hier kleiner als im Falle kleinerer Smearinglevel,

während der Fehler vergleichbar ist.

Um trotz der Begrenzung der Größe der Matrix die volle Spanne der gemessenen

Operatoren untersuchen zu können, wird obige Analyse für sukzessive vergrößerte Ma-

trizen erneut vorgenommen, wobei für den Abstand der Smearinglevel nun ∆NAPE = 10

gewählt wird. Eine Ausnahme bildet hier das erste verschmierte Level, für das NAPE = 5

gewählt wird. Die volle Größe der Matrix, die bei beiden Methoden erreicht wird, ist

also 11× 11, sie enthält die Level

NAPE ∈ {0, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95}. (5.1)

Das Ergebnis der erneuten Auswertung ist auf der rechten Seite von Abbildung 5.4 dar-

gestellt. Qualitativ bestätigt sich das Verhalten aus der vorherigen Analyse. Bei steigen-

dem NAPE wird der niedrigste Wert für die effektive Masse hier erst bei der vollständigen

Größe der Matrix erreicht. Die Masse erreicht bei kleinerem Fehler einen geringeren Wert

als die beste Abschätzung, die mittels der vorher betrachteten 15× 15-Matrix gewonnen

werden konnte. Dies lässt darauf schließen, dass die Verwendung der Operatoren mit

NAPE > 70 die Qualität der Massenbestimmung verbessert. Die Tatsache, dass sich im

Falle des Hinzufügens von Operatoren mit NAPE < 45 keine signifikante Veränderung

der Massen ergibt, zeigt, dass diese Operatoren für die Extraktion der zweitgrößten Ei-

genwerte λ(2)(t,t0 = 0) nicht mehr entscheidend sind.

Eine Untersuchung des Beitrags der einzelnen Operatoren lässt sich auch an-

hand der Eigenvektoren des Eigenwertproblems vornehmen. Dafür wird hier ex-

emplarisch der normierte Eigenvektor für die Matrix mit Operatoren der Level

NAPE ∈ {0, 45, 55, 65, 75, 85, 95}

v2 = (1,8 · 10−7; −0,015; 0,125; −0,420; 0,688; −0,552; 0,174)T (5.2)

mit dem der vollständigen Matrix nach (5.1)

v2 = (4,0 · 10−8; 1,7 · 10−6; −9,0 · 10−5; 0,002; −0,016;

0,088; −0,284; 0,557; −0,648; 0,410; −0,108)T (5.3)
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verglichen, wobei wie oben t = 3 gewählt ist. Im ersten Vektor ist zu sehen, dass der

unverschmierte Operator, dessen Beitrag durch den ersten Eintrag gekennzeichnet ist,

nicht signifikant zum Eigenwert λ(2) beiträgt. Stattdessen haben die Operatoren mit den

Smearingleveln NAPE = 65,75 und 85 den größten Beitrag. Dies bestätigt die Aussage,

die aus der Untersuchung der effektiven Masse gewonnen werden konnte. Wie dies für

den Grundzustand erwartet wurde, gilt auch für den ersten angeregten Zustand, dass die

lokalen Operatoren mit wenig Smearing weniger Überlapp mit der physikalischen Wel-

lenfunktion haben. Zum Vergleich ist der Eigenvektor für λ(1)(t = 3,t0 = 0) dargestellt:

v1 = (−4,3 · 10−7; 6,2 · 10−6; 2,3 · 10−5; 5,1 · 10−5; −1,2 · 10−4;

−3,4 · 10−4; −1,2 · 10−4; −0,005; −0,021; −0,122; −0,992)T . (5.4)

Hier hat der Operator mit dem größten Smearinglevel eindeutig den größten Effekt auf

den Eigenwert, alle anderen Operatoren tragen nur marginal bei. Für λ(2) lässt sich der

Schluss ziehen, dass ein noch größeres Smearing nicht zur Verbesserung der Massenbe-

stimmung führt, das Optimum scheint zwischen NAPE = 65 und NAPE = 85 erreicht zu

werden.

Die ursprüngliche Analyse wurde anhand von Messergebnissen von 418 Konfiguratio-

nen vorgenommen. Obwohl die grundlegenden Ergebnisse dieselben sind, ergeben sich

Unterschiede zu der hier vorgenommenen Analyse der Daten von 1671 Konfigurationen,

die über die reine Verbesserung der Fehler hinausgehen. Die Analyse der Matrix, wel-

che durch das Hinzufügen von Operatoren kleiner werdender Smearinglevel im Abstand

∆NAPE = 5 vergrößert wird, führt bei kleinerer Statistik nicht bereits bei acht, son-

dern erst bei 14 Operatoren zu stark vergrößerten Fehlerbalken. Erst bei 17 Operatoren

ist eine Inversion nicht mehr möglich. Durch die kleinere Statistik scheint die lineare

Abhängigkeit der Operatoren, welche in obiger Analyse eine Vergrößerung der Matrix

verhinderte, durch die größeren Fehler der Messungen noch nicht zu Tage zu treten.

Dies lässt darauf schließen, dass bei einer noch besseren Statistik auch für kleinere Ma-

trixgrößen Probleme auftreten können. Daher erscheint die Wahl von ∆NAPE = 10 für

weitere Messungen angebracht. Für die mit ∆NAPE = 10 konstruierte Matrix zeigen sich

keine solche Auswirkungen. Nichtsdestotrotz sollte auch hier nicht die kleinstmögliche

Matrix, welche ein gutes Ergebnis für die Massenbestimmung liefert, gewählt werden.

Für den Fall, dass sich herausstellt, dass auch hier bei steigender Statistik Probleme

bei der Lösung des Eigenwertproblems auftreten, erscheint es ratsam, auch Operatoren

kleinerer Smearinglevel mit in die Matrix einzubeziehen. Für alle weiteren Messungen

bei β = 1,9 werden die in (5.1) gewählten Operatoren verwendet.
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5.2. Massenfits

Wie in Kapitel 4.3 erläutert, stellt die effektive Masse nur einen Anhaltspunkt für die

Masse eines Zustandes dar. Zu einem Zeitpunkt t beinhaltet sie lediglich die Informa-

tionen der Korrelationsfunktion beziehungsweise des Eigenwertes des verallgemeinerten

Eigenwertproblems zu den beiden Zeitpunkten t und t+ 1. Prinzipiell ist es möglich, die

Informationen weiterer Zeiten zu integrieren, indem ein mit den Fehlern der effektiven

Massen gewichteter Mittelwert über die effektiven Massen in einem Plateau vorgenom-

men wird. Ohne den Umweg über die effektiven Massen ist allerdings auch ein direkter

Exponentialfit möglich.

Im Folgenden wird lediglich die Massenbestimmung anhand der Eigenwerte der Kor-

relationsmatrix betrachtet. Diese Eigenwerte λ(n) fallen, wie in (4.45) gezeigt, abhängig

von der Masse exponentiell mit der Zeit ab. Da das Eigenwertproblem lediglich für eine

endliche Korrelationsmatrix gelöst werden kann, sind weitere, exponentiell abfallende

Störungen zu erwarten. Die Herausforderung beim Fit liegt nun darin, ein möglichst

großes Fitintervall zu finden, in dem die Einflüsse durch andere Zustände und die statis-

tischen Fehler klein genug sind, so dass ein zuverlässiger Wert für die Masse extrahiert

werden kann. Der Fit erfolgt nach der Methode der kleinsten Fehlerquadrate (siehe zum

Beispiel [58]) mit Hilfe der GNU Scientific Library [59]. Die Qualität kann dabei mittels

des Parameters χ2 beurteilt werden. Dieser stellt die Summe der gewichteten Fehlerqua-

drate dar, wobei in der Analyse stets die Berücksichtigung der Korrelation zwischen den

Messwerten der Eigenwerte erfolgt. Das reduzierte χ2 ist für K Freiheitsgrade beim Fit

als

χ2
red =

χ2

K
(5.5)

definiert. Für χ2
red � 1 wird ein Fit als schlecht angesehen, die Abweichungen zwischen

Daten und Fitfunktion ist zu groß. Für χ2
red � 1 ist der Fit zu gut. In diesem Fall

verringern die Fehler der Daten das χ2 zu stark. Erstrebenswert ist also ein Wert von

χ2
red ≈ 1 [60]. Der Fehler der Fitparameter eines Fits kann mittels Kovarianzmatrix

bestimmt werden. Um die statistischen Fehler angemessen zu berücksichtigen, erfolgt in

dieser Arbeit die Bestimmung der Fehler mittels Jackknife-Verfahren, diese Fehler sind

stets größer als die aus dem Fit extrahierten.

5.2.1. Automatisierte Massenbestimmung

Das χ2
red-Kriterium ist meist nicht ausreichend, um aus einer Vielzahl an unterschied-

lichen Fitintervallen und -ergebnissen das beste zu bestimmen. Erstrebenswert ist eine

automatisierte Auswahl des besten Fitintervalls, um eine Beeinflussung des Ergebnis-
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ses und ein daraus folgendes Bias bei der Auswertung zu verhindern. Die automatische

Auswahl eines Fitintervalls wurde in dieser Arbeit durch die Anwendung eines von Cais

et al. [61] für die Projektionsmethode eingeführten fitting robot vorgenommen. Der Al-

gorithmus basiert auf drei Axiomen:

1. Ein akzeptabler Fit muss ein χ2
red besitzen, das kleiner als ein definierter Maximal-

wert ist.

2. Das Fitintervall wird so groß wie möglich gewählt.

3. Kleine Startzeiten des Intervalls werden bevorzugt.

Durch das erste Axiom wird das oben beschriebene Kriterium für einen guten Fit im-

plementiert. In der Praxis wird hier χ2
red < 1,1 gewählt. Die Tatsache, dass keine untere

Schranke angegeben werden muss, hängt direkt mit dem zweiten Axiom zusammen.

Das Signal-Rausch-Verhältnis der Eigenwerte des verallgemeinerten Eigenwertproblems

nimmt mit steigendem zeitlichen Abstand zu, weshalb es sinnvoll erscheint, nur Eigen-

werte bis zu einer bestimmten Grenze in den Fit einzubeziehen. Eigenwerte mit großem

Fehler verringern den Wert für χ2
red < 1,1 künstlich, ohne den Fit zu verbessern. Alle Ei-

genwerte, für die der relative Fehler größer als 50% ist, werden daher nicht berücksichtigt.

Dies führt zu einer oberen Schranke tmax für das Fitintervall. Da das Signal-Rausch-

Verhältnis ab- und der Fehler der Eigenwerte damit zunimmt, beschränken die Eigen-

werte bei kleinen Zeiten den Fit am meisten. Um die volle Genauigkeit der Daten nutzen

zu können, ist es also sinnvoll, diese Eigenwerte in den Fit mit einzubeziehen und somit

nach dem dritten Axiom kleine Startzeiten tmin zu bevorzugen.

Die praktische Umsetzung eines Fits anhand obiger Axiome kann in verschiedenen

Varianten erfolgen. Nachfolgend werden die beiden Verfahren, wie sie in [61] beziehungs-

weise [50] und [62] eingeführt werden, erläutert und in ihrer Anwendung verglichen.

In beiden Fällen wird anhand der Fehler der Eigenwerte zunächst eine obere Grenze

tmax festgelegt. Die untere Grenze tmin wird so klein wie möglich gewählt, dabei werden

durch Kontaktterme oder Stout-Smearing beeinträchtigte Zeitscheiben ausgeschlossen.

Nun erfolgt ein Fit im so festgelegten maximalen Fitintervall. Wenn dieser nicht das

χ2
red-Kriterium erfüllt, muss das Intervall verringert werden. In der Art und Weise, wie

nun das maximale Intervall [tmin; tmax] durch kleinere Fitintervalle abgedeckt wird, un-

terscheiden sich die beiden Methoden. In der ersten Methode wird das Intervall um

eine Zeiteinheit verkleinert. Anschließend erfolgt ein Fit beginnend von tmin. Ist dieser

nicht erfolgreich, wird die Startzeit nach und nach um eins erhöht, bis die obere Grenze

des Intervalls tmax erreicht ist. Ist nun wieder kein akzeptabler Fit gelungen, wird das

Intervall wiederum verkleinert. Bei dieser Methode ist ein großes Fitintervall also wich-

tiger als eine möglichst kleine Startzeit. Bei der anderen Variante wird tmin als Startzeit
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für den Fit festgehalten und die Intervalllänge nach und nach verringert, bis entweder

ein Fit akzeptiert oder eine vorher definierte kleinste Intervalllänge erreicht ist. Wenn

letzteres geschieht, wird die Startzeit vergrößert und es werden erneut Fits mit kleiner

werdender Intervalllänge vorgenommen. Die geforderte Mindestlänge kann vom Problem

abhängen. So kann zum Beispiel für die Massenbestimmung des Grundzustandes eine

größere Mindestlänge als bei angeregten Zuständen gefordert werden. In dieser Methode

wird das dritte Axiom, die Bevorzugung kleiner Startzeiten, als wichtiger angesehen als

die Maximierung der Intervalllänge.

λ
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Abbildung 5.5.: Eigenwerte λ(2)(t,t0 = 0) und Exponentialfits für verschiedene Interval-
le in logarithmischer Skala für ein 323 × 64-Gitter mit β = 1,9 und
κ = 0,14415.

Wenn die beiden Methoden verschiedene Fitintervalle liefern, sollte bei der Massenbe-

stimmung für mehrere Parameter β und κ eine der beiden Methoden für alle Parame-

terkombinationen ausgewählt werden, damit eine Beeinflussung des Ergebnisses durch

die Auswertung ausgeschlossen werden kann. Bei der Massenbestimmung des angeregten

Zustandes des Gluino-Glueballes mit dem Korrelator C1 ergibt sich lediglich für die Kom-

bination β = 1,9 und κ = 0,14415 auf einem 323 × 64-Gitter und 1671 Konfigurationen

eine Differenz zwischen beiden Methoden, weshalb dieser Fall hier veranschaulicht wird.

Die Eigenwerte λ(2)(t) sind in Abbildung 5.5 bis zu tmax = 15 aufgetragen. Wird nun

der fitting robot zur Bestimmung der Masse verwendet, liefert die erste Variante, welche

das Fitintervall maximiert, einen Fit im Intervall [5; 13] mit der Masse am′ = 0.437(28).

Mit der zweiten Variante des robots hingegen wird die Masse durch einen Fit im In-

tervall [2; 5] die Masse am′′ = 0.537(9). Die entsprechenden Exponentialfunktionen mit
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ihren Fehlern, wie sie anhand eines Fits an die Mittelwerte der Eigenwerte und nicht

mit dem Jackknife-Verfahren berechnet werden, sind ebenfalls in Abbildung 5.5 gezeigt.

Die Übereinstimmung mit den Eigenwerten in den jeweiligen Fitbereichen ist klar er-

sichtlich. Um eine konsistente Massenbestimmung für diesen und andere Werte von κ zu

ermöglichen, muss eine Entscheidung getroffen werden, welche der beiden Methoden eine

bessere Abschätzung für die Masse liefert. Für diese Entscheidung kann auch die effek-

tive Masse herangezogen werden. Diese ist, zusammen mit den beiden Massen am′ und

am′′ und ihren Jackknife-Fehlern, in Abbildung 5.6 gezeigt. Der Verlauf der effektiven

Masse zeigt klar, warum die beiden verschiedenen Verfahren unterschiedliche Intervalle

auswählen. Ein erstes Plateau ist bereits ab t = 2 zu erkennen, es erstreckt sich jedoch

nur bis t = 4. Ab t = 5 scheint sich ein weiteres, nach unten verschobenes Intervall zu

formen. Entscheidend für die Wahl einer Methode ist nun, dass das erste Plateau bereits

ab dem ersten zuverlässig verwendbaren Wert t = 2 gebildet wird und nicht erst ein Ab-

fall zu einem Plateau stattfindet. Es gibt also keinen Grund, die Punkte mit dem besten

Signal-Rausch-Verhältnis aus dem Fit auszuschließen, weshalb hier die zweite Variante,

also der Fit im Intervall [2; 5], gewählt wird.
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Abbildung 5.6.: Effektive Massen m
(2)
eff (t) und aus Exponentialfits bestimmte Massen für

ein 323 × 64-Gitter mit β = 1,9 und κ = 0,14415.

5.3. Fehlerabschätzung und Autokorrelation

Neben der Bestimmung eines Wertes für die Masse ist die Abschätzung des mit dem

Wert verknüpften Fehlers von entscheidender Bedeutung. Die statistischen Fehler fstat
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der durch die Fits extrahierten Massen werden mittels des in Abschnitt 4.6.3 vorgestellten

Jackknife-Verfahrens bestimmt. Die systematischen Fehler fsys der Massenbestimmung

mittels Exponentialfits haben ihren Ursprung in der Auswahl des Fitintervalls. Durch

die Anwendung der automatisierten Auswahl wird versucht, diesen Fehler zu minimie-

ren. Dennoch muss davon ausgegangen werden, dass die extrahierten Massen mit einem

systematischen Fehler behaftet sind. Sandbrink [24] hat verschiedene Ansätze für die

Abschätzung des durch die Auswahl eines bestimmten Fitintervalls zustande kommen-

den systematischen Fehlers vorgestellt. Für diese Arbeit wird für den systematischen

Fehler die maximale Differenz zu benachbarten, durch Fits derselben Intervalllänge ex-

trahierten Massen der Form

fsys = max {|mfit(t)−mfit(t+ 1)| , |mfit(t)−mfit(t− 1)|} (5.6)

gewählt. Dabei werden Fits für t < tmin oder einer oberen Intervallgrenze, welche über

tmax hinausgeht, nicht berücksichtigt. Der Gesamtfehler f kann über

f =
√
f 2

stat + f 2
sys (5.7)

berechnet werden. Die einzelnen Fehler werden in der Reihenfolge (fstat)(fsys) angegeben.

Wie in Kapitel 4.6 erläutert, ist die Beachtung einer möglichen Autokorrelation ent-

scheidend für die angemessene Einschätzung eines statistischen Fehlers. Die verwendeten

primären Observablen sind die Einträge der Korrelationsmatrix Cij(t). Eine Analyse die-

ser Einträge mittels der in Abschnitt 4.6.1 aufgeführten Methoden zeigt, dass die einzel-

nen Einträge korreliert sind, dabei nimmt die Korrelation mit steigendem Smearing zu.

Eine Quantifizierung der Autokorrelationszeiten ist aufgrund der kleinen Statistik nicht

zuverlässig möglich, es kann jedoch der Schluss gezogen werden, dass auch für die se-

kundären Observablen Autokorrelation zu erwarten ist. Für die hier untersuchten Werte

von κ stehen jeweils 10 000 beziehungsweise 20 000 Konfigurationen zur Verfügung. Da

die Inversion der Fermionmatrix bei der Messung der Einträge der Korrelationsmatrix

numerisch aufwändig ist, ist es nicht möglich, auf allen vorhandenen Konfigurationen

Messungen vorzunehmen. Um möglichst unkorrelierte Messergebnisse zu erhalten, wer-

den die Messungen daher mit einer Schrittweite s in Monte-Carlo-Zeit vorgenommen,

die so gewählt wird, dass die volle Spannweite der vorhandenen Konfigurationen aus-

genutzt werden kann. Für κ = 0,14435 erfolgen die Messungen mit s = 8. Anhand

von Jackknife-Binning und der Untersuchung der Varianz für steigende Bingröße kann

nach (4.69) eine Abschätzung für die integrierte Autokorrelationszeit getroffen werden.

Anschließend ist die Bestimmung einer optimalen Bingröße nach (4.71) möglich. In Ab-

bildung 5.7 ist die Abschätzung für τint mit dem Fehler nach (4.70) für die Massenfits für

m(1) und m(2) aufgetragen. Trotz der bereits gewählten Schrittweite ist erkennbar, dass
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Tabelle 5.1.: Übersicht über die aus dem Jackknife-Binning abgeschätzten Autokorrela-
tionszeiten und optimalen Bingrößen für κ = 0,14435. Die hier angegebene
integrierte Autokorrelationszeit τint bezieht sich auf die betrachteten Konfi-
gurationen mit der Schrittweite s. Bezüglich aller Konfigurationen wäre τint

in etwa um einen Faktor s = 8 größter.

Observable τint Bopt

C1
m(1) 2.1(6) 22
m(2) 1.1(3) 13

Cγ4
m(1) 2.1(6) 22
m(2) 0,9(2) 12

die Daten korreliert sind und Binning zur richtigen Bestimmung des statistischen Fehlers

verwendet werden muss. Die integrierte Autokorrelationszeit der Grundzustandsmasse

m(1) ist hier in etwa doppelt so groß wie die von m(2). Dies kann daran liegen, dass der

Eigenwert des Grundzustandes, wie im Vergleich der Eigenvektoren gezeigt, vor allem

vom Operator mit dem größten Smearinglevel beeinflusst wird. Dieser Operator hat die

größte räumliche Ausdehnung auf dem Gitter, weshalb es plausibel ist, dass er auch

am stärksten korreliert ist. Die Tendenz der Zunahme der integrierten Autokorrelations-

zeit der Einträge der Korrelationsmatrix bei der Vergrößerung des Smearinglevels kann

mittels Binning qualitativ bestätigt werden.

Für κ = 0,14435 erfolgt zusätzlich der Vergleich mit der Γ-Methode. Hier zeigt

sich, dass für die gewählten Bingrößen der Jackknife-Fehler mit dem der Γ-Methode

übereinstimmt. Des Weiteren ist zu erkennen, dass die Autokorrelationszeit für die Mas-

senfits mit steigender Intervalllänge zunimmt. Durch den Vergleich beider Methoden

kann darauf geschlossen werden, dass die mittels Jackknife-Binning bestimmten statis-

tischen Fehler nicht unterschätzt werden und diese stabilere Methode für alle weiteren

Massenfits verwendet werden kann.

5.4. Resultate für β = 1,9

Für die Bestimmung der Massen im supersymmetrischen Limes ist es zunächst notwen-

dig, für die verwendeten Werte von β eine Extrapolation der für verschiedene κ extrahier-

ten Werte zum Limes der verschwindenden Gluinomasse vorzunehmen. Dafür erfolgen

zunächst Messungen für β = 1,9 mit den in (5.1) gewählten Operatoren. Für diesen Wert

von β liegen viele Konfigurationen vor, gleichzeitig entspricht er der Kopplung, welche

dem Kontinuumslimes am nächsten ist. Um die vorhandenen Konfigurationen mit der

verfügbaren Rechenzeit optimal nutzen zu können und gleichzeitig die Autokorrelation
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Abbildung 5.7.: Integrierte Autokorrelationszeit nach (4.69) für die beiden Massen m(1)

und m(2) auf Grundlage der Korrelatoren C1 und Cγ4 für κ = 0,14435.

zu verringern, erfolgen die Messungen mit einer Schrittgröße s in Monte-Carlo-Zeit. Pro

κ werden Nconfs-viele Messungen vorgenommen.

5.4.1. Korrelator C1

Die Massenbestimmung erfolgt zunächst mit dem in den bisherigen Untersuchungen ver-

wendeten Korrelator C1. Die aus den Eigenwerten extrahierten effektiven Massen und

die gefitteten Massenplateaus sind in den Abbildungen 5.8 bis 5.10 gezeigt. Tabelle 5.2

führt die gefitteten Massen für die verschiedenen Werte von κ auf. Der Fokus dieser

Arbeit liegt auf der Massenbestimmung für die angeregten Zustände. Mit dem Operator

C1 ist lediglich für m(2) eine zuverlässige Massenbestimmung möglich, für alle kleineren

Eigenwerte sind die Fluktuationen und Fehler zu groß. Die ermittelten Massen für die

drei verschiedenen Werte von κ können zur Extrapolation zum Punkt verschwindender

Gluinomassen verwendet werden, diese Extrapolation ist in Abbildung 5.14 gezeigt. Da-

bei wird angenommen, dass das Massenquadrat des adjungierten Pions a-π linear mit der

Gluinomasse abfällt, mg ∝ m2
a−π [33]. Dadurch ist eine Extrapolation in Gittereinheiten

a möglich und die Massen am(n) können gegen die quadrierte Pionmasse (ama−π)2 aufge-

tragen werden [26]. Für den ersten angeregten Zustand ergibt sich am(2)(κc) = 0,439(34).

61



5. Massenbestimmung des Gluino-Glueballes
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Abbildung 5.8.: Effektive und aus Exponentialfits bestimmte Massen für ein 323 × 64-
Gitter mit β = 1,9 und κ = 0,14387.
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Abbildung 5.9.: Effektive und aus Exponentialfits bestimmte Massen für ein 323 × 64-
Gitter mit β = 1,9 und κ = 0,14415.

Zusätzlich zur Bestimmung von m(2) ist durch die Variationsmethode und die

Berücksichtigung verschiedener Operatoren eine Verkleinerung der Fehler der bisheri-

gen Werte für m(1) aus [26] möglich. Dabei werden für alle Werte von κ Intervalllängen,

welche größer als 20 sind, verwendet. Da alle Korrelatoren vor der Analyse antisym-
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5.4. Resultate für β = 1,9
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Abbildung 5.10.: Effektive und aus Exponentialfits bestimmte Massen für ein 323 × 64-
Gitter mit β = 1,9 und κ = 0,14435.

metrisiert wurden, entspricht dies Fits über einen großen Anteil der vollen verfügbaren

euklidische Zeit T/2. Im Vergleich zur relativ kleinen Anzahl an verwendeten Konfi-

gurationen Nconfs sind die Messungen für die aus [26] stammenden Werte auf mehr

als acht mal so vielen Konfigurationen erfolgt, dabei wurden die Massen jedoch nur

durch den direkten Fit an die Korrelationsfunktion ohne Verwendung der Variations-

methode bestimmt. Die Extrapolation zum Limes mg = 0 für m(1) ist in Abbildung

5.15 gezeigt. Hierbei wurde zusätzlich zu den in Tabelle 5.2 gezeigten Werten der Wert

am(1)(κ = 0,1433) = 0,324(11) aus [26] verwendet, welcher durch den direkten Fit an

den Korrelator bestimmt wurde. Mit diesen vier Werten bei verschiedenen κ ergibt sich

für die extrapolierte Masse in Gittereinheiten am(1)(κc) = 0,185(7).

Tabelle 5.2.: Extrahierte Massen für C1 mit β = 1,9 auf einem 323 × 64-Gitter, ge-
messen auf Nconfs Konfigurationen mit der Entfernung s in Monte-Carlo-
Zeit. Wird die Extrapolation ohne κ = 0,1433 durchgeführt, ergibt sich
am(1)(κc) = 0,174(8)

κ Nconfs s am(1) am(2)

0,14387 1276 8 0,2781(39)(31) 0,589(12)(7)
0,14415 1671 12 0,2405(34)(3) 0,538(10)(15)
0,14435 1343 8 0,2197(52)(6) 0,505(17)(11)

κc - - 0,185(7) 0,439(34)
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5. Massenbestimmung des Gluino-Glueballes

5.4.2. Korrelator Cγ4
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Abbildung 5.11.: Effektive und aus Exponentialfits bestimmte Massen für ein 323 × 64-
Gitter mit β = 1,9 und κ = 0,14387.

a
m

t

am(3)
am

(3)
eff (t)
am(2)

am
(2)
eff (t)
am(1)

am
(1)
eff (t)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7 8 9 10 11

Abbildung 5.12.: Effektive und aus Exponentialfits bestimmte Massen für ein 323 × 64-
Gitter mit β = 1,9 und κ = 0,14415.

Wie in Kapitel 3.10 eingeführt, kann der Korrelator des Gluino-Glueballes in die beiden

Anteile C1 und Cγ4 aufgeteilt werden. Beide Korrelatoren lieferten in der Vergangenheit
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Abbildung 5.13.: Effektive und aus Exponentialfits bestimmte Massen für ein 323 × 64-
Gitter mit β = 1,9 und κ = 0,14435.

dieselbe Masse für den Grundzustand; die zeitlich antisymmetrische Komponente C1

zeigte für die effektive Masse längere Plateaus, was kleinere Fehler beim Exponentialfit

bedeutete. Daher wurde diese Komponente für die finale Massenbestimmung verwendet

[37]. Der Grund dafür, dass die symmetrische Komponente Cγ4 ein schlechteres Plateau

liefert, ist der langsame Abfall der Anteile angeregter Zustände. Dies lässt die Vermu-

tung zu, dass Cγ4 für die Massenbestimmung eben dieser angeregten Zustände mittels

Variationsmethode geeignet ist.

Die Verläufe der effektiven Massen für die verschiedenen Werte von κ sind in den

Abbildungen 5.11 bis 5.13 gezeigt. Auch hier ist eine zuverlässige Massenbestimmung

für alle Werte von κ nur für die beiden größten Eigenwerte möglich. Für alle Werte von

κ und für beide Massen m1
eff und m2

eff erfolgt für kleine Zeiten ein Abfall zum Plateau.

Das Verhalten der Eigenwerte ist für kleine Zeiten also verschieden vom vorher für C1

beobachteten Verhalten. Gleichzeitig ähnelt der Verlauf der effektiven Massen jedoch

dem in [37] für den unverschmierten Korrelator beobachteten. Aufgrund der exponentiell

abfallenden Fehler für kleine Zeiten liefert die für C1 verwendete zweite Variante des

fitting robot Massenfits, die über dem Plateau der effektiven Masse liegen. Die erste

Variante, welche die Maximierung des Fitintervalls bevorzugt, kann jedoch für alle Werte

von κ und alle m(n) für eine konsistente Massenbestimmung verwendet werden. Die so

extrahierten Massen sind in Tabelle 5.3 und den Abbildungen 5.14 und 5.15 gezeigt.

Sowohl die Massen für die einzelnen Werte von κ als auch die Massen bei κc stimmen
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5. Massenbestimmung des Gluino-Glueballes

Tabelle 5.3.: Extrahierte Massen für Cγ4 mit β = 1,9 auf einem 323×64-Gitter, gemessen
auf Nconfs Konfigurationen mit der Entfernung s in Monte-Carlo-Zeit.

κ Nconfs s am(1) am(2) am(3)

0,14387 1276 8 0,2768(95)(34) 0,554(13)(22) 0,75(3)(7)
0,14415 1671 12 0,2383(71)(18) 0,472(21)(18) 0,68(4)(1)
0,14435 1343 8 0,2262(90)(34) 0,488(16)(22) -

κc - - 0,182(18) 0,415(48) -

mit Ausnahme des Wertes für κ = 0,14415 im Rahmen ihrer Fehler mit denen in Tabelle

5.2 überein. Aufgrund der kürzeren Plateaus für den Fit sind die Fehler jedoch größer.

Wie im vorherigen Abschnitt angeführt, ist eine zuverlässige Massenbestimmung für

weitere Zustände des Gluino-Glueballes anhand der Eigenwerte λ(n)(t) mit n > 2 mittels

C1 nicht möglich. Hier ist für alle Werte von κ kein Plateau der effektiven Masse m3
eff

auszumachen. Die Werte schwanken bereits für kleine Zeiten stark und sind mit großen

Fehler behaftet. Anders stellt sich dies für Cγ4 dar. Auch hier sind die Fehler und Schwan-

kungen der Eigenwerte größer, dennoch ist es möglich, mit Hilfe der Fitroutine Massen

zu extrahieren. Die effektiven Massen m
(3)
eff (t) und die aus dem Fit gewonnenen Massen

mit ihren Fehlern sind ebenfalls in den Abbildungen 5.11 bis 5.13 gezeigt. Auch hier ist

das Abfallen des Wertes der effektiven Masse erkennbar, jedoch bilden sich hier keine

klaren Plateaus mehr aus. Dennoch ist es anhand des Fits an die Eigenwerte möglich,

Massen mit entsprechend großem Fehler zu extrahieren. Lediglich für κ = 0,14435, also

dem Wert, welcher κc am nächsten ist, ist es nicht möglich, eine eindeutige Massenbe-

stimmung mit angemessenen Fehlern durchzuführen. Die erste Variante des fitting robot,

welche hier auch zur Bestimmung der anderen Massen verwendet wird, gibt den Fit im

Intervall [7;11] mit dem Wert am(3) = 0,54(10)(23) aus. Der statistische Fehler beträgt

also bereits ca. 20% des Wertes, der systematische Fehler ist noch deutlich größer. Dies

spricht dafür, dass die Massenbestimmung hier nicht zuverlässig möglich ist. Die zweite

Variante des fitting robot mit der Mindestintervalllänge 3 liefert am(3) = 0,81(2)(1) für

den Fit im Intervall [3;5]. Wird hingegen eine Länge von 4 gefordert, wird ebenfalls der

Fit im Intervall [7;11] ausgewählt. Der Fit ab t = 3 scheint, auch im Vergleich mit den

anderen Fits für Cγ4 zu früh, also vor dem Abfallen zum Plateau, zu starten und daher

einen zu großen Wert zu liefern. Eine zuverlässige Bestimmung von am(3)(κ = 0,14435)

ist also nicht möglich. Daher ist auch eine Extrapolation zum Limes verschwindender

Gluinomasse nicht durchführbar.
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5.4. Resultate für β = 1,9
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Abbildung 5.14.: Extrapolation von am(2) zum Limes verschwindender Gluinomasse für
ein 323 × 64-Gitter mit β = 1,9 für die Korrelatoren C1 und Cγ4 .
Zur besseren Sichtbarkeit sind die Werte für am(2)(C1) zu größeren
Pionmassen verschoben.
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Abbildung 5.15.: Extrapolation von am(1) zum Limes verschwindender Gluinomasse für
ein 323 × 64-Gitter mit β = 1,9 für die Korrelatoren C1 und Cγ4 .
Zur besseren Sichtbarkeit sind die Werte für am(2)(C1) zu größeren
Pionmassen verschoben.
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5. Massenbestimmung des Gluino-Glueballes

Tabelle 5.4.: Extrahierte Massen mit β = 1,9 auf einem 323 × 64-Gitter, gemes-
sen auf Nconfs Konfigurationen mit der Entfernung s in Monte-Carlo-
Zeit. Wird die Extrapolation ohne κ = 0,1433 durchgeführt, ergibt sich
am(1)(κc) = 0,174(10).

κ Nconfs s am(1) am(2)

0,14387 1276 8 0,2778(45)(32) 0,581(11)(11)
0,14415 1671 12 0,2401(37)(5) 0,518(9)(16)
0,14435 1343 8 0,2212(56)(12) 0,499(14)(15)

κc - - 0,187(7) 0,425(34)

5.5. Finale Massenbestimmung

Die oben auf Grundlage der beiden verschiedenen Korrelatoren bestimmten Massen stim-

men mit Ausnahme von m(2)(κ = 0,14415) im Rahmen ihres Fehlers überein. Dies gilt

auch für die Werte, welche durch die Extrapolation zum Limes verschwindender Glui-

nomassen bestimmt wurden. Da beide Korrelatoren dieselben Zustände beschreiben,

können die vorhandenen Abweichungen auf systematische Fehler hindeuten. Um eine

endgültige Abschätzung für die Masse des Gluino-Glueballes bei β = 1,9 treffen zu

können, müssen die Ergebnisse für C1 und Cγ4 sinnvoll verknüpft werden. Damit dabei

die verschieden großen Fehler der Fits berücksichtigt werden, wird für jeden Wert von κ

das gewichtete arithmetische Mittel beider Massen m(n) gebildet, wobei statistische und

systematische Fehler berücksichtigt werden. Anschließend erfolgt eine Extrapolation zum

Limes verschwindender Gluinomassen anhand der ermittelten Werte m(n)(κ).

Da die Messungen für beide Korrelatoren auf denselben Konfigurationen stattgefunden

haben, ist anzunehmen, dass die Ergebnisse korreliert sind. Eine einfache Verknüpfung

der Mittelwerte und ihrer Fehler birgt also die Gefahr, diese Fehler zu unterschätzen. An-

stelle einer einfachen Fehlerfortpflanzung wird für den statistischen Fehler des gewichte-

ten Mittels die Jackknife-Methode verwendet. Hier wirdm(n) auf den einzelnen Jackknife-

Bins berechnet, was die Bestimmung des statistischen Fehlers nach (4.75) ermöglicht.

Auch für den systematischen Fehler des Mittels kann keine einfach Fehlerfortpflanzung

verwendet werden. Der schlechteste Fall liegt vor, wenn die Fitintervalle beider Korre-

latoren so gewählt werden, dass die Masse grundsätzlich zu groß oder grundsätzlich

zu klein bestimmt wird. In diesem Fall addieren sich die systematischen Fehler beider

Massen (gewichtet) auf. Für konservative Abschätzung des systematischen Fehlers wird

dieser schlechteste Fall angenommen.

Die mit dieser Methode ermittelten gewichteten Mittelwerte und der zu κ = κc ex-

trapolierte Wert sind in Tabelle 5.4 sowie in den Abbildungen 5.16 und 5.17 gezeigt.
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Abbildung 5.16.: Extrapolation von am(2) zum Limes verschwindender Gluinomasse für
ein 323 × 64-Gitter mit β = 1,9 für das gewichtete Mittel.
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Abbildung 5.17.: Extrapolation von am(1) zum Limes verschwindender Gluinomasse für
ein 323 × 64-Gitter mit β = 1,9 für das gewichtete Mittel.
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5. Massenbestimmung des Gluino-Glueballes

5.6. Verschiedene Versionen der Variationsmethode

In Abschnitt 4.5 sind drei verschiedene Methoden zur Anwendung der Variationsmethode

vorgestellt. Für obige Auswertung wurde durchgängig die t-Eigenvektor-Methode mit

t0 = 0 verwendet. Diese Methode ist für alle Werte von κ stabil, die Aufteilung der

Korrelationsmatrix C(0) mit der Cholesky-Zerlegung, wie in (4.54) gezeigt, ist bei einem

passenden Satz von Operatoren stabil und kann daher konsistent angewendet werden.

Nach Blossier et al. [47] können die Fehler der Eigenwerte verringert werden, wenn beim

Lösen des Eigenwertproblems (4.41) t0 > t/2 gewählt wird. Dies ist für die vorliegenden

Daten des Gluino-Glueballes nicht möglich. Bereits ab t0 = 3 kann es dazu kommen,

dass C(t0) nicht mehr positiv definit und eine Lösung des Eigenwertproblems nicht mehr

möglich ist. Für die Bestimmung von m(1), bei der Fits mit tmax = 27 durchgeführt

werden können, ist eine Erhöhung von t0 nicht zielführend, da die Bedingung t0 > t/2

nicht eingehalten werden kann. Des Weiteren kann es auch bei t0 = 2 aufgrund von

numerischen Schwankungen bei der Lösung des Eigenwertproblems zur Vergrößerung

der Fehler kommen. Für m(2) sind die Plateaus sehr kurz. Eine Erhöhung von t0 kann

hier dazu führen, dass die Daten für kleine Zeiten t = 2 oder t = 3 nicht mehr verwendet

werden können, was das Plateau unnötig verkürzt. Eine Verbesserung der Statistik und

eine damit einhergehende kleinere Schwankung der kleinsten Eigenwerte könnte dazu

beitragen, die t-Eigenvektor-Methode auch mit größeren Startzeiten t0 zu nutzen.

Die Problematik der Zerlegung der Matrix C(t) mit t ≥ 3 hat unmittelbar Konsequen-

zen auf die Anwendbarkeit der Projektionsmethode. Hier muss C(t) für jeden betrachteten

Zeitpunkt t zerlegt werden, was dazu führt, dass lediglich Daten für kleine Zeiten t ge-

wonnen werden können, bevor die Zerlegung scheitert. Diese Daten reichen nicht aus,

um aus ihnen weitere Schlüsse zu ziehen.

Die fixed-vector Methode ist besonders dazu geeignet, die Massenbestimmung bei bei-

nahe entarteten Eigenwerten zu verbessern. Sind die Eigenwerte weit genug voneinander

separiert, wird keine Verbesserung erwartet, da die Orthogonalität der Eigenvektoren

lediglich für einen Zeitpunkt gewährleistet ist und für alle größeren Zeiten Störungen des

Grundzustandes zu erwarten sind. Die Verwendung der fixed-vector Methode bringt für

die vorliegenden Daten keine Verbesserung der Fehler oder Verlängerung der nutzbaren

Fitintervalle. Da mit dem Korrelator Cγ4 eine Abschätzung für die Masse m(3) getrof-

fen werden kann und die Eigenwerte klar genug voneinander separiert zu sein scheinen,

ist eine solche Verbesserung jedoch auch nicht zu erwarten. Die Eigenwerte von Cγ4 für

κ = 0,14387 sind in Abbildung 5.18 gezeigt. Hier ist klar erkennbar, dass die Eigenwerte

nicht entartetet sind.
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Abbildung 5.18.: Eigenwerte λ(n)(t) für ein 323× 64-Gitter mit β = 1,9 und κ = 0,14387
für den Korrelator Cγ4 . Wenn die Symbole größer als die Fehlerbalken
sind, sind diese nicht dargestellt.
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6. Zusammenfassung und Ausblick

Die von der DESY-Münster-Kollaboration durchgeführten Untersuchungen der Multi-

plettstruktur der niederenergetischen gebundenen Zustände der N = 1 supersymmetri-

schen Yang-Mills-Theorie mit der Eichgruppe SU(2) umfassen unter anderem die Mas-

senbestimmung dieser Zustände anhand von rein gluonischen, mesonischen und fermio-

nischen Operatoren. Durch die Analyse für verschiedene Gittergrößen, Kopplungen und

Gitterkonstanten ist eine Extrapolation zum Kontinuum möglich, welche darauf schließen

lässt, dass die Supersymmetrie, welche auf dem Gitter gebrochen ist, im Kontinuumsli-

mes wieder hergestellt ist. Dieser Schluss wird aus der Tatsache gezogen, dass die Massen

der im leichtesten Supermultiplett erwarteten Teilchen hier im Rahmen von zwei Stan-

dardabweichungen übereinstimmen. Eine Aussage über das schwerere Multiplett konnte

bisher nicht getroffen werden. Dies liegt vor allem darin begründet, dass eine mögliche

Mischung zwischen den gluonischen und mesonischen Zuständen erwartet wird, das Mi-

schungsverhältnis jedoch noch nicht bekannt ist. Eine Möglichkeit Aussagen über das

schwere Multiplett zu treffen ist durch die Betrachtung des ersten angeregten Zustandes

des Gluino-Glueballes gegeben, weshalb dieser Zustand im Zentrum dieser Arbeit stand.

Um die zur Massenbestimmung des ersten angeregten Zustandes verwendete Varia-

tionsmethode so zu optimieren, dass aussagekräftige Resultate erzielt werden können,

wurde zunächst der Einfluss von Smearing auf den verwendeten Operator des Gluino-

Glueballes (3.49) untersucht. Dabei stellte sich heraus, dass stark verschmierte Operato-

ren nicht nur bei der Massenbestimmung des Grundzustandes anhand eines Korrelators,

sondern auch bei der Variationsmethode das Signal verbessern. Die Analyse verschieden

aufgebauter Korrelationsmatrizen anhand des Signals bei der Massenbestimmung und

der Eigenvektoren des verallgemeinerten Eigenwertproblems zeigt, dass für den ersten

angeregten Zustand die Verwendung von stark verschmierten Operatoren von Vorteil ist,

hier jedoch im Gegensatz zum Grundzustand innerhalb des untersuchten Bereichs der

APE-Smearinglevel ein Optimum erreicht wird. Diese Untersuchungen ermöglichten die

Auswahl einer Menge von Operatoren, welche einerseits die Qualität der Massenbestim-

mung optimiert und andererseits klein genug gehalten ist, um die zur Messung benötigte

Rechenzeit nicht unnötig zu verlängern. Diese für κ = 0,14415 ausgewählten Operatoren

wurden anschließend für alle weiteren Werte von κ verwendet.

Bei den zur Massenbestimmung verwendeten Exponentialfits besteht eine Gefahr der

Beeinflussung des Messergebnisses durch den Experimentator, beispielsweise durch die
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manuelle Auswahl eines geeigneten Fitintervalls. Die Anwendung des hier verwende-

ten fitting robot kann diese Beeinflussung verringern, da hier das Intervall automatisch

gewählt wird. Dennoch bleibt ein mittels fitting robot gewonnenes Ergebnis weiterhin

nicht unbeeinflusst. So werden in dieser Arbeit zwei verschiedene Interpretationen der

drei Axiome präsentiert, die jeweils besser zu einem der hier betrachteten Korrelatoren

zu passen scheinen. Es musste also weiterhin eine Auswahl getroffen werden. Dennoch

war es möglich, jeweils eine der beiden Varianten konsistent für einen Korrelator zu

verwenden. Trotz der Automatisierung der Massenbestimmung müssen die erhaltenen

Ergebnisse beispielsweise anhand der effektiven Masse weiterhin auf ihre Plausibilität

überprüft werden. Hier sollte jedoch keine Beeinflussung des Ergebnisses sondern ledig-

lich eine Beurteilung geschehen, ob im vorliegenden Fall eine im Rahmen der Fehler

zuverlässige Massenbestimmung möglich ist. Ein weiterer Aspekt des fitting robot ist

die Automatisierbarkeit der Massenbestimmung. Bereits bei den hier bestimmen 15 ver-

schiedenen Massen bedeutet dies eine Arbeitserleichterung. Im Falle der Verwendung

der fixed-vector Methode ermöglicht diese Automatisierung der Auswertung die Unter-

suchung der Massenbestimmung für verschiedenste Werte von t0 und t1 [61].

Bei jeder Massenbestimmung ist die richtige Abschätzung der statistischen und syste-

matischen Fehler von entscheidender Bedeutung für die Verwendbarkeit des Ergebnisses.

Die Untersuchung der Autokorrelationszeiten der extrahierten sekundären Observablen

und der daraus resultierenden richtigen Abschätzung für den statistischen Fehler wurde

hier anhand von Jackknife-Binning getätigt. Diese Methodik wurde bereits in [23] und

[24] bei der Massenbestimmung der Gluebälle verwendet und scheint auch im Falle der

Gluino-Gluebälle zuverlässig zu funktionieren. Obwohl Jackknife-Binning eine stabile

Methode zur Bestimmung der statistischer Fehler und der Autokorrelationszeiten se-

kundärer Observablen darstellt, liefert die Γ-Methode eine zuverlässigere und genauere

Bestimmung dieser Größen [53]. Die Anwendung auf die Variationsmethode kann jedoch

zu numerischen Instabilitäten führen. Da bereits das Jackknife-Binning zu ausreichen-

den Fehlerabschätzungen führt, wurde eine verbesserte Anwendung der Γ-Methode auf

die Variationsmethode nicht weiter untersucht, durch diese könnte in der Zukunft eine

Verbesserung des Analyseablaufs erfolgen.

Obwohl bei der Bestimmung von m(2) Resultate erzielt werden konnten, sind die Feh-

ler hier deutlich größer, als für die Masse des Grundzustandes. Um mit der vorhandenen

Messzeit die vorliegenden Konfigurationen stets optimal nutzen zu können, wurde die

Schrittweite s in Monte-Carlo-Zeit bei der Erhöhung der Statistik halbiert. So konnte

beobachtet werden, dass die Verbesserung des statistischen Fehlers bei Halbierung der

Schrittweite und einer damit einhergehenden Verdopplung der Messungen beinahe mit

dem Faktor 1/
√

2 erfolgt ist. Dies lässt darauf schließen, dass eine weitere Erhöhung der

Statistik die Fehler weiter verringern könnte. Eine obere Grenze für diese Verbesserung

ist jedoch durch die Anzahl der unabhängigen Konfigurationen gegeben. Wenn die in
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6. Zusammenfassung und Ausblick

Tabelle 5.1 angegebenen konservativ abgeschätzten integrierten Autokorrelationszeiten

als Grundlage für die Bestimmung der Anzahl der vorhandenen effektiv unabhängigen

Konfigurationen gewählt werden, ist nicht eindeutig, ob eine Verbesserung des Fehlers

des Grundzustandes erwartet werden kann. Für eine Schrittweite s = 16 kann mit-

tels Jackknife-Binning für am(1)(C1) die integrierte Autokorrelationszeit τint = 1,2(4)

abgeschätzt werden. Der Vergleich mit dem Wert aus Tabelle 5.1 zeigt, dass eine Hal-

bierung der Schrittweite nicht mit einer Verdoppelung von τint einhergeht. Auch für den

ersten angeregten Zustand ist keine Verbesserung mit dem Faktor 1/
√

2 zu erwarten. Da

jedoch die Fehler der integrierten Autokorrelationszeiten nicht zu vernachlässigen sind,

ist eine Aussage über die Anzahl der unabhängigen Konfigurationen nicht zuverlässig.

Trotz der im Vergleich zu m(1) größeren Fehler ist es gelungen, zuverlässige Massen-

bestimmungen für m(2) mit β = 1,9 und drei Werte von κ vorzunehmen. Durch die Be-

trachtung der beiden Anteile C1 und Cγ4 des Korrelators des Gluino-Glueballes können

dabei grobe systematische Fehler in der Auswertung ausgeschlossen werden. Anhand

der Massen für drei Werte von κ konnte des Weiteren eine Extrapolation zum Limes

verschwindender Gluinomassen vorgenommen werden. Um endgültige Aussagen über

die Masse des ersten angeregten Zustandes des Gluino-Glueballes im Kontinuumslimes

mit wieder hergestellter Supersymmetrie tätigen zu können, sind jedoch Massenbestim-

mungen für andere Werte von β notwendig. Diese liegen zur Zeit aufgrund des wegen

der Inversion der Fermionmatrix hohen Rechenaufwandes bei der Messung der Korre-

lationsmatrix nicht vor. Zu Beginn der Untersuchungen des Gluino-Glueballes wurden

erste Messungen für β = 1,75 und κ = 0,14925 vorgenommen. Hier konnte jedoch keine

zuverlässige Massenbestimmung für m(2) erfolgen. Zum damaligen Zeitpunkt war nicht

klar, ob dies in dem gewählten Wert von β mit der zur Verfügung stehenden Statistik be-

gründet war, weshalb für die weiteren Messungen β = 1,9 gewählt wurde. Rückblickend

ist es jedoch möglich, dass für β = 1,75 zur Konstruktion der Korrelationsmatrix Ope-

ratoren mit einem zu kleinen NAPE gewählt wurden und eine Massenbestimmung mit

ähnlichen Parametern wie bei β = 1,9 möglich ist.

Obwohl keine Aussage über den Fall einer wieder hergestellten Supersymmetrie

getätigt werden kann, kann vermutet werden, dass der untersuchte Zustand Teil des

schwereren Supermultipletts nach Farrar et al. [10] ist. In diesem Fall wird ein weiterer

skalarer und pseudoskalarer Zustand mit einer im supersymmetrischen Limes gleichen

Masse erwartet. Aufgrund der zu erwartenden Mischung der gluonischen und mesoni-

schen Zustände ist nicht klar, ob die verwendeten Operatoren auf denselben niedrigen

Zustand oder verschiedene gebundene Zustände projizieren. Für den Grundzustand des

0−+-Glueballes und den ersten angeregten Zustand des 0++-Glueballes gibt es Hinweise,

dass auch diese Zustände Teil eines schwereren Supermultipletts sein könnten [26].

Neben der Untersuchung des ersten angeregten Zustandes, wurde auch die Masse m(1)

des Grundzustands des Gluino-Glueballes neu bestimmt. Hier ergeben sich im Vergleich
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zu den auf der Grundlage eines Fits an die Korrelationsfunktion gewonnenen Massen

leicht veränderte Werte, gleichzeitig können die Fehler klar reduziert werden. Bei der

Extrapolation zum Limes mg = 0 macht es einen Unterschied, ob der Wert bei κ = 0,1433

mit in den Fit einbezogen wird. Dieser wurde nicht mittels Variationsmethode bestimmt,

dennoch sollte auch die aus dem Fit an die Korrelationsfunktion extrahierte Masse ein

richtiges Ergebnis liefern. Die Untersuchung von κ = 0,1433 mit der Variationsmethode

und eine damit einhergehende Verbesserung des Ergebnisses der Extrapolationen von

m(1) und m(2) ist geplant, jedoch wegen des Rechenaufwandes noch nicht abgeschlossen.

Die Untersuchung der durch die Betrachtung von Cγ4 bestimmten Eigenwerte zeigt,

dass auch für n ≥ 2 Abschätzungen für Massen getroffen werden können. Eine Ein-

ordnung dieser höheren Zustände in mögliche weitere Multiplettstrukturen oder Streu-

zustände kann jedoch im Rahmen dieser Arbeit nicht getätigt werden. Dennoch kann

anhand der Eigenwerte in Abbildung 5.18 geschlossen werden, dass diese weit genug sepa-

riert sind, um zuverlässig mit der t-Eigenvektor-Methode und nicht mit der fixed-vector

Methode bestimmt zu werden. Die Nutzung anderer Methoden als der t-Eigenvektor-

Methode oder die Verwendung größerer Startzeiten t0 hat sich als nicht durchführbar

oder nicht gewinnbringend erwiesen. Neben den hier vorgestellten Versionen die Varia-

tionsmethode zu nutzen, könnten in Zukunft auch andere Verfahren zur Massenbestim-

mung angeregter Zustände verwendet werden. Die AMIAS-Methode [63, 64] ermöglicht

die Einbeziehung der bereits gemessenen Korrelationsmatrizen, nutzt zur Massenbestim-

mung jedoch ein grundlegend anderes Verfahren.

Aufbauend auf den Erfahrungen, welche in dieser Arbeit gemacht wurden, können

Untersuchungen in verschiedenen Richtungen erfolgen. Zum einen ist es möglich, die

für β = 1,9 verwendeten Smearingparameter auch für andere Werte von β zu testen

und somit Massenbestimmungen für verschiedene Kopplungen vorzunehmen, welche ei-

ne Extrapolation zum Kontinuumslimes ermöglichen. Zum anderen scheint auch für die

Gluebälle und Gluinobälle eine Untersuchung höherer Zustände ratsam, um Schlüsse

über eine mögliche Multiplettstruktur ziehen zu können. Des Weiteren ist nicht klar,

ob die hier beobachteten angeregten Zustände wirklich zu Ein-Teilchen-Zuständen des

Gluino-Glueballes gehören, oder ob hier gebundene Zustände, beispielsweise aus einem

0++-Glueball und einem Gluino-Glueball, auftreten. Diese Möglichkeiten können durch

eine reine Betrachtung der Massen nicht unterschieden werden. Eine Untersuchung der

Streuzustände mittels Zwei-Teilchen-Operatoren könnte in Zukunft mehr Klarheit brin-

gen. Auch die genauere Untersuchung der Eigenwerte λ(n) der Gluino-Gluebälle für n > 2

kann dazu genutzt werden, Aussagen über mögliche Streuzustände zu tätigen. Im Falle

des Auftretens von Streuzuständen wird auf einem endlichen Gitter ein dichtes Spek-

trum diskreter Zustände mit variierendem Relativimpuls oberhalb des niedrigsten Zwei-

Teilchen-Zustandes erwartet. Zusätzlich zur Untersuchung der Eichgruppe SU(2), kann

ein analoges Vorgehen für SU(3) erfolgen [65].
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A. Notation

Im Folgenden werden die Konventionen aufgelistet, welche in dieser Arbeit verwendet

werden. In der gesamten Arbeit werden natürliche Einheiten betrachtet, es gilt also ~ = 1

und c = 1.

Die Anzahl der Farben in der betrachteten SU(2)-SYM-Theorie ist N = 2. Die entspre-

chenden Farbindizes der adjungierten Darstellung werden mit lateinischen Buchstaben

a,b, . . . ∈ {1, . . . ,N2−1} gekennzeichnet. Die Farbindizes der fundamentalen Darstellung

werden nicht explizit ausgeschrieben. Die Anzahl der Flavors ist N = 1. Spin-Indizes

werden mit griechischen Buchstaben von Beginn des Alphabets α,β, . . . ∈ {1, . . . ,4} ge-

kennzeichnet. Die Raumzeitkomponenten werden mit griechischen Buchstaben aus der

Mitte des Alphabets, also µ,ν, . . . gekennzeichnet. In der Minkowski-Metrik nehmen diese

die Werte 0, . . . ,3 ein. Im überwiegenden Teil der Arbeit wird jedoch in der euklidischen

Metrik gearbeitet, hier gilt µ,ν, . . . ∈ {1, . . . ,4}. Wenn lediglich die räumlichen Kompo-

nenten betrachtet werden, werden diese durch lateinische Buchstaben aus der Mitte des

Alphabets gekennzeichnet, i,j,k, . . . ∈ {1,2,3}. Wenn nicht anders gekennzeichnet, wird

die Einsteinsche Summenkonvention verwendet, Summierungen über doppelt auftretende

Indizes sind impliziert.

A.1. Pauli-Matrizen

Die Generatoren der SU(2) sind durch

Ta =
1

2
σa, a = 1,2,3 (A.1)

gegeben. Dabei sind σa die Paulimatrizen gegeben durch

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ1 =

(
1 0

0 −1

)
. (A.2)
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A.2. Dirac-Matrizen

A.2. Dirac-Matrizen

Beim Wechsel vom Minkowski-Raum in den euklidischen Raum muss beachtet werden,

dass hier die Dirac-Matrizen anders definiert sind. Die Beziehung zwischen den Matrizen

ist

γeuklid.
1,2,3 = −iγMink.

1,2,3 , γeuklid.
4 = γMink.

0 . (A.1)

Die euklidischen Dirac-Matrizen werden mit γµ (µ = 1,2,3,4) bezeichnet. Sie sind hermi-

tesch und erfüllen

γµ = γ†µ = γ−1
µ , {γµ,γν} = 2δµν . (A.2)

Mit den Paulimatrizen können die Dirac-Matrizen explizit ausgeschrieben werden, es gilt

γ1,2,3 =

(
0 −iσ1,2,3

iσ1,2,3 0

)
. (A.3)

In der chiralen Darstellung werden γ4 und γ5 = γ1γ2γ3γ4 durch

γ4 =

(
0 12

12 0

)
, γ5 =

(
12 0

0 −12

)
(A.4)

dargestellt.
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B. Nichtabelsche Eichtheorien

Die Notwendigkeit der Einführung von Eichfeldern wird bei der Forderung nach lokaler

Eichinvarianz deutlich. Ein aus Feldern mit N komplexen Komponenten

φ(x) =

φ1(x)
...

φN(x)

 , φ† = (φ∗1(x), . . . ,φ∗N(x)) (B.1)

gebildetes Skalarprodukt

φ†(x) · φ(x) =
N∑
i=1

φ∗iφi (B.2)

ist invariant unter globalen Transformationen

φ −→ φ′ = Ωφ (B.3)

mit Ω ∈ SU(N). Da die Transformation global ist, vertauschen Ableitungen mit Ω, sodass

alle Terme der Langrangedichte eine freien Feldes

L = ∂µφ
†(x) · ∂µφ(x)−m2φ†(x) · φ(x) (B.4)

invariant sind. Bei lokalen Transformationen mit

Ω = Ω(x) = exp

(
−i

N2−1∑
a=1

αa(x)Ta

)
∈ SU(N) (B.5)

ist diese Invarianz nicht mehr gegeben. Dabei sind Ta die N2−1 Generatoren der SU(N).

Bei der SU(2) sind dies die drei Paulimatrizen 1
2
σa für a = 1,2,3. Bei der Ableitung des

transformierten Feldes treten nun inhomogene Terme auf,

∂µφ
′(x) = Ω(x)∂µφ(x) + (∂µΩ(x))φ(x). (B.6)

78



Die Invarianz lässt sich durch die Einführung der kovarianten Ableitung Dµ mit

Dµφ(x) = ∂µφ(x)− ig
N2−1∑
a=1

Aaµ(x)Taφ(x) (B.7)

= ∂µφ(x)− igAµ(x)φ(x), mit Aµ(x) = Aaµ(x)Ta (B.8)

wieder herstellen, wobei die N2 − 1 vielen Eichfelder Aaµ und die Kopplungskonstante g

verwendet wurden. Aus der Forderung, dass

D′µφ
′(x) = Ω(x)Dµφ(x) (B.9)

gelten muss, damit die Lagrangedichte invariant unter lokalen Eichtransformationen ist,

lässt sich herleiten, dass die Eichfelder gemäß

A′µ = Ω(x)Aµ(x)Ω−1(x) +
i

g
Ω(x)∂µΩ−1(x) (B.10)

transformieren. Die Lagrangedichte der Eichfelder lässt sich über den Feldstärketensor

Fµν bestimmen. Dieser wird mit Hilfe der kovarianten Ableitung mittels

Fµν =
i

g
[Dµ,Dν ] = (∂µAν − ∂νAµ)− ig[Aµ,Aν ] (B.11)

= ∂µA
a
νTa − ∂νAaµTa + gAaµA

b
νf

c
abTC =: F a

µνTa (B.12)

berechnet und transformiert gemäß

F ′µν(x) = Ω(x)Fµν(x)Ω−1(x). (B.13)

Die eichinvariante Lagrangedichte der sogenannten Yang-Mills-Wirkung lautet dann

LYM = −1

2
Tr[FµνF

µν ] = −1

4
F a
µνF

a,µν . (B.14)
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C. Graßmann-Algebra

Für die Beschreibung von Fermionen ist die Nutzung von antikommutierenden Graß-

mannzahlen vonnöten. Es wird ein Satz von Graßmannzahlen ηi, i = 1, . . . ,N betrachtet,

welche

ηiηj = −ηjηi ∀ i,j (C.1)

erfüllen. Durch diese Eigenschaft sind diese Variablen nilpotent, es gilt also η2
i = 0. Daher

bricht die Reihenentwicklung einer Funktion nach einer endlichen Anzahl an Termen ab

F (η1, . . . ,ηN) = a+
∑
i

aiηi +
∑
i<j

aijηiηj +
∑
i<j<k

aijkηiηjηk + · · ·+ a12...Nη1η2 . . . ηN

(C.2)

mit den komplexen Koeffizienten a,ai, . . . ,a12...N . Die Ableitung nach einer Graßmannzahl

ist durch

∂

∂ηi
ηk = δik (C.3)

definiert und erfüllt die Eigenschaften

∂

∂ηi
1 = 0,

∂

∂ηi

∂

∂ηj
= − ∂

∂ηj

∂

∂ηi
,

∂

∂ηi
ηj = −ηj

∂

∂ηi
. (C.4)

Das Integral über Graßmannzahlen ist aufgrund der Struktur der Graßmannzahlen

ähnlich zur Ableitung. Es gilt: ∫
dηi F =

∂

∂ηi
F (C.5)∫

dηidηj F = −
∫

dηjdηi F (C.6)∫
dηN . . . dη1 F = a12...N ∈ C (C.7)
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Für die Beschreibung von Fermionen auf dem Gitter wird das Gaußintegral für Graß-

mannzahlen benötigt. Dazu wird eine Graßmannalgebra mit N = 2M Generatoren

η1,η2, . . . ,ηM ,η̄1,η̄2, . . . ,η̄M

eingeführt. Das Skalarprodukt wird über

(η̄A,η) =
M∑
i,j=1

η̄iAijηj (C.8)

definiert. Für die Funktion

F (η1, . . . ,η̄M) = e(η̄A,η) =
M∑
m=1

1

m!
(η̄A,η)m = 1 + (η̄A,η) +

1

2
(η̄A,η)(η̄A,η) + . . . (C.9)

gilt nun

1

M !
(η̄A,η)M =

∑
j1,...,jM

εj1,...,jMA1j1 . . . Amjm η̄1η1 . . . η̄MηM (C.10)

=(detA) η̄1η1 . . . η̄MηM , (C.11)

wobei εj1j2...jM das Levi-Civita-Symbol ist. Damit gilt für das Integral über F (η1, . . . ,η̄M)∫
dη1dη̄1 . . . dηMdη̄M e(η̄A,η) = detA. (C.12)

Nach der Einführung von Quelltermen θi,θ̄i lassen sich die folgenden Integrale berechnen:∫
dη1 . . . dηMdη̄1 . . . dη̄M e(η̄A,η)+(η̄,θ)+(θ̄,η) = (detA)e−(θ̄,A−1θ) (C.13)

∫
dη1 . . . dη̄M ηiη̄je

(η̄A,η) = − ∂

∂θ̄i

∂

∂θj

∫
dη1 . . . dη̄M e(η̄A,η)+(η̄,θ)+(θ̄,η)

∣∣∣∣
θ=θ̄=0

= (detA)(−A−1
ij ) (C.14)

Die Verallgemeinerung zu einer funktionalen Graßmannalgebra liefert für η(x),η̄(x):∫
DηDη̄ exp

{∫
d4x[η̄(x)(Aη)(x) + η̄(x)θ(x) + θ̄(x)η(x)]

}
= (detA) exp

{
−
∫

d4x θ̄(x)(A−1θ)(x)

}
(C.15)
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”
The mass of the adjoint pion in N = 1

supersymmetric Yang-Mills theory“, JHEP 05 (2014) 034, arXiv:1402.6616.

[34] DESY-Münster-Roma Collaboration, F. Farchioni, C. Gebert, R. Kirchner,
I. Montvay, A. Feo, G. Münster, T. Galla und A. Vladikas,

”
The supersymmetric

Ward identities on the lattice“, Eur. Phys. J. C 23 (2002) 719–734,
arXiv:hep-lat/0111008.

[35] K. Symanzik,
”
Continuum Limit and Improved Action in Lattice Theories. 1.

Principles and φ4 Theory“, Nucl. Phys. B 226 (1983) 187–204.

[36] K. Symanzik,
”
Continuum Limit and Improved Action in Lattice Theories. 2.

O(N) Nonlinear Sigma Model in Perturbation Theory“, Nucl. Phys. B 226 (1983)
205–227.

[37] K. Demmouche, F. Farchioni, A. Ferling, I. Montvay, G. Münster, E. E. Scholz
und J. Wuilloud,

”
Simulation of 4d N = 1 supersymmetric Yang-Mills theory with

Symanzik improved gauge action and stout smearing“, Eur. Phys. J. C 69 (2010)
147–157, arXiv:1003.2073.

[38] C. Morningstar und M. J. Peardon,
”
Analytic smearing of SU(3) link variables in

lattice QCD“, Phys. Rev. D 69 (2004) 054501, arXiv:hep-lat/0311018.

[39] A. Donini, M. Guagnelli, P. Hernandez und A. Vladikas,
”
Towards N = 1

Super-Yang-Mills on the Lattice“, Nucl. Phys. B 523 (1998) 529–552,
arXiv:hep-lat/9710065.

[40] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller und E. Teller,

”
Equation of State Calculations by Fast Computing Machines“, J. Chem. Phys.

21 (1953) 1087–1092.

84

http://xxx.lanl.gov/abs/hep-th/0408214
http://xxx.lanl.gov/abs/1206.2341
http://xxx.lanl.gov/abs/hep-lat/9510042
http://xxx.lanl.gov/abs/0909.4791
http://xxx.lanl.gov/abs/1402.6616
http://xxx.lanl.gov/abs/hep-lat/0111008
http://xxx.lanl.gov/abs/1003.2073
http://xxx.lanl.gov/abs/hep-lat/0311018
http://xxx.lanl.gov/abs/hep-lat/9710065


Literaturverzeichnis

[41] I. Montvay und E. Scholz,
”
Updating algorithms with multi-step stochastic

correction“, Phys. Lett. B 623 (2005) 73–79, arXiv:hep-lat/0506006.

[42] Ape Collaboration, M. Albanese, F. Costantini, G. Fiorentini, F. Flore,
M. Lombardo, R. Tripiccione, P. Bacilieri, L. Fonti, P. Giacomelli, E. Remiddi,
M. Bernaschi, N. Cabibbo, E. Marinari, G. Parisi, G. Salina, S. Cabasino,
F. Marzano, P. Paolucci, S. Petrarca, F. Rapuano, P. Marchesini und R. Rusack,

”
Glueball masses and string tension in lattice QCD“, Phys. Lett. B 192 (1987) 163

– 169.

[43] UKQCD Collaboration, C. R. Allton, C. T. Sachrajda, R. M. Baxter, S. P.
Booth, K. C. Bowler, S. Collins, D. S. Henty, R. D. Kenway, B. J. Pendleton,
D. G. Richards, J. N. Simone, A. D. Simpson, B. E. Wilkes und C. Michael,

”
Gauge-invariant smearing and matrix correlators using Wilson fermions at
β = 6.2“, Phys. Rev. D 47 (1993) 5128–5137.
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