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Abstract

The N = 1 supersymmetric Yang-Mills theory is the supersymmetric extension of the
gluonic sector of the Standard Model of particle physics, as it describes the symmetry
between gluons and their superpartners, the gluinos. In the low energy region supermul-
tiplets containing one scalar, one pseudoscalar and one fermionic particle are expected to
form. Monte-Carlo methods on the lattice can be used to examine the non-perturbative
dynamics of the theory. In this thesis the variational method together with smearing
techniques is used to determine the masses of different states of the gluino-glueball, the
fermionic parcticle in the supermultiplets.

Zusammenfassung

Die N' = 1 supersymmetrische Yang-Mills-Theorie ist die supersymmetrische Erweite-
rung des gluonischen Sektors des Standardmodells der Teilchenphysik. Sie beschreibt
die Wechselwirkung zwischen Gluonen und ihren Superpartnern, den Gluinos. Im nie-
derenergetischen Bereich wird die Bildung von Supermultipletts erwartet, welche je-
weils ein skalares, ein pseudoskalares und ein fermionisches Teilchen enthalten. Mittels
Monte-Carlo-Methoden auf dem Gitter ist es moglich, die nichtperturbative Dynamik
der Theorie zu untersuchen. In dieser Arbeit wird die Variationsmethode zusammen mit
sogenannten Smearing-Techniken verwendet, um die Massen verschiedener Zusténde des
Gluino-Glueballes, des Fermions in den Supermultipletts, zu bestimmen.
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1. Einleitung

Das Standardmodell der Teilchenphysik beschreibt die Elementarteilchen, aus welchen
die uns umgebende Materie aufgebaut ist, sowie die Wechselwirkungen zwischen ihnen.
Sein grofler Erfolg liegt darin, dass es mathematisch in sich geschlossen und gleichzei-
tig durch viele Experimente auf unterschiedlichsten Skalen und mit grofler Genauigkeit
iiberpriift worden ist. Trotzdem lasst auch das Standardmodell viele Fragen offen. So ist
ein Feintuning von 19 freien Parametern notwendig, um das Modell den experimentel-
len Beobachtungen anzupassen. Wenn zusétzlich massive Neutrinos betrachtet werden,
erhoht sich diese Zahl auf 27 freie Parameter [I]. Dies ist insofern unbefriedigend, als
dass innerhalb des Standardmodells keine Erkléarung dafiir gegeben werden kann, warum
diese Parameter genau die Werte annehmen sollten, die zur theoretischen Vorhersage
der experimentellen Ergebnisse notwendig sind [2]. Auch die Struktur der Teilchen in-
nerhalb des Standardmodells in drei Familien aus Quarks und Leptonen und der iiber
viele GroBlenordnungen gehende Massenunterschied zwischen den Elementarteilchen ist
nicht erklarbar. Weitere Probleme sind das mit der Higgsmasse verkniipfte Hierarchiepro-
blem [3] oder die Zusammensetzung der Dunklen Materie [4], von welcher auf Grundlage
kosmologischer Beobachtungen angenommen wird, dass sie etwa 23% der Energiedichte
des Universums ausmacht, im Gegensatz zur sichtbaren Materie, deren Anteil nur bei
etwa 5% liegt. Fiir die Losung dieser Probleme wird eine Theorie fiir Physik jenseits des
Standardmodells benétigt.

Eine mogliche Erweiterung des Standardmodells ist die Supersymmetrie (SUSY), wel-
che eine Verallgemeinerung der Raumzeit-Symmetrien der Quantenfeldtheorie darstellt
und Bosonen und Fermionen ineinander iiberfiihrt [2]. In dieser Theorie bekommt jedes
Teilchen des Standardmodells mindestens einen Superpartner, welcher dieselben Quan-
tenzahlen besitzt, mit Ausnahme des um 1/2 verschiedenen Spins. Durch die Einfiihrung
dieser Superpartner und der Symmetrie zwischen Bosonen und Fermionen ist es moglich
das Hierarchieproblem zu losen. Des Weiteren liefern supersymmetrische Teilchen Kan-
didaten fiir Dunkle Materie. Gleichzeitig ermd&glicht die Supersymmetrie die Vereinheitli-
chung der Eichsymmetrien des Standardmodells zur sogenannten Grand Unified Theory.
Da die Superpartner bei ungebrochener Supersymmetrie dieselbe Masse wie ihre Part-
ner aus dem Standardmodell besédflen, wéren sie bereits experimentell gefunden worden.
Wenn es eine Supersymmetrie gibt, ist sie also gebrochen [5]. Dennoch kann SUSY wei-
terhin einige der oben beschriebene Probleme 16sen, wenn sie lediglich weich gebrochen
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ist. Diese Brechung fiihrt zu weiteren unbekannten Parametern, ndmlich den Massen der
Superpartner. In den zur Zeit zugénglichen Energiebereichen wurde bisher noch keiner
dieser Superpartner gefunden [6].

Supersymmetrische Erweiterungen des Standardmodells wie das Minimal Supersym-
metric Standard Model (MSSM), welche auf weich gebrochenen supersymmetrischen
Theorien basieren, werden fiir gewohnlich mittels storungstheoretischer Methoden un-
tersucht und mit experimentellen Ergebnissen verkniipft [7]. Hier wird angenommen,
dass diese Modelle effektive Theorien einer auf groflen Energieskalen erhaltenen Symme-
trie sind. Nichtperturbative Methoden ermoglichen die Vorhersage der Parameter einer
solchen stark gekoppelten Theorie, dhnlich wie dies auch fiir die Quantenchromodyna-
mik (QCD) moglich ist. Dennoch ist die Simulation einer vollen supersymmetrischen
Erweiterung des Standardmodells mit heutigen Techniken noch nicht moglich. Ein erster
Baustein einer solchen Theorie ist die supersymmetrische Erweiterung des gluonischen
Sektors des Standardmodells, die supersymmetrische Yang-Mills-Theorie (SYM). Wich-
tige Eigenschaften einer vollstéandigen Erweiterung sind die spontane Brechung der chira-
len Symmetrie und Confinement. Diese sind auch Bestandteile der supersymmetrischen
Yang-Mills-Theorie. Durch Confinement werden farblose, gebundene Zustéande erwartet,
welche in supersymmetrischen Multipletts angeordnet sind. Die Anordnung dieser gebun-
denen Zustidnde in den Supermultipletts kann durch die Konstruktion einer effektiven
Wirkung vorhergesagt werden [8, [0, [10]. Das Ziel dieser Arbeit ist die Massenbestimmung
fiir gebundene Zustéinde der N' = 1 supersymmetrischen SU(2) Yang-Mills-Theorie, um
so die Erkenntnisse iiber die Supermultipletts zu erweitern.

In Kapitel 2| erfolgt eine Einfithrung in Feldtheorien auf dem Gitter. Dabei werden
zunéchst die allgemeinen Techniken, um Bosonen und Fermionen auf dem Gitter zu be-
schreiben, hergeleitet. Die Anwendung auf die supersymmetrische Yang-Mills-Theorie
erfolgt dann in Kapitel [3] nachdem eine kurze Zusammenfassung der Eigenschaften und
der mathematischen Struktur supersymmetrischer Theorien erfolgt ist. In Kapitel 4| wer-
den die technischen Aspekte der Gittersimulationen wie die Techniken zur Massenbe-
stimmung die Behandlung von statistischen Fehlern beschrieben. Auf Grundlage dieser
Voriiberlegungen erfolgt in Kapitel [5| die Auswertung der durchgefithrten Messungen.
Dabei wird die Masse des Grundzustandes und des ersten angeregten Zustandes des
Gluino-Glueballes fiir verschiedene Werte der Gluinomasse bestimmt. Mittels dieser Er-
gebnisse erfolgt ein Vergleich mit den bereits bekannten Massen anderer gebundener
Zusténde und der Vergleich mit den vorhergesagten Multipletts. Im Anschluss erfolgt in
Kapitel [0] eine Zusammenfassung der Ergebnisse und ein Ausblick auf weitere Fragestel-
lungen im Zusammenhang mit der supersymmetrischen Yang-Mills-Theorie.
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Die nachfolgende Einfiihrung in Feldtheorien auf dem Gitter orientiert sich zu groflen
Teilen an [11] und [12], sowie [13], [14] und [15]. Die Formulierung einer Quantenfeldtheo-
rie auf dem Gitter wird durch Feynmans Pfadintegralformalismus und die Einfiihrung
der euklidischen Metrik ermdoglicht. Eine Einfithrung findet sich beispielsweise in [16].

2.1. Euklidische Feldtheorie

Der Pfadintegralformalismus lédsst sich zur Formulierung der euklidischen Feldtheorie
verwenden. Dabei wird zunéchst ein Lorentz-Skalarfeld ¢(z) betrachtet, in dem = = (Zt)
die Raumzeitkoordinate angibt und die zeitliche Entwicklung des Feldes durch

p(zt) = i (zt = 0)e (2.1)

gegeben ist. Von besonderer Bedeutung in der Feldtheorie sind die Vakuumerwar-
tungswerte zeitgeordneter Produkte von Feldoperatoren, die Greensfunktionen G. Diese
konnen als Funktionalintegrale wie folgt dargestellt werden:

Glnsaa....n) = (O1T6(w)o(as) .. o(an)[0) = [ Doolwi)olas) . o)™
(2.2)

mit
Z = /'ngeis (2.3)

und dem Zeitordnungsoperator 7'. Um ein reelles Integral zu erhalten und stark oszillie-
rende Beitrage zu unterdriicken, erfolgt die Wickrotation zur euklidischen Zeit 7 {iber

t = —ir, 7> 0. (2.4)
Damit erfolgt gleichzeitig der Ubergang von der Minkowski-Metrik

ds? = —dt? + da? + daj + daj (2.5)
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zur vierdimensionalen euklidischen Metrik
ds? = d7? + da? + daj + da3. (2.6)

Mit diesem Ubergang zu imaginiren Zeiten 7 erhélt man die sogenannten Schwinger-
funktionen oder euklidischen Greensfunktionen

Gg(xy,...,x,) = % /Dgf) o(xq) ... gb(a:n)e_SE (2.7)
mit
Z = /ng e oF, (2.8)

Dabei folgt fiir ein Skalarfeld mit der Lagrangedichte

1 M m? 2 g 4
£= 50,0)0"0) ~ o)~ Lol (2.9)

mit der Masse m und der Kopplungskonstanten g die euklidische Wirkung
Sp = —iS| = [ d'z 1(8 o) + @qb? + Tt (2.10)
B i P 2 47 ) '

welche dann bei der Berechnung der euklidischen Greensfunktionen verwendet wird.

2.2. Gitterdiskretisierung

Der néchste Schritt zur Betrachtung der Feldtheorie auf dem Gitter ist die Diskretisie-
rung der euklidischen Raumzeit. Diese Gitterdiskretisierung auf einem endlichen Gitter
ermoglicht die numerische Auswertung der Theorie auf dem Computer. Die Auswertung
erfolgt anhand diskretisierter Operatoren, welche im Kontinuumslimes mit den Operato-
ren im Kontinuum iibereinstimmen. Die Zeitkomponente 7 wird per Konvention und zur
Abgrenzung zur Minkowski-Metrik mit x4 bezeichnet, so dass sich fiir das Skalarprodukt
im euklidischen Raum

Ty =Ty + Y2y2 + T3y3 + Tays (2.11)

ergibt. Die kovarianten und kontravarianten Elemente eines euklidischen Vektors sind
identisch, z, = x* mit p = 1,2,3,4. Zur Diskretisierung dieser Raumzeit wird ein hyper-
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kubisches Gitter

A:aZ4:{x

x
£ e Z} (2.12)
a

mit der Gitterkonstante a eingefiihrt. Das Skalarfeld ¢(z) ist nun nur noch auf den
Gitterpunkten x € A definiert. Partielle Ableitungen werden auf dem Gitter durch finite
Differenzen ersetzt, wobei zwischen verschiedenen Varianten, wie der Vorwértsableitung

1 N

Alo(w) = ~(¢(x + 1) — 6(x)) (2.13)

und der Riickwartsableitung
1 .

ALG(r) = (6(x) — o(z — 1) (214)
mit dem Fehler O(a) im Vergleich zur analytischen Ableitung oder der zentralen Ablei-
tung

1 . .
Auo(z) = o (¢(a + 1) — ¢z — 1)) (2.15)

mit dem Fehler O(a?) unterschieden werden kann. ji ist hier der Einheitsvektor in p-
Richtung. Der d’Alembertoperator auf dem Gitter kann durch

1
a?

O¢(z) = —AAfg(x) =)

p=1

(20(x) = o + i) — oz — 1)) (2.16)

definiert werden. Raumzeit-Integrale werden bei der Diskretisierung durch Summen er-
setzt

[t Ya (2.17)

TEA

sodass das Integrationsmafl des Funktionalintegrals lediglich die Gitterpunkte x € A
enthélt,

Do = [ do(x). (2.18)

TEA

Fiir endliche Gitter enthélt das Funktionalintegral also nur eine endliche Anzahl an
Integralen. Bei der Definition eines endlichen Gitters wird meist zwischen der Gitterldnge
Ly = Ly = Ly = L in die Raumrichtungen und der Lénge Ly, = T in die Richtung der
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euklidischen Zeit unterschieden, sodass das Volumen des Gitters V = L3 x T betrigt
und das Gitter die Gitterpunkte

r, =an, mit n,=012...L,—1 (2.19)

enthilt. Fiir die Rander des Gitters werden meist periodische oder antiperiodische Rand-

bedingungen gewéhlt

o(x) = ¢(x + L) bzw. ¢(z) = —¢(z + L,fn). (2.20)

Durch die Diskretisierung sind Impulse auf dem Gitter auf die erste Brillouin-Zone

T T
— < — 2.21

—<Pus (2.21)

beschrénkt. Dadurch wird ein ultravioletter Cutoff |p,| < = eingefiihrt, der dafiir sorgt,

dass Feldtheorien auf dem Gitter automatisch regularisiert sind.

2.3. Eichtheorien auf dem Gitter

In diesem Kapitel werden Eichfelder auf dem Gitter betrachtet, eine Einfithrung in die
Eichtheorien im Kontinuum findet sich in Anhang [B] Die Forderung einer Invarianz
unter lokalen Eichtransformationen fiithrt zur Einfithrung von Eichfeldern. Die Form, mit
der diese auf dem Gitter eingefiithrt werden, kann aus der Invarianzforderung abgeleitet
werden. Bei einer Rotation unter SU(N) transformiert sich das Feld gemé&8

¢ — ¢ =Qx)p(x) mit Q(z) € SU(N). (2.22)

Produkte ¢¢ der Felder am selben Raumzeitpunkt sind somit eichinvariant. Im Konti-
nuum werden kinetische Terme in der Wirkung durch die Einfithrung der kovarianten
Ableitung eichinvariant. Die diskretisierten Ableitungen in (2.13)—(2.15)) enthalten jedoch
Felder an benachbarten Gitterpunkten, was dazu fiihrt, dass kinetische Terme nicht mehr

eichinvariant sind:
o(2)o(z + 1) = ¢/ (2)¢' (v + o) = ¢(2)QN(2)Qx + ) d(x + f1). (2.23)
Wenn in das Produkt ein weiteres Feld U, (x) in der Form

¢ (@)U}, (2) (x + f1) = $(2) Q2 (2)U, (2)Qz + p)é(a + ) (2.24)
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e
! U, () [e+a SR C) !

Abbildung 2.1.: Linkvariablen U, (z) und U} (z — ).

eingefiigt wird, wird dieses Produkt eichinvariant, wenn das neue Feld geméf
Un(2) = Ul(w) = Q) Uy ()0 (x + 1) (2.25)

transformiert. Dieses Feld mit Startpunkt z und Richtung g wird im Gitter auf die
Verbindung der Gitterpunkte z und x + i gesetzt. Die Orientierung dieser sogenannten
Linkvariable U, (x) kann auch in negative Richtung zeigen, hier gilt

U_u(x) =Ul(z — f). (2.26)

Beide Linkvariablen sind in Abbildung[2.1| gezeigt. Die Entsprechungen dieser Linkvaria-
blen im Kontinuum sind die Paralleltransporter, welche zum Beispiel in [17] ausfiihrlich
eingefithrt werden.

. - <  { L
r+v N T+ u+v
UJ(:C + )
yUl(2) AU, (z + 1)
@ | ? 3 .
T T+ [
Uy(z)

Abbildung 2.2.: Plakette.

Die Spur iiber eine geschlossene Schleife aus Linkvariablen ist ein eichinvariantes Ob-
jekt [I1]. Das kleinste dieser Objekte ist die sogenannte Plakette U, (x), welche aus vier
Links aufgebaut ist:

Uw(2) = U(2)Up(x + )U_p(x + o+ 0)U_ (2 + D)
= U, (2)U,(z + QU (x + 0)US(2) (2.27)
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Diese in Abbildung gezeigte Plakette wurde von Wilson [I8] genutzt, um mit der
Wilson-Wirkung Sy eine Yang-Mills-Wirkung Syy auf dem Gitter zu konstruieren. Dazu
wird iiber alle Plaketten summiert, wobei jede Plakette lediglich in einer Umlaufrichtung
beriicksichtigt wird. Die Wirkung kann dann durch

Sw = 1——ReTr[U ()] fir SU(N) (2.28)
> 3 )

z 1<pu<v<4

dargestellt werden. Diese einfache Wirkung ist eichinvariant, reell und positiv. Wenn die
Linkvariable durch

U (@) = exp(—aA, (x) (2.20)
mit dem Vektorfeld
Ay(x) = —igAZ(a:)Tb (2.30)

definiert wird, so fiihrt die Entwicklung der Wilson-Wirkung fiir kleine Gitterkonstanten
a auf die Form

= — X:ﬁkuy_qu+0@% (2.31)
welche mit der Ersetzung
2N

im Kontinuum zur Yang-Mills-Wirkung

Synt = / d'z (—%Tr[FW(:U)F“”(x)]) (2.33)

iibergeht. Der Erwartungswert einer Gréfle O kann nun mit Hilfe des Funktionalintegrals
und der Wilson-Wirkung bestimmt werden und ist durch

1
= / DU Qe SwlU] (2.34)

mit

/DU HH/dU (2.35)

zeEA p=1
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und
7 = / DU e~ 5wl (2.36)

gegeben. Damit das Pfadintegral wie die Wirkung invariant unter Eichtransformationen
ist, muss auch das Integrationsmaf} invariant sein. Dies ist gegeben, wenn das Haarsche
Maf auf der Eichgruppe verwendet wird [I1]. Dieses erfiillt auf der Gruppe G fiir eine
Funktion f die Eigenschaften der Invarianz

/f(U)dU:/f(QU)dU:/f(UQ)dU fir alle Q€ G (2.37)
G G G

und der Normierung
/ dU = 1. (2.38)
G

Ein weiteres eichinvariantes Objekt aus Linkvariablen ist die Wilson-Schleife, welche
spater fiir die Verbesserung der Eichwirkung verwendet wird. Eine Wilson-Schleife W,
besteht aus zwei raumlichen Wilson-Linien S(&,7,0), S(Z,7,t) und zwei zeitlichen Trans-
portern T'(Z,t), T'(¢/,t). Die rdumliche Wilson-Linie S(Z,y,t) verbindet die Punkte ¥ und
y entlang eines Pfades Cz; zum festen Zeitpunkt ¢, wiahrend der zeitliche Transporter
T(Z,t) aus einem Produkt aus aufeinanderfolgenden Linkvariablen besteht, welche sich
auf der rdumlichen Koordinate 7 befinden. Die Verbindung dieser vier Elemente ergibt
eine geschlossene Schleife L. Die Spur iiber diese Schleife ist die eichinvariante Wilson-
Schleife:

Wy = Te[S(Zg.0T (7,08 (G 0OT(E D] =Tr | [[ Un(w)]| . (2.39)

(w,p)€L

2.4. Fermionen auf dem Gitter

Im Gegensatz zu den oben eingefiihrten Skalarfeldern ¢(z), die fiir gleiche Zeiten 2° = ¢/°
kommutieren, also

[0(x),0(y)] = d(x)(y) — d(y)o(z) =0 (2.40)
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erfiillen, miissen fermionische Felder 1 (z) antikommutieren, um Teilchen zu re-
préasentieren, die der Fermi-Dirac-Statistik gehorchen. Es muss also

{¢(2)0(y)} = (@)Y (y) + ¥ (y)¢(r) =0 (2.41)

gelten. Diese Eigenschaft ist erfiillt, wenn die Fermionfelder durch Grafimannvariablen
dargestellt werden (siehe Anhang . Mit dem fermionischen Pfadintegral mit dem In-
tegrationsmaf3

DYDY = H Hdwa )i (@ (2.42)
ldsst sich der Vakuumerwartungswert einer Grofle O durch
(0|0|0) = / DDy O et (2.43)

ausdriicken, wobei S die fermionische Wirkung ist. Im Falle eines freien Diracfeldes gilt
fiir diese Wirkung mit den in Anhang definierten Dirac-Matrizen -,

Sy = [ ' 0(2) (3,0 + m)i(a) (2.44)

Wenn die fermionischen Felder bilinear in der Wirkung auftreten, kann das Gauflintegral,
wie es in ((C.15)) eingefiihrt ist, verwendet werden, um das Pfadintegral auf dem Gitter
Al

/ DyYDi)e 57 = / DYDY e =y = det Q (2.45)

zu losen. Dabei wird () als Fermionmatrix und det () als Fermiondeterminante bezeichnet.
Der analytisch schwierige Teil liegt hier also nicht in der Integration, sondern in der
Auswertung der Determinante der Matrix (), welche bereits bei kleinen endlichen Gittern
sehr grof ist.

Die eichinvariante, diskretisierte, ,,naive“ Gitterversion der fermionischen Wirkung ist

2a

(x Tz — p)(x — fi
Sy =at Y i (Z’m +A ~ Dile — WL ”)+mw<x>). (2.40

Da diese Wirkung bilinear in ¢ und 1 ist, kann sie in der Form

Sp=a*) (x)D(xy)(x) (2.47)

10
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mit dem diskretisierten Diracoperator

- Un(@)001py — Uﬁ(x — [1)0a—py
D(x,y) = ; Ya o +mb,, (2.48)
geschrieben werden. Diese Form des Diracoperators birgt Probleme, die deutlich werden,
wenn der Operator fouriertransformiert wird, um den Fermionpropagator zu bestimmen.
Dazu wird in beiden Raumzeitkoordinaten transformiert und U,(x) = 1 fiir alle  und
1 gewdhlt. Damit lasst sich die Grofle

2 1 —ip-za ig-ya
D(p,q) = Zze PED ()Y
Y

eiqua - efiqua

_ %Xx:ei(pq)-m (Z — + m1> = 6(p — q)D(p) (2.49)

p=1

erhalten. Dieser diskret fouriertransformierte Diracoperator kann durch

D(p) = ml + é Z% sin(p,a) (2.50)

p=1

dargestellt werden. Der Propagator wird nun durch das Invertieren des fouriertransfor-
mierten Operators erhalten,

) = ml+ia~' Y7 v, sin(p,a)
LA R > sin®(p,a)

(2.51)

Im Falle masseloser Fermionen (m = 0) hat dieser nicht nur einen Pol bei
p=(0; 0; 0; 0),

sondern weitere fiir alle Viererimpulse, bei denen die Komponenten p,, € {0,7/a} erfiillen.
Damit ergeben sich fiir Impulse in der Brillouinzone mit p, € (—n/a;m/a] insgesamt 15
weitere unphysikalische Pole, die sogenannten Fermiondoppler. Nielsen und Ninomiya
[19, 20] haben gezeigt, dass eine freie, chiral invariante fermionische Gitterwirkung, wel-
che lokal, translationsinvariant und reell ist, notwendigerweise Fermiondoppler enthélt.

Um Fermiondoppler zu vermeiden, muss also eine der obigen Eigenschaften der Git-
terwirkung gebrochen werden. Ein Weg, dies zu tun, ist die explizite Verletzung der
chiralen Invarianz durch das Hinzufiigen des sogenannten Wilson-Terms zur Wirkung.
Durch diesen Term erhalten die unphysikalischen Fermionen eine Masse, wiahrend das
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2. Feldtheorien auf dem Gitter

physikalische Fermion masselos bleibt. Der Diracoperator im Impulsraum wird zu

D(p) =ml + é Z% sin(pua) + 1% Z(l — cos(p,a)) (2.52)

n=1 p=1

verdndert. Der zusdtzliche Term verschwindet fiir alle Komponenten, fiir die p, = 0
gilt, wéhrend fiir alle Komponenten mit p, = 7/a ein Beitrag 2/a addiert wird. Damit
erhalten alle Doppler die Gesamtmasse

21
m+ —,
a

wobei [ die Anzahl an Komponenten mit p, = m/a ist. Im Limes a — 0 steigt die Masse
der Doppler stark an und diese entkoppeln vom niederenergetischen Bereich der Theorie.
Lediglich der physikalische Pol des Propagators [7_1(]0) bleibt bestehen. Die fermionische
Wirkung wird durch die Einfiihrung des Wilson-Terms zu

Sf:a42{(m+§)¢ Zw (1 + ) Uf(z - )z/z(x—ﬂ)} (2.53)

T ,uil

verdndert. Die Summation erfolgt hier in negativer und positiver Richtung.

Diese Wirkung kann mit der Einfiihrung des Hoppingparameters x mit

1

- 2.54
2am + 8’ ( )

K

welcher fiir grofle Massen klein wird, auf eine andere Art und Weise dargestellt werden.
Dafiir werden die Felder in der Form

a*(am +4)(x) = P(a),  *P(am +4))(x) = P(x) (2.55)
reskaliert. Mit der Kurzschreibweise ), =y ,—+1 kann die Wirkung dann durch

sfzz{ —nzw (1+7,)Uf(x — )@/J(x—ﬂ)}EZ@/}wa@/zy (2.56)

T

dargestellt werden. Auf der rechten Seite ist die Wirkung als Produkt der Fermionfelder
mit der Fermionmatrix gezeigt, die Matrixelemente sind damit durch

Quy = Ooy = £ ) Guy (1 + ) Ul (x — 1) (2.57)

m

12



2.4. Fermionen auf dem Gitter

gegeben. Diese Form der Fermionmatrix wird auch als Dirac-Wilson-Operator bezeich-
net. Um die Zweipunktfunktion zu berechnen, kénnen nun die bereits gezeigten Tech-
niken fiir Pfadintegrale, die oben hergeleiteten Grofien und die Integrale aus Anhang [C]
verwendet werden. Das erzeugende Funktional fiir die Greenschen Funktionen des freien
Fermionfeldes kann als Z[n,7]/Z[0,0] mit

Z[Wﬂ = /prw exXp {_ Z @zQxywy + Z[ﬁz% - ¢x77x]} (258)

definiert werden. Analog zu ((C.15)) kann dieses Integral zu

Z[n.n] = det @ - exp {— >, ﬁznylny} (2.59)

berechnet werden, womit fiir die Zustandssumme Z = Z[0,0] = det @) folgt. Die Zwei-
punktfunktion kann nun mit (C.14)) berechnet werden, es ergibt sich

— A
(o) = By, 0y, 207

0.0 =Q,.- (2.60)

n=n=0

Die Berechnung einer Zweipunktfunktion kann also iiber die Inversion der Fermionma-
trix erfolgen und muss nicht durch die explizite Integration geschehen. Dies ist jedoch fiir
grofle Matrizen lediglich numerisch moéglich und ist mit groem Rechenaufwand verbun-
den. Ein grofleres Problem stellt jedoch die Berechnung der Zustandssumme dar. Diese
wird mit Hilfe von Monte-Carlo-Methoden durchgefiihrt.
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3. Supersymmetrische
Yang-Mills-Theorie

Die folgenden Abschnitte iiber Supersymmetrie sollen lediglich einen Uberblick iiber
die wesentlichen Zusammenhénge und Formeln in der Supersymmetrie als Hinfiihrung
zur supersymmetrischen Yang-Mills-Theorie darstellen. Herleitungen sowie weitergehen-
de Zusammenhénge kénnen in der Literatur nachgelesen werden, zum Beispiel im Buch
von Kalka und Soff [21], auf das sich diese Ubersicht zu grofen Teilen bezieht. Des
Weiteren stiitzen sich die folgenden Abschnitte, besonders die zur supersymmetrischen
Yang-Mills-Theorie, auf die Arbeiten von Luckmann [22], Demmouche [23] und Sand-
brink [24].

3.1. Poincaré-Superalgebra

Um die Poincaré-Superalgebra als Erweiterung der Poincaré-Algebra einzufithren, wird
zundchst das Konzept der Graudierung benotigt. Im hier benétigten einfachsten Fall
der Zs graduierten Algebra besteht diese graduierte Algebra aus einem Vektorraum I,
welcher die direkte Summe aus zwei Unterrdumen Ly und IL; ist

L =Lo®L, (3.1)
und einem Produkt o mit den Eigenschaften

Uy o Uy € Ly Y uq,ug € Ly (3.2)
uov €l Vuée lLy,vel,
Ulo'UQE]LO Vvl,vg ELl.

Die Zs-Graduierung der Poincaré-Algebra liefert die Poincaré-Superalgebra. Dabei wird
der Unterraum Ly von den zehn Generatoren P*, M*" der Poincaré-Algebra, welche die
Raum-Zeit-Translationen und Rotationen darstellen, aufgespannt und durch N Genera-
toren der Supersymmetrie @, (a = 1,...,4N) erweitert. Fiir jede N -fache Erweiterung
der Supersymmetrie werden also vier Generatoren (), eingefiihrt. Fiir den vorliegenden
Fall von N = 1 wird (Q,) als Majorana-Spinor identifiziert, da ein Majorana-Spinor vier
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3.2. SUSY-Teilchen

Freiheitsgrade besitzt, wihrend ein Dirac-Spinor durch seine vier komplexen Eintrage
acht Freiheitsgrade besitzt. Fiir Majorana-Spinoren () gilt unter Ladungskonjugation
mit C' = iy?q0:

Q=0Q" Q=Q'C (3.5)

Fiir Produkte im Unterraum Ly gelten mit P* o P¥ = [P* P¥] die Relationen der Poin-
caré-Algebra

Lo x Lo — Lo :
[P*,P"] =0, (3.6)
[PH M) = i(g" P7 — g"° PP),
(MM = i{gP M — N - M A (38)

Fiir Produkte zwischen den Rdumen L, und L; ist es notwendig, die Kommutatoren zwi-
schen den SUSY-Generatoren und den Generatoren der Poincaré-Algebra zu definieren.
Es gilt

ILO X Ll — ]Ll :
[P",Qa) =0, (3.9)
(M Qo) = =0ty Q, (3.10)

mit 0%y = 1[v",7"]. Fiir das dritte Produkt kann nach einem allgemeinen Ansatz aus der
Forderung (3.4)) die Beziehung

L, xL; — ]LO :
{Qa,Qb} = 295, Pu (3.11)

gefunden werden.

3.2. SUSY-Teilchen

Die Teilchen des SUSY-Teilchenzoos leiten sich aus den irreduziblen Darstellungen
der Poincaré-Superalgebra ab. Um diese klassifizieren zu konnen, werden die Casimir-
Operatoren dieser Algebra betrachtet, welche mit allen Generatoren vertauschen. Wegen
ist der Casimir-Operator

P? = P,P* (3.12)
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3. Supersymmetrische Yang-Mills-Theorie

der Poincaré-Algebra auch ein Casimir-Operator der Superalgebra. Mit diesem Operator
lassen sich Teilchen nach ihrer Masse klassifizieren. Teilchen eines Super-Multipletts
besitzen dieselbe Masse. Fiir die Definition eines zweiten Casimir-Operators wird der
Superspin benétigt. Um diesen zu definieren, wird zunéchst der Pauli-Lubanski-Vektor
WH betrachtet, welcher die relativistische Verallgemeinerung des Spinvektors darstellt.
Er ist iiber

1
Wi = G P M (3.13)

definiert. In der Poincaré-Algebra ist W? ein Casimir-Operator. Die Verallgemeinerung
dieses Vektors, mit der eine Abhéngigkeit von den SUSY-Generatoren geschaffen wird,
gelingt, indem aus den Weyl-Spinoren @ und Q) ein Vierervektor

X' = Qo"Q (3.14)

gebildet wird. Der verallgemeinerte Spinvektor Y# wird dann iiber

1

Y =WH— ZX“ (3.15)
definiert. Die Betrachtung des Kommutators
YY) = i€ppe PPY (3.16)

zeigt, dass dessen Struktur der einer Drehimpulsalgebra dhnelt. Im Ruhesystem mit
PP = (m,0,0,0) geht der Kommutator in

YY) = imeopuo Y’ (3.17)

iiber. Das Produkt %}7 wird Superspin genannt. Es ist Basiselement einer Drehimpul-
salgebra. Die Eigenwerte des Superspins sind

— 2
% 1

— | = 1 it y=0-=.1.... 3.18
<m> y(ly+1) mit y ST (3.18)

Aus Y# und dem Generator der Translation P* lasst sich nun mit

Cm =YHpY — YV P (3.19)
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3.3. Superfelder

der Operator C*” definieren, aus dem der Casimir-Operator

C? =C,,C" (3.20)
gebildet wird. Im Ruhesystem lésst sich

C? = —2m?Y? (3.21)

schreiben, womit die Eigenwerte aus (3.18]) folgen:

1
C?* = —2m*y(y+1) mit y=0, STARRRE (3.22)
Supersymmetrische Teilchen lassen sich somit durch Masse m und Superspin y klassifizie-
ren. Innerhalb der durch diese Klassifikation gebildeten Super-Multipletts ist zusétzlich
eine Unterscheidung nach der dritten Komponente des Superspins y3, sowie dem Eigen-

wert s3 des relativistischen Spins %W?’ moglich.

Fiir y = 0 ergibt sich die einfachste Darstellung der SUSY-Algebra. Das Multiplett
fiir y = 0 wird als chirales Supermultiplett bezeichnet. Es enthélt ein skalares, ein pseu-
doskalares und ein Spin—%—Teilchen und beschreibt Materiefelder. Mit ihm kénnen in der
supersymmetrischen Erweiterung der QCD Quarks und Leptonen, sowie ihre Superpart-
ner Squarks und Sleptonen dargestellt werden. Das Multiplett fiir den néchstgréfieren
Superspin y = 1/2 ist das Vektor-Supermultiplett. Es enthilt zwei Spin—%—Teilchen,
ein (Spin-1) Vektorteilchen und ein skalares Teilchen. Mit dem Vektor-Supermultiplett
konnen die Eichbosonen und ihre Superpartner, also Photonen, Gluonen und W- und
Z-Bosonen sowie Photinos, Gluinos, Winos und Zinos, beschrieben werden.

3.3. Superfelder

Im Folgenden wird der Superraum-Formalismus zur Beschreibung der supersymmetri-
schen Theorie genutzt. Die Elemente im Superraum setzen sich aus vier bosonischen
Koordinaten z*, sowie vier fermionischen Koordinaten, welche durch die zweikomponen-
tigen Weyl-Spinoren 6 und @ ausgedriickt werden, zusammen. Das Superfeld F(x,0,0)
héngt von diesen Koordinaten ab. Durch die Abhéngigkeit von den Grafimann-wertigen

Variablen lisst sich das Feld nach (C.2)) vollstindig nach # und # entwickeln:

F(2,0,0) =f(x) + 0¢(x) + Ox(x) + (00) M (z) + (A0) N (x)
+00"GA,(x) + (00)0N(z) + (00)0a(x) + (00)(00)d(x) (3.23)
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3. Supersymmetrische Yang-Mills-Theorie

Durch die Forderung, dass F ein Lorentzskalar ist, ldsst sich das Transformationsverhal-
ten der Komponentenfelder unter Lorentztransformationen bestimmen. Das entwickelte
Superfeld enthélt

e vier komplexe skalare Felder: f(z), M(x), N(z),d(z)
e zwei linkshandige Weyl-Spinorfelder: ¢(z),a(x)

e zwei rechtshindige Weyl-Spinorfelder: y(z), ()

e ein komplexes Vektorfeld: A,,(z).

Linearkombinationen von Superfeldern liefern wieder Superfelder, womit diese eine linea-
re Darstellung der SUSY-Algebra liefern, welche jedoch reduzibel ist. Die irreduziblen
Darstellungen werden erhalten, indem Zusatzanforderungen, an das Superfeld gestellt
werden.

Das chirale Superfeld erfiillt D 4F = 0, das antichirale D4 F = 0, wobei D jund Dy
die kovarianten Ableitungen im Superraum sind. Fiir diese gilt

Djy=04+ i(a”@)Aaﬂ, DA = —8A -+ i(ﬁ“@)Aau. (3.24)

Das chirale Superfeld beinhaltet ein komplexes Skalarfeld zur Beschreibung von Slepto-
nen und Squarks, ein linkshéndiges Weyl-Spinorfeld zur Beschreibung von Leptonen und
Quarks und ein komplexes Skalarfeld als Hilfsfeld.

Das Vektor-Superfeld V (z,0,0) erfiillt die Bedingung V (2,0,0) = V1(2,0,0), jedes re-
elle Superfeld ist also per Definition ein Vektor-Superfeld. Das Vektor-Superfeld enthélt
zwei Weyl-Spinorfelder, zwei reelle Skalarfelder, ein komplexes Skalarfeld und ein reelles
Vektorfeld. In der Wess-Zumino-Eichung gilt

Virz(2.0.8) = (00"8) A, +i(60)(BX) — i(80)(6X) + (00)(86)d (3.25)

mit dem reellen Vektorfeld A, als Feld der Eichbosonen, dem komplexen Weyl-Spinorfeld
A als Feld der SUSY-Partner der Eichbosonen und dem reellen Skalarfeld d als Hilfsfeld,
welches durch die Euler-Lagrange-Bewegungsgleichungen eliminiert werden kann.

Die supersymmetrische Feldstérke des Vektor-Superfeldes V' in der adjungierten Dar-
stellung ist definiert durch

1 - _
Wy = —Z(DD)e_VDAeV. (3.26)

Sie ist invariant unter supersymmetrischen Eichtransformationen. Die Feldstirke lasst
sich mit den bekannten Komponentenfeldern d und A sowie dem antisymmetrischen

18



3.4. Supersymmetrische Lagrangedichten

Feldstérketensor F,, aus wie folgt darstellen [25]:
W4 =Xy —2d"04 — (0"0) aF}, — (00)(0" D) 4. (3.27)
Dabei ist die kovariante Ableitung D), in der adjungierten Darstellung durch
(DuA)* = A" + g fabc AL (3.28)

definiert, wobei fu;. die Strukturkonstante der Eichgruppe und g die Kopplungskonstante
ist. Im Falle der SU(2) gilt fupe = €ape. Die Lagrangedichte des Vektor-Superfeldes kann
mit dieser supersymmetrischen Feldstiarke durch

1
L= ZWAWA + h.c. (3.29)

definiert werden, wobei mit h.c. die hermitesch konjugierten Terme bezeichnet werden.

3.4. Supersymmetrische Lagrangedichten

Eine Wirkung S, die in der Form
S = / d*z L (3.30)

aus einer supersymmetrischen Lagrangedichte £ gebildet wird, muss invariant unter
SUSY-Transformationen sein,

0.5 = 0. (3.31)
Dafiir muss die Lagrangedichte invariant bis auf eine Viererdivergenz
0L = 0,A" (3.32)
sein, wobei A* einen Vierervektor symbolisiert, da diese Divergenz bei der Integration in
ein Oberflachenintegral iibergeht. Dieses verschwindet bei grofien Integrationsvolumina,
insbesondere wenn {iber den gesamten Raum integriert wird.

3.5. N =1 supersymmetrische Yang-Mills-Theorie

Das in dieser Arbeit betrachtete Modell ist die supersymmetrische Erweiterung der Yang-
Mills-Theorie. Die Lagrangedichte der Kontinuumswirkung der N = 1 supersymme-
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3. Supersymmetrische Yang-Mills-Theorie

trischen Yang-Mills-Theorie in der Wess-Zumino-Eichung kann durch Betrachtung der
héchsten Komponente von W4W, in der Lagrangedichte des Vektor-Superfeldes
durch
r _ 1FaFa,,w i;\au o L

SYM = — 5w +§ V(D) +§d d (3.33)
dargestellt werden [25, 26]. Sie enthélt in der Feldstirke das Eichfeld Aj(z) und ein
Majorana-Fermion A = (Ag; A?)7 in der adjungierten Darstellung. Das Hilfsfeld d oh-
ne kinetischen Term kann ausintegriert werden [27]. Die Lagrangedichte hat eine grofie
Ahnlichkeit mit dem masselosen Limes einer ein-flavor QCD. Im Gegensatz zur QCD
enthélt Lgyy die Fermionen jedoch in der adjungierten Darstellung, da diese die Super-
partner der Eichbosonen sind und daher in derselben Darstellung wie diese enthalten sein
miissen. Die Eichbosonen werden als Gluonen, die Superpartner als Gluinos identifiziert.
Das Hinzufiigen eines Massenterms

Loy = %M (3.34)

mit einer Gluino-Masse m, # 0 bricht die Supersymmetrie weich, also so, dass keine
ultravioletten Divergenzen in Massen von Skalaren auftreten. Wenn zusétzlich die ima-
gindre Zeit eingefithrt wird, um in den euklidischen Raum iiberzugehen, lésst sich die
Lagrangedichte als

Lovae = iFl‘ij“"“’ + %)\‘W“(DMA)“ + S (3.35)
schreiben [27]. Da von nun an lediglich Grofien in der euklidischen Metrik betrachtet
werden, wird der Index E nicht mehr ausgeschrieben.

Ahnlich wie die ein-flavor QCD, die eine U(1)5xU(1)y-Symmetrie besitzt, wobei
die U(1)s-Symmetrie durch die Adler-Bell-Jackiw-Anomalie gebrochen ist, besitzt die
SYM ohne Massenterm neben der Supersymmetrie eine chirale U(1)s-Symmetrie, wel-
che mit der sogenannten R-Symmetrie der Supersymmetrie zusammenfallt. Diese ist
durch die Anomalie zu einer Z,n-Symmetrie gebrochen. Durch die Bildung eines Gluino-
Kondensats kommt es zu einer spontanen Symmetriebrechung zu einer Zs-Symmetrie
[7, 26]. Dies entspricht einer Erhaltung der Fermionzahl modulo zwei fiir die Majorana-
Fermionen.

3.6. SYM-Massenmultipletts

In Analogie zur QCD erwartet man auch bei der supersymmetrischen Yang-Mills-Theorie
ein Confinement, welches sich durch den linearen Anstieg des Potentials zwischen zwei
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3.7. Gitterdiskretisierung der N' =1 SYM

statischen Quellen duflert. Als Konsequenz daraus besteht das Spektrum der SYM aus
farbneutralen, gebundenen, hadronischen Zusténden aus den fundamentalen Feldern, den
Gluonen und Gluinos. Um das Spektrum im Niederenergiebereich zu bestimmen, haben
Veneziano und Yankielowicz [§] eine effektive Wirkung konstruiert, mit der die Teil-
chen des chiralen Wess-Zumino-Multipletts bestimmt werden konnten. Dieses Multiplett
enthélt

e )\, ein aus zwei Gluinos bestehendes skalares Boson mit J©¢ = 0%, welches analog
zum fo-Meson in der QCD, jedoch aus Fermionen in der adjungierten Darstellung
zusammengesetzt ist und daher a-fy genannt wird,

e M5\, ein aus zwei Gluinos bestehendes pseudoskalares Boson mit J©¢ = 0,
welches analog zum 7’-Meson der QCD mit a-n’ bezeichnet wird,

o x = F*"g,A ein aus einem Gluino und einem Gluon bestehendes Spin—%
Majorana-Fermion, welches als Gluino-Glueball bezeichnet wird und kein Ana-
logon in der QCD besitzt.

In diesem Multiplett sind keine Gluebélle enthalten, obwohl es keine Begriindung dafiir
gibt, warum sich keine gebundenen Gluon-Gluon-Zusténde bilden sollten. Aus diesem
Grund haben Farrar et al. [9) [10] einen weiteren Term in die effektive Wirkung von
Veneziano und Yankielowicz [§] integriert und damit ein weiteres, leichteres Multiplett
konstruiert, welches die Teilchen

o FHWE

v, einen skalaren Glueball mit J7¢ = 0,

® c.0 " F* | einen pseudoskalaren Glueball mit JF¢ = 0~
e \, einen weiteren Gluino-Glueball-Zustand mit geringerer Masse

enthélt. In [28] wird mit anderen Argumenten und Hinweisen aus der QCD hergeleitet,
dass das Multiplett, welches die Gluinobélle enthélt, das leichtere ist. Die Anordnung der
beiden Multipletts ist also noch nicht vollsténdig gekléart. Zusétzlich wird eine Mischung
zwischen den Zustédnden erwartet, sodass physikalische Zustdnde aus Mischungen aus
Gluebéllen, Mesonen und Gluino-Gluebillen aufgebaut sind. Im Falle einer gebrochenen
Supersymmetrie kommt es zur Aufspaltung der einzelnen Multipletts.

3.7. Gitterdiskretisierung der N’ =1 SYM

Eine diskretisierte Form der SYM wurde von Curci und Veneziano [29] vorgeschlagen.
Dabei werden die Eichfelder der Eichgrupe SU(NN) durch Linkvariablen U, (z) dargestellt,
die Eichwirkung S, ist die in ([2.28|) eingefiihrte Wilson-Wirkung. Die Gluinos werden
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3. Supersymmetrische Yang-Mills-Theorie

SUSY ohne Mischung SUSY mit Mischung weich gebrochene SUSY

=

Abbildung 3.1.: Massenmultiplett nach Farrar et al.

durch Wilson-Fermionen beschrieben, jedoch werden sie im Unterschied zu (2.56)) in der
adjungierten Darstellung implementiert. Die Gitterwirkung kann dann durch

Sev="5,+5 =% 3 {1 - Lreny } ZA Qudy  (336)
r 1<pu<v<4
dargestellt werden, dabei ist die Fermionmatrix @), durch

4
Ql‘yﬂb,aB = 51’3/6&175046 - K Z [(1 - '7u)a[3(vu(x))ab5x+ﬂ,y +(1 + 'Vu)aﬁ(v;j(x - ﬂ))ab(gw—fhy}

pn=1
(3.37)
mit den Orts-, Farb- und Dirac-Indizes (x,a,or) und dem Hoppingparameter
1
= 3.38
2mg,0 +8 ( )

mit der nackten Gluinomasse my o definiert [30]. Fiir die Implementierung der Gluinos in
der adjungierten Darstellung werden die Linkvariablen V),(z) verwendet. Diese hingen
mit den Linkvariablen der fundamentalen Darstellung U, (x) iiber

[Vi(2)]® = 2Tx[U () T*U,u () T"] (3.39)

zusammen, wobei die 7% die Generatoren der Eichgruppe sind, fiir die 2 Tr[T%T?] = §%
gilt. Im Falle der in dieser Arbeit betrachteten SU(2) gilt 7% = —O’a mit den Paulimatrizen
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3.8. Diskretisierungseffekte

o, (a = 1,2,3). Die einzigen Parameter, durch die die Theorie definiert wird, sind also
die nackte Eichkopplung 8 = 29—]: und die Gluinomasse my

Da die Gluinofelder A und X fiir Majorana-Fermionen nicht unabhéngig sind, wird im
fermionischen Pfadintegral lediglich {iber D\ integriert, sodass

/ Dre 55 = / Dre @ = +,/det Q (3.40)

gilt [31]. Diese Relation lésst das Vorzeichen unbestimmt. Eine eindeutige Definition des
Pfadintegrals iiber das Feld eines Majorana-Fermions ist durch

/ Dre @ = / Die A = Pf(M) (3.41)
gegeben, wobei die antisymmetrische Matrix M iiber
M=0Q=-M" (3.42)

definiert ist [27]. Die Quadratwurzel der Determinanten der Fermion-Matrix wird als
Pfaffsche Determinante Pf(M) bezeichnet. Da die Determinante der Fermion-Matrix
reell und nicht-negativ ist [27], ist Pf(M) reell, kann jedoch positiv oder negativ sein.
Das erzeugende Funktional mit einer externen Quelle J(x) kann dann als Pfadintegral
iiber die Eichfelder geschrieben werden,

ZJ] = / DUDN e %cv—IA = / DU Pf(CQ) exp {—Sg — %Z JxQ;;C‘ljy} . (3.43)
zy

3.8. Diskretisierungseffekte

Wie bei der Einfithrung der Ableitungen auf dem Gitter in Abschnitt bereits an-
gefiihrt, kommt es bei der Gitterdiskretisierung zu Diskretisierungseffekten im Vergleich
zur Theorie im Kontinuum. Diese Effekte haben unterschiedliche Griinde und alle Feh-
lerquellen miissen bekannt sein und beriicksichtigt werden, um aus den Ergebnissen aus
Gittersimulationen eine Aussage fiir die Theorie im Kontinuum treffen zu kénnen. Bei der
Betrachtung der SYM hat die Diskretisierung einen besonderen Einfluss. Die Supersym-
metrie ist, wie in gezeigt, mit den Symmetrien der Poincaré-Algebra verkniipft.
Da es auf dem Gitter keine infinitesimalen Verschiebungen gibt, ist die Supersymme-
trie also wie auch die kontinuierlichen Symmetrien der Raumzeit gebrochen. Dies ist
mit der Verletzung der Leibnizregel durch diskretisierte Ableitungen verbunden [32].
Des Weiteren ist die Supersymmetrie, ebenso wie die chirale U(1)g-Symmetrie, durch
eine nicht-verschwindende Gluinomasse in der Curci-Veneziano-Wirkung explizit
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3. Supersymmetrische Yang-Mills-Theorie

gebrochen. Eine weitere Ursache fiir eine gebrochene Supersymmetrie ist die endliche
Ausdehnung des Gitters und die damit verbundene Wahl von periodischen Randbedin-
gungen fiir Bosonen und antiperiodischen Randbedingungen fiir Fermionen [30].

Um den Einfluss der verschiedenen Effekte quantifizieren und gegebenenfalls durch
geeignete Extrapolationen korrigieren zu kénnen, miissen Simulationen fiir verschiedene
Gittergrofien, Gluinomassen und Kopplungskonstanten durchgefiihrt werden. Fiir den
Ubergang zum Kontinuum muss dann zuerst die Extrapolation zum Limes eines unend-
lich groflen Volumens vorgenommen werden. Anschlieend folgt die Extrapolation zum
Limes einer verschwindenden Gluinomasse. Dies ist durch die Veranderung des Hopping-
parameters K moglich [29]. Wenn dieser auf den kritischen Wert &, eingestellt wird,
verschwinden alle Terme, die die Gluinomasse enthalten und somit explizit die Symme-
trie brechen. Der Wert fiir k., kann auf verschiedene Arten bestimmt werden. Zum einen
ist er erreicht, wenn die Masse des adjungierten Pions a-m, eines Teilchens, das keinem
physikalischen Zustand der SYM entspricht, verschwindet [33]. Zum anderen kann er mit
Hilfe der supersymmetrischen Ward-Identitdten bestimmt werden [34]. Da eine Simula-
tion am kritischen Punkt numerisch zu aufwéndig ist, ist eine Extrapolation notwendig.
Um schlielich die von der Gitterkonstanten abhéngigen Fehler zu korrigieren, ist der
Grenzfall a — 0 oder entsprechend § — oo notwendig. Dafiir werden die gemessenen
Groflen fiir verschiedene Werte der Eichkopplung bestimmt, anschliefend erfolgt erneut
eine Extrapolation zum gewiinschten Limes.

Wenn alle Extrapolationen erfolgt sind, ist die Supersymmetrie wieder hergestellt. Aus-
sagen iiber die Theorie im Kontinuum, wie der Bildung von SUSY-Multipletts, konnen
erst dann erfolgen.

3.9. Verbesserung der Wirkung

Die oben prasentierte Art, die Wirkung der supersymmetrischen Yang-Mills-Wirkung
Ssywm zu diskretisieren, ist nicht die einzig zuléssige. Jede Gitterwirkung, die im Konti-
nuumslimes in Sgyy ibergeht, kann zur Beschreibung der Theorie auf dem Gitter ver-
wendet werden. Daher ist es moglich, die diskretisierte Wirkung Seoy durch zusétzliche
Terme zu verdindern, um somit die Konvergenz zum Kontinuumslimes fiir § — oo zu
verbessern. Hier wird dazu die Eichwirkung S, welche die (1 x 1)-Plaketten enthélt, mit
(1 x 2)-Wilson-Schleifen, welche aus sechs Linkvariablen zusammengesetzt sind, erwei-
tert. Die tree-level Symanzik (t1Sym) verbesserte Eichwirkung lautet dann [35], 36, 37]

4
1 1
Susym — 52 : (CO § {1 - NReTr[Ujjl(x)]] + e § {1 - NReTr[U;VX?(x)]D
T 1<p<v<4 pFv,p,rv=1

(3.44)
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3.10. Korrelator des Gluino-Glueballes

mit den Faktoren c¢g = 1 — 8¢y und ¢; = —%.
Der fermionische Anteil der Wirkung kann durch die Anwendung von Stout-Smearing
[38] verbessert werden. Dabei werden die Linkvariablen im Dirac-Wilson-Operator

verandert. Die neuen Linkvariablen sind durch

1 1

Ui () = Unler) exp {§<Qu<x> — 0l(2)) — 5T (2) - QL<x>]} (3.45)

definiert, wobei U, (z) die originale Linkvariable und €2,,(z) iiber
Qu(x) = pUg(a:)Cu(x) (Keine Summation tiber p) (3.46)
mit der Summe
C(x) = Z (Ul(z + ) Uu(z + 2)Uy(2) + Uy(z — 0 + p)Uu(z — D)US(z — ) (3.47)
v

definiert ist. Dabei ist der Parameter p bei den in dieser Arbeit genutzten Konfiguratio-
nen auf p = 0,15 festgelegt. Das Smearing kann im Prinzip mehrfach angewendet werden,
dies sorgt jedoch fiir eine groBere Ausdehnung der fermionischen Wirkung auf dem Git-
ter. Um die Wirkung lokalisiert zu halten, wird nur ein Smearing-Schritt angewendet
[31].

3.10. Korrelator des Gluino-Glueballes

Gluino-Gluebiille der N/ = 1 SYM werden, wie in Abschnitt [3.6] eingefiihrt, durch

1
X = EF“”“’UW)\“ = 0, Tr [F* ] (3.48)

dargestellt und sind Bestandteil beider Multipletts der effektiven Wirkung von Curci
und Veneziano [29] und Farrar et al. [10]. Der entsprechende Operator auf dem Gitter
wird nach [30, B7] durch

= o Tro[Py(x) A (x)] (3.49)

1<j

dargestellt. Dabei werden nur die Raumkomponenten 7,57 = 1,2,3 betrachtet, es wer-
den also keine Linkvariablen in Richtung der euklidischen Zeit mit einbezogen. Der
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3. Supersymmetrische Yang-Mills-Theorie

Feldstérketensor F),, wird durch den Clover-Plaketten-Operator P, mit

1

P (z) = 81g0

(Ul — Wihh (3.50)
reprasentiert, welcher dieselben Eigenschaften in Bezug auf Paritédts- und Zeitum-
kehrtransformationen besitzt. Dabei ist U, fff) die Summe von Plaketten mit dem Eckpunkt

x in der fundamentalen Darstellung,

UL = Uu(@)U,(x + p)UJ(x + 0)Uf (z)
+ Ul(z — NU(x —0)Uy(z — 0+ ,tl)Uj:(x)
U@ — WU — = D)Vl — o= 9)U (& — D)
LUl 40— UL — @)Ul — ). (3.51)

Die Verwendung von Zweipunkt-Korrelatoren zur Massenbestimmung wird in Abschnitt
beschrieben. Der Korrelator des Gluino-Glueball-Operators verbindet zwei Plaketten,
eine an der Quelle und eine an der Senke, mit einem Gluino-Propagator, wie in Abbildung
3.2 skizziert. Er hat die Form

CP(A) ———ZZ< 5 T U3 ()0} Qs ko U)ol . (3.52)

T,y 1,,k,l

wobei Uy;(x) die Plakette in Raumrichtung ist und 30 die Generatoren der SU(2) sind,
welche in dieser Arbeit als Eichgruppe gewéhlt ist.

Der Korrelator ist eine Matrix im Diracraum und kann in der Form
CoP(At) = C1(AL)G* + C,, (At)75” (3.53)

dargestellt werden [39]. Dabei haben die beiden reellen Komponenten Cy = iTrD[CX]
und C,, = 1Trp[74C,] unter Zeitumkehr die Eigenschaften

Cu(At) = —Cy (T — At),  C.,(At) = C., (T — At). (3.54)

Die Komponenten kénnen unabhéngig voneinander gemessen und zur Massenbestim-
mung verwendet werden, C; liefert jedoch bei der Massenbestimmung des Grundzustan-
des das bessere Signal [30, [37].

Fiir die Verwendung des Korrelators bei den fiir diese Arbeit durchgefithrten Messun-
gen werden verschiedene Verdnderungen des Korrelators vorgenommen, um das Signal
zu verbessern. Die Linkvariablen kénnen mittels APE-Smearing (siche Abschnitt
verdndert werden. Ohne Smearing entsprechen die Links U in P, denen im Eichfeld-Teil

26



3.10. Korrelator des Gluino-Glueballes

Qfl

7 N

V' N

A 4

»
»

Abbildung 3.2.: Darstellung des Gluino-Glueball-Korrelators.

der Wirkung S,;. Geméfl der Definition des Dirac-Wilson-Operators in der verbesserten
Wirkung der SYM enthélt dieser durch Stout-Smearing verdnderte Linkvariablen
V' in der adjungierten Darstellung. Zusétzlich kann Stout-Smearing auf die Linkvaria-
blen U im Korrelator angewendet werden. Dabei muss beachtet werden, dass zwei Smea-
ringlevel die ersten beiden Punkte des Korrelators beeinflussen, da hier ein Smearing in
zeitlicher Richtung stattfindet. Die fermionischen Feldvariablen kénnen mittels Jacobi-
Smearing (siehe Abschnitt verschmiert und somit angepasst werden.
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4. Numerische Methoden

Die Berechnung des Erwartungswertes eines von den Feldvariablen abhédngigen Operators
O[U] beruht, wie in (2.34]) gezeigt, auf der Auswertung des Pfadintegrals

(0) = % / DU WVIOU] mit Z = / DU ¢V (4.1)

mit der Wirkung S[U]. Dabei wird hier aus Griinden der Ubersichtlichkeit nur die In-
tegration iiber rein bosonische Felder U betrachtet. Dieses im Kontinuum unendlich-
dimensionale Integral iiber die Feldvariablen geht bei der Gitterdiskretisierung iiber in
ein Integral iiber die Feldvariablen auf den Gitterpunkten

/DU =11 ﬁ /dU#(x). (4.2)

zeA p=1

Dennoch ist eine analytische Berechnung des Pfadintegrals aufler bei sehr kleinen Gittern
aufgrund der grofilen Anzahl an nétigen Integrationen nicht moglich [11]. Die zurzeit
einzige Moglichkeit das Integral auszuwerten ist die Monte-Carlo-Integration. Dabei wird
das Integral durch die endliche Summe iiber N Feldkonfigurationen U™ approximiert,

(O)~0==> o] (4.3)

Hier wird das sogenannte Importance Sampling der Feldkonfigurationen mit der Gewich-

—Sw™] angewendet. Dies bedeutet, dass die Verteilung der Konfigurationen,

—S[U(”)}

tung o< e
welche fiir die Monte-Carlo-Integration generiert werden, dem Boltzmannfaktor e
folgt. Die Wahrscheinlichkeitsverteilung ist dann

e SlUipy

APWU) = g5

(4.4)
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4.1. Markow-Ketten

4.1. Markow-Ketten

Um moglichst effizient Konfigurationen mit der gewiinschten Verteilung zu generieren,
wird ausgehend von einer Startkonfiguration mithilfe des Metropolisalgorithmus eine
Markow-Kette aus Konfigurationen erzeugt. Dabei kann die Startkonfiguration U
willkiirlich gew#hlt werden. Mittels des Markow-Prozesses wird dann eine Folge von
Konfigurationen

voO —yt L u®» (4.5)

generiert, die ab einer geniigend groen Kettenlinge der Gleichgewichtsverteilung P[U]
folgen. Die Konfigurationen werden anhand ihrer Position in der Kette durchnummeriert.
Der Index n wird dabei als Monte-Carlo-Zeit bezeichnet und darf nicht mit der eukli-
dischen Zeit der vierdimensionalen Raumzeit verwechselt werden. Der Schritt von einer
Konfiguration U™ zur nachfolgenden Konfiguration U™+ wird als Update bezeichnet.
Die Ubergangswahrscheinlichkeit von einer Konfiguration in eine andere

PUM =" =U)=1TUU) (4.6)
hat die Eigenschaften

0<TW )<L, Y TUU)=1. (4.7)

Die Ubergangswahrscheinlichkeit ist nicht von der Position in der Markow-Kette, also der
Monte-Carlo-Zeit n, abhéngig, sondern hiangt lediglich von der Ausgangskonfiguration U
und der Zielkonfiguration U’ ab. Der Markow-Prozess ist ergodisch, das heifit, dass jede
Konfiguration in einer endlichen Anzahl an Schritten erreichbar ist. Um Gleichgewicht
zu gewédhrleisten, wird die Bedingung

Y T(U'U)P(U) = P(U) (4.8)

gestellt. Dieses Kriterium ist auf alle Falle erfiillt, wenn die Bedingung des detaillierten
Gleichgewichts

T(U'|U)P(U) = T(U|U")P(U") (4.9)

erfiillt wird, die Bedingung (4.8)) also nicht mehr an alle Ubergéinge zusammen, sondern
an jeden einzelnen Ubergang gestellt wird. Es kann gezeigt werden, dass die Gleichge-
wichtsverteilung P(U) einen Fixpunkt des Markow-Prozesses darstellt [11]. Dieser Fix-
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punkt wird von jeder beliebigen Startkonfiguration aus erreicht. Nach einer geniigend
groflen Anzahl an Updates liegt also die gewiinschte Verteilung vor. Bevor die Berech-
nung einer Observablen mittels der Approximation des Pfadintegrals vorgenommen wird,
miissen zunéchst also gentigend Schritte in der Markow-Kette erfolgt sein. Wenn dies der
Fall ist, verbleibt das System jedoch im Gleichgewicht.

4.2. Metropolis-Algorithmus

Ein oft verwendeter Algorithmus, mit dem die Markow-Kette geméaf der obigen Vorgaben
erzeugt werden kann, ist der Metropolis-Algorithmus [40]. Wenn dieser auf ein Eichfeld
mit einer SU(NV)-Wilson-Wirkung angewendet wird, besteht der Unterschied zwischen
zwei aufeinanderfolgenden Konfigurationen in der Anderung einer Linkvariable an der
Position x in Richtung p,

U (x) = XU, (x). (4.10)

Dabei ist X ebenfalls ein Element der Eichgruppe, welches sich nur gering von 1 unter-
scheidet. Der Metropolis-Algorithmus besteht aus drei Schritten. Im ersten Schritt wird
durch die Anderung einer Linkvariablen gemé8 aus der Konfiguration U eine neue
Konfiguration U’ erzeugt. Wenn X und X ~! mit derselben Wahrscheinlichkeit gewiihlt
werden, besteht eine symmetrische Auswahlwahrscheinlichkeit T fiir den Ubergang zwi-
schen den beiden Konfigurationen,

To(U|U") = To(U'|U). (4.11)

In diesem Fall wird die neue Konfiguration im zweiten Schritt mit der Akzeptanzwahr-
scheinlichkeit

Ta(U'|U) = min(1, exp(—~AS)) mit AS = S[U'] — S[U] (4.12)

angenommen. Um zu entscheiden, ob der Ubergang zur neuen Konfiguration erfolgt, wird
T4 mit einer Zufallszahl r aus dem Intervall [0,1) verglichen. Im Falle r < T4 wird der
Schritt angenommen. Im Falle einer kleineren neuen Wirkung AS < 0 wird der Schritt
also in jedem Fall akzeptiert. Damit die Markow-Kette nicht in den Zustand minimaler
Wirkung lduft und dort bleibt, was verletzen wiirde, findet im Falle einer grofier wer-
denden Wirkung der Vergleich mit r statt, welcher es ermoglicht, zu einer Konfiguration
mit groflerer Wirkung zu wechseln. Somit kénnen alle Zustdnde der Boltzmannvertei-
lung abgedeckt werden. Im Falle der Wilson-Wirkung in vier Dimensionen miissen zur
Berechnung der Wirkungsdifferenz lediglich die sechs Plaketten betrachtet werden, in
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denen die geéinderte Linkvariable U/ (z) enthalten ist [11]. Nach dem Vergleich mit r
und der Entscheidung, ob die neue Konfiguration angenommen wird, wird der Algorith-
mus mit der Verdnderung einer Linkvariablen geméafl fortgesetzt. Auf diese Weise
werden Schritt fiir Schritt neue Konfigurationen in der Markow-Kette erzeugt. Da eine
Konfiguration durch die Anderung einer Linkvariable lediglich lokal geindert wird, wird
der Metropolis-Algorithmus als lokaler Algorithmus bezeichnet, welcher lediglich kleine
Schritte in der Markow-Kette erzeugt und daher nur wenig effizient ist. Um Konfiguratio-
nen zu erzeugen, die weniger korreliert sind und eine hohe Akzeptanzwahrscheinlichkeit
besitzen, existieren verschiedene nicht-lokale Monte-Carlo-Algorithmen. Zur Erzeugung
der hier verwendeten Konfigurationen wird der Two-Step Polynomial Hybrid Monte Car-
lo (TS-PHMC) Algorithmus [41] verwendet, welcher in der Lage ist, Majorana-Fermionen
zu beriicksichtigen und welcher effizient Konfigurationen mit kurzer Autokorrelationszeit
erzeugt [37].

4.3. Korrelatoren und Massenbestimmung

Wie in Abschnitt beschrieben, werden fiir den niederenergetischen Bereich der su-
persymmetrischen Yang-Mills-Theorie Teilchen in verschiedenen Supermultipletts erwar-
tet. Um die Massen dieser gebundenen Zustéinde zu bestimmen, werden Zweipunkt-
Korrelatoren

C'(ay) = (O(x)0' (y)) (4.13)

eingefiihrt. Dieser Korrelator beschreibt ein Teilchen, das im Ort y, der Quelle, erzeugt
und in z, der Senke, wieder vernichtet wird. Der Operator O beschreibt dabei das zu

betrachtende Teilchen, indem er dieselben Quantenzahlen J7¢

, also Spin, Paritdt und
Ladung wie dieses besitzt. Es ist also moglich ein Teilchen durch verschiedene Operatoren
zu beschreiben, die alle einen unterschiedlich grofien Uberlapp mit der Wellenfunktion des
Teilchens besitzen, jedoch durch dieselben Quantenzahlen klassifiziert werden konnen.

Nach (4.3]) kann der Wert des Korrelators in Monte-Carlo-Simulationen iiber

OOy = 5 3OO U] (4.14)

approximiert werden, wobei iiber die Auswertung der Operatoren auf N Konfigurationen
gemittelt wird. Fiir die Extraktion der Masse wird die zeitliche Verdnderung des Kor-
relators betrachtet. Die Fouriertransformation des Korrelators in den Ortskomponenten
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des euklidischen Raumes wird auf dem Gitter mit dem Volumen V = L? x T {iber
1 _ipZ
Cth) = 135 > e PEC! 2,y = 0) (4.15)

berechnet. Aufgrund der Translationsinvarianz des Korrelators kann hier y = 0 verwen-
det werden. Diese Transformation ist gleich der Korrelationsfunktion der Zeitscheiben

S(t,p) mit

1 FE A=
Awﬂzﬁﬁz}pomw (4.16)

T

Mit den Zeitscheiben ohne rdumlichen Impuls (p'= 0)
1 -
Si=1anm > O(E ) (4.17)

lisst sich der Korrelator bei der zeitlichen Differenz At = 2* — y* durch
C(AL) = (S, a,5) (4.18)
ausdriicken. Mit dem Einfiigen eines vollstdandigen Satzes von Eigenzustdnden

> |n)(n| =1 (4.19)

in den Korrelator wird die Spektralzerlegung
C(ar) = 37 (| (nlSufo) Pe ¢ 2| (0] n) P T-40)
n=0
=a+ Z (aie_EnAt + aie_E”(T_At)) (4.20)
n=1

erhalten. Das Vorzeichen des jeweils zweiten Terms in der Summe héingt von den Randbe-
dingungen in zeitlicher Richtung ab. Fiir periodische Randbedingungen wird der zweite
Term addiert, fiir antiperiodische wird er subtrahiert. Die Groe a2 ist fiir Operatoren,

die mit dem Vakuum {iberlappen, ungleich Null. In diesem Fall ist es iiblich, die GréBe
durch die Transformation

S; — Sy =S — (Si)y (4.21)

zu subtrahieren. Dabei ist (S;);, der Vakuumerwartungswert des Zeitscheibenoperators.
Der neue Operator S; kann dann in die Korrelationsfunktion eingesetzt werden. Fiir
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grofle Zeiten t — oo ist der Korrelator exponentiell gedampft und die Terme, welche
zum Zustand n = 1 der geringsten Energie Iy = m; gehoren, dominieren. Dies legt die
Grundlage dafiir, die Masse des Grundzustands m, iiber einen Fit an die Funktion

C(At) = a? (e_mlAt + e_ml(T_At)) (4.22)

im Fitintervall At € [t1,t5] bestimmen zu kénnen. Dabei ist die richtige Wahl des In-
tervalls von entscheidender Bedeutung. Fiir zu kleine Zeiten ¢; sind die Beitrdge der
hoheren Zustdnde mit m > m; noch nicht genug abgeklungen. Der Wert des Korre-
lators wird fiir diese Zeiten noch zu stark von den angeregten Zustdnden beeinflusst
und ein hinreichend genauer Fit ist nicht moglich. Gleichzeitig verschlechtert sich das
Signal-Rausch-Verhéltnis mit grofier werdenden Zeitdifferenzen, sodass zu grofie At den
Fit ebenfalls verschlechtern, obwohl der Korrelator fiir grofle t, von den Beitrdgen des
Grundzustandes dominiert wird.

Einen guten Anhaltspunkt fiir die Wahl des Fitintervalls liefert die effektive Masse

C(Al)

meﬁ“(At) =In m,

(4.23)
welche, wenn sie gegen die Zeitdifferenz At aufgetragen wird, unter idealen Bedingungen
ein Plateau in dem Bereich bildet, in dem der Wert des Korrelators vom Grundzustand
dominiert wird. In diesem Bereich sollte der Fit an durchgefiithrt werden. Gleich-
zeitig kann aus dem Wert der effektiven Masse im Plateau bereits eine Abschitzung der
Masse gewonnen werden, die jedoch fiir jede Masse meg(At) nur von zwei Zeiten eines
Korrelators C'(At) abhéngt und damit nicht so viel Information enthélt, wie die aus der
Fitprozedur gewonnene Masse.

Um das Signal-Rausch-Verhiltnis zu verbessern, ist es moglich, den Korrelator, je nach
Randbedingungen, zu (anti-)parallelisieren. Statt des Korrelators C'(At) im Intervall
[0,7] wird dann

C'(At) = = (C(At) £ O(T — At)) (4.24)

1
2
im Intervall [0,%] betrachtet. Diese Symmetrisierung wird bei allen untersuchten Kor-

relatoren vorgenommen, weshalb im weiteren Verlauf auf die explizite Kennzeichnung
C'(At) verzichtet und C'(At) verwendet wird.
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4.4. Smearing

Aufgrund der oben beschriebenen Probleme bei der Massenbestimmung erscheint es
wichtig, die Prozedur so zu optimieren, dass die Genauigkeit erhéht werden kann, ohne
den numerischen Aufwand zu stark zu vergréffern. Eine Methode, dies zu erreichen, ist
die Verbesserung des Uberlapps der verwendeten Operatoren mit der Wellenfunktion
des Grundzustandes des zu untersuchenden Teilchens. Bei manchen Teilchen sind lokale
Operatoren nicht gut geeignet, um diesen Uberlapp zu erreichen. Eine Methode, die
verwendeten Operatoren zu verbessern, ist das sogenannte Smearing, welches zusétzlich
unphysikalische Fluktuationen auf kurzen Distanzen entfernt.

4.4.1. APE Smearing

Abbildung 4.1.: APE Smearing in eine Raumrichtung.

Beim APE Smearing [42] werden die einzelnen raumlichen Linkvariablen U;(z), i = 1,2,3
durch die Summe der sie umgebenden, orthogonalen raumlichen Links erweitert,

Ui(z) = Ul(z) = U(z) + eapr Z Uj(x)Us(x —i—j)UJT(x +1) (4.25)
J=%1,j#i

mit dem Parameter eppg, der die Stéarke des Smearings beeinflusst. Die Prozedur ist durch
die Linkvariablen in Abbildung[4.1] veranschaulicht. Die neu entstehende Linkvariable ist
im Allgemeinen kein Element der Eichgruppe mehr, weshalb anschlieend eine Projektion
in die Eichgruppe erfolgen muss. Im Falle der SU(2) erfolgt diese mit

Us(x) = Psu)[U,(2)] (4.26)
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mit der Projektionsmatrix

Psu U, (2)] = @) . (4.27)

ATUL (@)U ()

Das Smearing kann mehrfach iterativ angewendet werden, die Anzahl an Smearingschrit-
ten, auch Smearinglevel genannt, wird mit Napg angegeben. Durch wiederholtes Smea-
ring wéchst die rdumliche Ausdehnung des Operators. Der Smearingradius kann mit
23]

Rape = €apeNapE (4.28)

abgeschétzt werden. Aufgrund der periodischen Randbedingungen sollte er nicht grofier
als die halbe rdumliche Ausdehnung des Gitters sein. Durch ein zu grofies Napg kann es
auferdem dazu kommen, dass Informationen iiber den zu untersuchenden gebundenen
Zustand verloren gehen. Daher ist es sinnvoll, die Qualitidt der Massenbestimmung bei
unterschiedlichen Smearingleveln zu beobachten, um das optimale Nxpg zu bestimmen.

4.4.2. Jacobi-Smearing

Eine Verbesserung des Signals der fermionischen Variablen A ist mittels Jacobi-Smearing
moglich [43, [44]. Die eichinvariante, verschmierte Quelle Ss des Propagators erfiillt

> K (@t 1)Ss(a' ) = So(7t) (4.29)
mit der unverschmierten Quelle Sy und K =1 — k;F mit
3
FS(T ;) = 0ap Y [V;“”(f,t)(smg + Vit (z - z’,t)afi;,g] . (4.30)
i=1

Um die verschmierte Quelle zu bestimmen, wird also K~! ben&tigt. Zur Bestimmung
wird jedoch keine explizite Inversion von K durchgefiihrt. Stattdessen wird die Quelle
durch die Jacobi-Iteration

SUN(ZE) = So(Zt) + kg FST V(EE), n=12... (4.31)

mit V; Schritten angenéhert. Das Smearing wird dann durch die beiden Parameter «;
und N; beeinflusst. Fiir geniigend kleine x; konvergiert die Iteration zur gewiinschten
Losung, doch auch fiir k; grofler als der fiir die Konvergenz kritische Wert liefert die
Prozedur trotz der Divergenz der Summe eine geeignete verschmierte Quelle fiir ein be-
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liebiges N ;. Die Anzahl der Iterationsschritte N; beeinflusst die Gréfle des verschmierten
Objektes, dabei ist es gewiinscht, die Grofle der physikalischen Wellenfunktion zu errei-
chen. Der Smearingradius r kann mit

> % |Ss(t)]
=i 4.32
> [Ss(@.0)] (432

abgeschiitzt werden, wobei #? auf einem periodischen Gitter der minimale quadratische
Abstand zum Ursprung ist.

4.5. Variationsmethode

Um die Massenbestimmung des Grundzustandes weiter zu verbessern, kann die Va-
riationsmethode verwendet werden, welche es ermdglicht, die Informationen mehrerer
Operatoren gleicher Quantenzahlen zu beriicksichtigen. Durch diese Verbesserung hat
die Variationsmethode einen deutlichen Einfluss auf die Massenbestimmung angeregter
Zusténde.

Wie in gezeigt, werden die Korrelatoren vom Grundzustand dominiert, jedoch
durch Beitrdage von Zustdnden hoherer Energie beeinflusst, welche mit groflerer Zeit ex-
ponentiell gedampft werden. Die Untersuchung eines spezifischen angeregten Zustandes
gestaltet sich aufgrund der Dominanz des Grundzustandes auf der einen und der Beein-
flussung durch hohere Zustande auf der anderen Seite als schwierig. Der direkte Fit einer
Funktion

F(AL) =) aemmA (4.33)

n=1

an einen Korrelator, um die Massen von N Zustédnden zu bestimmen, ist aufgrund der
fehlerbehafteten Messdaten der Monte-Carlo-Simulation nicht zuverléssig [11].

Mithilfe der Variationsmethode ist es moglich, durch die Verwendung der Informa-
tion mehrerer Operatoren auch Massen angeregter Zustdnde zu extrahieren. Allge-
mein kann diese Methode in einem beliebigen physikalischen System mit bekanntem,
zeitabhidngigem Hamiltonoperator H = H (t) eingesetzt werden, um die Eigenwerte und
zugehorigen Eigenzustédnde zu bestimmen [45] und kann auf beliebige hermitesche Ope-
ratoren O erweitert werden. Fiir den normierten Erwartungswert (O) eines hermiteschen

36
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Operators in einem beliebigen Zustand |¢) gilt

_ (lOlg) . N ln

wobei |n) die Eigenzusténde von O sind. Durch Variation des Zustands |¢) kann gezeigt
werden, dass der Erwartungswert von O in der Umgebung seiner diskreten Eigenwerte

stationdr ist. Dafiir wird (4.34)) in der Form

(0) (plp) = (#|Olp) (4.35)

geschrieben. Wenn nun eine kleine Variation eingefiihrt wird, ergibt sich

(ele) 6 (0) +(0) [(0plp) + (pldp)] = (dp|O|p) + (p|O]dp)
& (00[[O0 — (O)]|p) + (][O — (O)]|0g) = (@|w) 6 (O) . (4.36)

Der Erwartungswert wird also stationér, 6 (O) = 0, wenn

Olp) = (O} lg) (4.37)

gilt, der Zustand |p) also einen Eigenzustand von O darstellt. In diesem Fall ist der
Erwartungswert ein Eigenwert des Operators. Durch die Variation des Zustandes |¢)
konnen also die Extrema des Erwartungswertes gefunden werden, welche die Eigenwerte
liefern.

Zur Bestimmung der Energieeigenwerte eines Teilchens fiir die Massenbestimmung
wird als Operator nun eine Korrelationsmatrix C(t) der Form

Cy(t) = (0:(1)0}(0)) (4.38)
verwendet. Die Operatoren O; haben dabei alle die Quantenzahlen des zu untersuchenden

gebundenen Zustandes. In der Spektralzerlegung hat die Korrelationsmatrix die Form

Cij(t) =Y _(0|0s|n) (n|O0) 7", (4.39)

n

Die Variation des Ausdrucks

(ple”M7p)  (plC()lp) (4.40)

(¢le) (@|C(to)|)

mit C(t) = (Cy;)(t) fihrt analog zu obigen Ausfiihrungen zum verallgemeinerten Eigen-
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wertproblem
Ct)v™ = X (¢t 10)C (te)v™, (4.41)

wobei A(™ (t,to) die verallgemeinerten Eigenwerte und v(® die entsprechenden verallge-
meinerten Eigenvektoren sind. Dieses verallgemeinerte Eigenwertproblem kann fiir eine
positiv definite Korrelationsmatrix in ein reguldres Eigenwertproblem umgeschrieben
werden. Fiir den Fall, dass die Eigenwerte A\ (t) des Eigenwertproblems

Ct)v™ = X" (¢)y™ (4.42)

fiir jedes t > 0 geméf AL > 2@ > 0> )\ geordnet sind, haben Liischer und Wolff
[46] gezeigt, dass diese sich geméf

tliglo A1) oc e ™1+ O(e Amnt)) (4.43)
verhalten, wobei Am,, die kleinste Differenz zu den anderen Spektralwerten m; ist. Die
Losung des verallgemeinerten Eigenwertproblems mit ¢ty < t fiihrt hier jedoch zu
besseren Ergebnissen, da hier das zeitliche Verhalten der FEigenwerte dasselbe, die Am-
plitude der Fehlerterme aber kleiner ist [11]. Dadurch dominieren die fithrenden Terme
bereits fiir kleine Zeiten ¢t. Um dieses verallgemeinerte Eigenwertproblem nun fiir die
Eigenwerte A mit n =1,...,A zu lésen, ist eine r x r Korrelationsmatrix C};(t) mit
r > A notwendig. Dafiir wird die Korrelationsmatrix aus r verschiedenen Operatoren
aufgebaut. Diese kdnnen durch explizite Konstruktion oder durch Smearing anderer Ope-
ratoren konstruiert werden. Nach Liischer und Wolff [46] sollte die Anzahl der Operatoren
r auf einem Gitter der Lange L kleiner oder gleich L /2 sein, um sicherzustellen, dass die
Operatoren linear unabhéngig sind. Ist dies nicht der Fall, so ist die Korrelationsmatrix
nicht mehr positiv definit. Fiir die r x r-Matrix C};(t) kann das Eigenwertproblem nun
exakt fiir einen endlich dimensionalen Eigenraum mit den Zustédnden |n), n =1,...,r zu

N (¢ tg) = e~ (t-to)mn (4.44)

gelost werden. Wenn man nun den unendlich-dimensionalen Eigenraum betrachtet und
die Korrelationsmatrix in der Form C(t) = C’(t)+CP(t) schreibt, wobei C?(t) als Storung
behandelt wird, so kann davon ausgegangen werden, dass die groflen Eigenwerte nicht
zu stark von dieser Storung beeinflusst werden. Die Eigenwerte des verallgemeinerten
Eigenwertproblems verhalten sich dann geméfl

lim A (¢, 1) oc e e tt0) (1 4 O (e~ Amnlt=to))) Am, = Ilrl#in lmy —my|.  (4.45)

t—o00
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4.5. Variationsmethode

Nach Blossier et al. [47] lassen sich die Fehler zu Am,, = |m,,; — m,| verringern, wenn
to moglichst groB gewdhlt wird und ¢y > ¢/2 gilt. In der Praxis ist jedoch meist nur ein
kleiner Wert fiir to, oder sogar ty = 0 moglich, da es sonst zu numerischen Instabilitdten
kommt [46]. Die Qualitét der Analyse mittels Variationsmethoden hingt von den ver-
wendeten Operatoren ab. Diese sollten einen grofen Uberlapp mit der Wellenfunktion
des zu untersuchenden Zustandes haben und mdoglichst orthogonal zueinander sein [4§].
Mit Hilfe der Losung des Eigenwertproblems wird die optimale Kombination der Opera-
toren gefunden, durch die ein maglichst groBer Uberlapp mit der Wellenfunktion erreicht
werden kann. Daher kénnen in der Korrelationsmatrix auch Operatoren enthalten sein,
die einen kleinen Uberlapp haben. Eine grofie Korrelationsmatrix kann also vorteilhaft
sein. Da Operatoren mit kleinem Uberlapp jedoch mit Rauschen zum Ergebnis beitragen,
ist es sinnvoll, die Methode zunéchst fiir eine grofle Anzahl an Operatoren zu betrachten
und anschlieend die Kombination mit dem besten Signal-Rausch-Verhéltnis zu wéhlen.
Zudem muss beachtet werden, dass linear abhéngige Operatoren die Losung des Eigen-
wertproblems verhindern.

Zur Massenbestimmung nach der t-Figenvektor-Methode wird das verallgemeinerte
Eigenwertproblem (4.41)) fiir jede Zeit t gelost und die entsprechenden Eigenwerte be-
stimmt. Die effektiven Massen der angeregten Zustédnde werden dann analog zu ({4.23])
mittels

AP (ko)

_— 4.46
"N+ 1) 449)

me (tto) =1
bestimmt. Die Eigenwerte konnen analog zum Fall der Massenbestimmung mit einzelnen
Korrelatoren fiir Fits zur Massenbestimmung genutzt werden [23] 24].

Im Falle von entarteten oder beinahe entarteten Energie-Eigenwerten kann es zusam-
men mit numerischen Fehlern dazu kommen, dass das eindeutige Ordnen der Eigenwerte
und ihrer Eigenvektoren nach der GroBe fiir verschiedene Zeiten nicht eindeutig ist [49].
Um dies zu vermeiden, wird die Basis der Eigenvektoren dadurch festgelegt, dass das
Eigenwertproblem lediglich zu einer Zeit t; > ¢y gelost wird:

Dabei sollte ¢; so klein wie moglich gewahlt werden, gleichzeitig aber grof§ genug, um
sicherzustellen, dass die Schitzer fiir die Eigenvektoren v(™ (¢;) sich stabilisiert haben.
Zur Bestimmung der effektiven Masse wird bei dieser fized-vector Methode die Korrela-

tionsfunktion zur Zeit ¢ auf den Eigenraum zur Zeit t; projiziert. Damit ergibt sich

(VO (1, ) C(£)v ™ (1, t)
(v (t1,t0)C(t + 1)v) (L1, o)

m{ (t,te) = In (4.48)
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4. Numerische Methoden

Dadurch, dass das Eigenwertproblem lediglich bei ¢; gelost wird, ist auch nur hier Or-
thogonalitat

(V) (t1, 1) )V (tr, t0) =0 i ] (4.49)

garantiert. Da hier also fiir Zeiten ¢ > t; Anteile des niedrigsten Zustandes enthalten
sind, wird diese Korrelationsfunktion der fixed-vector Methode fiir grofle Zeiten zum
Grundzustand abfallen [49],

(V(n))T<t1’ t0)0<t)v(n) (tl, to) t>g(tl

e Mt (4.50)

Eine weitere Methode, aus einer Korrelationsmatrix die Masse eines angeregten Zu-
standes zu extrahieren, ist die Projektionsmethode [50]. Sie stellt eine Mischung aus den
vorherigen Methoden dar. Hier wird das verallgemeinerte Eigenwertproblem fiir jede Zeit
t gelost, jedoch nicht mit einer festen Referenzzeit, sondern mit einer zweiten Zeit ¢ + At,
so dass die Losung von

C(t + At)v™ = X (¢ AH)CO(t)v(™ (4.51)

bestimmt werden muss. Zusétzlich wird das Eigenwertproblem fiir die Linkseigenvektoren
u'™ gelost,

u™C(t 4+ At) = X (¢, Aty u™C(1). (4.52)

Bei symmetrischen Korrelationsmatrizen fallen diese Links- und Rechtseigenvektoren
zusammen. Der projizierte Korrelator wird dann analog zur vorherigen Methode zur
Berechnung der effektiven Masse

u™(t, At)C(t)v™ (t, At)
u™ (t, At)C(t + 1)vm(t, At)

m{ (t,At) = In (4.53)

verwendet. Ein Exponentialfit kann auch hier direkt an die projizierte Funktion erfolgen.
Nach Mahbub et al. [50] sind die mittels Projektionsmethode extrahierten Massen, im
Gegensatz zu den Eigenwerten der t-Eigenvektor-Methode, nahezu unabhéngig von den
verwendeten Parametern ¢ und At in der Variationsmethode.

4.5.1. Numerische Lésung der Eigenwertprobleme

Die Losung der verallgemeinerten Eigenwertprobleme fiir die Korrelationsmatrizen er-
folgt numerisch. Dazu wird zunéchst das verallgemeinerte Eigenwertproblem in ein re-
gulédres Eigenwertproblem umgeschrieben. Eine direkte Inversion der Matrix auf der rech-
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4.6. Fehleranalyse

ten Seite der Gleichung ist jedoch nicht notwendigerweise numerisch stabil. Stattdessen
wird die numerisch stabile Cholesky-Zerlegung verwendet. Eine symmetrische, positiv
definite Matrix kann in das Produkt einer unteren Dreiecksmatrix L und ihrer Trans-
ponierten LT zerlegt werden, welche numerisch effizient zu invertieren sind [51]. Damit
lésst sich das verallgemeinerte Eigenwertproblem (4.41)) wie folgt umschreiben,

C(t)v™ = A (t,t0)C(te)v™
& Ct)yv™ = AW (¢ to)LL v

@(L‘lC(t) (LT)_l) LTv™ = A (¢ ) LTy (4.54)

um ein gewohnliches Eigenwertproblem fiir die Matrix <L‘1C’ (t) (L) _1> und die Eigen-

vektoren L7v(™ zu erhalten. Die Eigenwerte beider Eigenwertprobleme sind identisch.
Zu Problemen kann es kommen, wenn die zu invertierende Matrix nicht positiv definit ist.
Dies kann der Fall sein, wenn Operatoren in der Korrelationsmatrix im Eigenraum beina-
he parallel sind und C(ty) somit sehr kleine Eigenwerte besitzt. Dadurch, und zusatzlich
durch die Fehler durch statistische Schwankungen, kann es sein, dass die Matrix singu-
lar oder schlecht konditioniert ist. Im zweiten Falle ist die Konditionszahl, welche das
Verhéltnis zwischen grofitem und kleinstem Eigenwert darstellt, so grof3, dass ihr Rezi-
prokes die Maschinengenauigkeit erreicht und iiberschreitet. Fiir den Datentyp double
ist dies bei einer Konditionszahl der GréBenordnung 10'? der Fall [51].

4.6. Fehleranalyse

Daten, die durch Monte-Carlo-Simulationen gewonnen wurden, sind fehlerbehaftet. Da-
bei ist zwischen statistischen Fehlern und systematischen Fehlern zu unterscheiden. Sys-
tematische Fehler haben dabei mehrere Quellen. Zunéchst kommen sie durch die Methode
der Gitterdiskretisierung zustande und &uflern sich durch Volumen-Effekte, welche durch
die Simulation auf einem Gitter mit gréf8erem Volumen verringert werden kénnen, oder
durch Diskretisierungsfehler, welche durch eine Verbesserung der auf dem Gitter ver-
wendeten Grofien, wie in Kapitel gezeigt, verkleinert werden kénnen. Des Weiteren
kann es bei der Auswertung der Daten zu systematischen Fehlern kommen, die bei der
Massenbestimmung beim Fit an den zeitlichen Verlauf des Korrelators auftreten. Hier
spielt die Wahl des Fitintervalles eine entscheidende Rolle, da die Einfliisse von ange-
regten Zustédnden fiir kleine Zeiten und vom Rauschen fiir grofie Zeiten nur schwierig
eingeschétzt werden konnen. Im vorliegenden Fall sind die Bedingungen der Messungen
so gewihlt, dass die systematischen Fehler kleiner sind als die statistischen Fehler.

Bei der Betrachtung des statistischen Fehlers einer Observablen muss zwischen
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4. Numerische Methoden

priméren und sekundéren Observablen unterschieden werden. Erstere hingen direkt von
den Feldvariablen ab, wihrend sekundére Observablen Funktionen von gemittelten Fel-
dern sind. Die Werte primérer Observablen ¥ werden durch die Mittlung der Werte
gewonnen, welche auf den N genutzten Konfigurationen gemessen wurden. Dabei ist T
lediglich ein Schétzer fiir den wahren Wert der Grofle x und muss daher immer mit
seinem statistischen Fehler angegeben werden. Fiir unkorrelierte Daten gilt

N
— 1 Z ~2 1 E : 7)2
T = N 2 i, O, = m (fl — ZL‘) (455)

mit den auf den einzelnen Konfigurationen gemessenen Werten x;, dem Mittelwert =
und der Varianz 62. Es kann gezeigt werden [I1], dass fiir N unkorrelierte Messungen
der Messwert mit seinem Fehler als

~

Oz

VN

angegeben werden muss. Der statistische Fehler sinkt also mit 1/v/N bei steigender

T+o mit o=

(4.56)

Anzahl der Messungen N.

4.6.1. Autokorrelation

Obige Angaben fiir den statistischen Fehler einer Messgrofie gelten nur fiir unkorrelierte
Daten. Diese liegen bei Monte-Carlo-Simulationen nur selten vor. Aufgrund der Erzeu-
gung der Konfigurationen in einer Markow-Kette, bei der neue Konfigurationen durch
eine Anderung der vorhergehenden Konfigurationen erzeugt werden, sind viele Observa-
blen korreliert. Wenn der Fehler fiir korrelierte Daten nach der obigen Methode bestimmt
wird, so wird er unterschétzt. Im Folgenden wird davon ausgegangen, dass die erzeugten
Konfigurationen der Markow-Kette bereits im Gleichgewicht sind.

Die Autokorrelationsfunktion einer priméren Observable x ist durch
Co(T) = Cal@i Tisr) = (@iTigr) — (@) (Titr) (4.57)

definiert. Dabei ist 7 nicht die euklidische, sondern die Monte-Carlo-Zeit, also der Ab-
stand in der Markow-Kette zwischen den Konfigurationen U® und U+7) . Die normierte
Autokorrelationszeit I', fallt fiir grofle 7 exponentiell ab. Es gilt

() = gzgg o exp (—Tx;p> (4.58)

mit der exponentiellen Autokorrelationszeit 7, ey, fiir die Messgrofie z. Die exponentielle
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Autokorrelationszeit
Texp = SUDP Tgexp (459)
X

ist ein MaB fiir die Korrelation aufeinanderfolgender Messungen, jedoch in der Praxis
schwer zu bestimmen. Einen besseren Anhaltspunkt fiir die Quantifizierung der Autokor-
relation bietet die integrierte Autokorrelationszeit 7, in¢. Diese kann mit der normierten
Autokorrelationszeit iiber

N

1
Te,int = 5 + Z Fa:(7—> (460)

T=1

berechnet werden. Mit Hilfe der integrierten Autokorrelationszeit ist es moglich, die
Anzahl der effektiv unabhédngigen Messungen iiber

(4.61)

zu berechnen. Bei der Berechnung des Mittelwertes konnen dann zwischen zwei
beriicksichtigten Messwerten 27, ;,; Konfigurationen iibersprungen werden, um ein Re-
sultat aus unkorrelierten Messungen zu erhalten. Alternativ kann der Fehler des Mittel-
wertes, der, wie oben beschrieben, bei korrelierten Daten als zu gering eingeschétzt wird,

durch
2 x,in 52
r+o mit a:\/% (4.62)

vergrofert und dadurch korrigiert werden, wenn alle Messungen fiir die Mittelwertbil-
dung beriicksichtigt werden.

Bei der Berechnung der integrierten Autokorrelationszeit fiir reale Messungen muss die
Summierung iiber die normierten Autokorrelationszeiten bei einem Wert 7 = W abge-
brochen werden, da sonst die Beitrége des Rauschens aufsummiert werden und den Wert
fiir die integrierte Autokorrelationszeit erhohen, obwohl die Beitréige der Autokorrelation
wegen des exponentiellen Abfalls bereits vernachlédssigbar sind. Die Berechnung erfolgt
dann mit

Tz,int(W) -

N —

+ Y Ta(r). (4.63)

Zur Bestimmung des Abbruchkriteriums gibt es verschiedene Methoden. Die einfachste
ist es, die Summe abzubrechen, wenn der Wert von I',(t) erstmals negativ wird. Dabei
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wird angenommen, dass an diesem Punkt die statistischen Schwankungen iiberhand neh-
men. Eine weitere Methode wurde von Madras und Sokal [52] eingefiihrt. Hier wird W
als kleinste ganze Zahl gewahlt, fiir die

W > 1 (W) (4.64)

gilt. Dabei ist ¢ ein Parameter, der von der Stdrke des Abfalls der Autokorrelation
abhéngt. Bei einem exponentiellen Abfall kann ¢ = 4 gewéhlt werden, fiir einen lang-
sameren Abfall kann ein Wertebereich zwischen 6 und 10 gewihlt werden [23], [52]. Die
Varianz der integrierten Autokorrelationszeit kann in diesem Fall mit

202W +1)

& To (4.65)

02 (Tint) =
abgeschétzt werden.
Eine andere Methode wurde von Wolff [53] vorgeschlagen. Dabei wird angenommen, dass
der Zusammenhang 7., oc STy gilt, wobei S fiir die meisten Anwendungen im Intervall
[1;2] liegt. Zur Berechnung des optimalen Abbruchwertes W wird die Funktion

— exp |— w . T/(W) mit 7' _ Il_l 27—int(W)+1
o= p{ T’(W)} VIWN t r(W) =51 <27’1nt<W)—1) (4.66)

fir alle W = 1,2,3,... berechnet. Der Wert W fiir den g(W) sein Vorzeichen wechselt
und negativ wird, wird als Abbruchwert gewéhlt. Die Varianz von 7, bei dieser Methode
kann mit

4 1
02 (Ting) v (W + 3 Tint) 2. (4.67)
abgeschétzt werden. Hier sollte gepriift werden, ob 73, im Bereich des gewéhlten W ein
Plateau zeigt, anderenfalls muss S verdndert werden [53].

4.6.2. Binning

Eine weitere Moglichkeit, den Fehler trotz korrelierter Daten richtig abzuschétzen, ist
das sogenannte Binning. Dabei werden die N Konfigurationen in Blocke aus B aufeinan-
derfolgenden Konfigurationen, die sogenannten Bins, aufgeteilt. Die Messungen auf den
Konfigurationen werden dann innerhalb der einzelnen Bins gemittelt. Die so entstehen-
den

NB:E
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vielen Mittelwerte werden dann als Resultate einzelner Messungen betrachtet und fiir die
Berechnung des Mittelwerts und der Varianz geméfl verwendet. Wenn die Bingrofie
B grof genug gewéhlt wird, sind die Bins unkorreliert und die Fehlerabschétzung ist
richtig. Fiir von B = 1 aus steigende Bingrofle steigt die Varianz an, bis sie, von der
Grofle an, fiir die die Bins unkorreliert sind, konstant bleibt. Die Bingrofle ist dabei
durch die Anzahl der Konfigurationen beschrédnkt, da bei einer zu grofien Bingréfie zu
wenig Daten fiir die Berechnung des Mittelwertes verwendet werden und der statistische
Fehler stark ansteigt [12].

Zusétzlich zu den oben genannten Methoden kann auch das Binning-Verfahren fiir eine
Abschétzung der integrierten Autokorrelationszeit genutzt werden. Wenn das Plateau der
Varianz erreicht ist und mit 62  die Varianz der Binmittelwerte bezeichnet wird, also

Np

1
A2 )2
0% = N1 E (xp; — ) (4.68)

gilt, so gilt mit der naiven Varianz 62 nach (4.55)) die Beziehung [54]
0%

~0 "
O’(E

2Ting = B

(4.69)

Diese Abschétzung der integrierten Autokorrelationszeit ist nicht so genau wie die Be-
stimmung iiber die Autokorrelationsfunktion, ist jedoch leicht implementier- und an-
wendbar. Der Fehler der Varianz der Binmittelwerte kann nach [55] mit

[ 2
AG% = N 1&% (4.70)

abgeschétzt werden. Der Fehler des Fehlers bei dieser Methode wird durch zwei Effekte
beeinflusst. Zum einen durch einen systematischen Fehler, der von der Autokorrelations-

zeit T abhéngt und mit 7/B abfillt, und zum anderen durch einen statistischen Fehler
durch die begrenzte Anzahl von Bins, der mit y/2B/N ansteigt. Wenn diese Fehler aus-
balanciert werden, ergibt sich eine optimale Bingréfie, welche durch

Bopt = T(2N/7)"/? (4.71)

berechnet werden kann, wenn eine Abschétzung fiir 7 besteht [53].

4.6.3. Jackknife-Verfahren

Obige Methoden zur Abschéitzung der Autokorrelationszeit sind fiir primére Observablen
anwendbar. Bei sekundédren Observablen y ist dies nicht moglich, da der beste Schétzer
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fir eine sekundédre Observable ¥ = y(7) und nicht y(x) ist [I2]. Somit stehen nicht N
viele sekundére Observablen fiir N Konfigurationen zur Verfiigung und der Fehler ist
nicht iiber die Varianz zu bestimmen. Mit Hilfe des Jackknife-Verfahrens ist es moglich,
den statistischen Fehler der Grofle y¥ abzuschétzen. Dafiir werden bei N Messungen N
Mittelwerte gebildet, in denen jeweils der n-te Wert ausgelassen wird:

1
J e — .
Tn = N E x;. (4.72)

Die entsprechenden Jackknife-Schétzer fiir die sekundire Observable werden dann auf
Grundlage dieser Mittelwerte, in denen x,, ausgelassen wurde, bestimmt,

Yo = yl(z;). (4.73)

Der entsprechende Mittelwert der sekundéaren Grofle ist dann

N

— 1

y’ = N Zy}{ (4.74)
n=1

und die Varianz dieser Grofle kann mit

(@) = St S~ ) (1.75)

n=1

berechnet werden. Die sekundare Grofie mit ihrem Fehler kann dann mit
y’ +0”(7) (4.76)

angegeben werden. Das Jackknife-Verfahren liefert nur fiir unkorrelierte Daten eine zu-
verlassige Fehlerabschétzung, weshalb es bei korrelierten Daten mit anderen Methoden,
wie beispielsweise mit Binning kombiniert werden muss.

Jackknife-Binning ist eine stabile Methode zur Abschétzung des statistischen Fehlers,
héngt jedoch von der Wahl der richtigen Bingréfle ab. Ein neueres Verfahren zur Bestim-
mung des statistischen Fehlers sekundirer Observablen auf der Grundlage korrelierter
primérer Observablen ist die I'-Methode von Ulli Wolff [53]. Hier wird die Abweichung
zwischen Schétzer ¥ und wahrer Grofle y in erster Ordnung als linearer Zusammenhang
betrachtet. Die Anwendung dieser auch Linearisierung genannten Methode erméglicht
neben der Abschétzung des Fehlers auch die Angabe einer Autokorrelationszeit fiir die
betrachteten sekunddren Observablen. Die genaue Anwendung auf mit der Variations-
methode bestimmte Massen ist in [23] hergeleitet. Bei kleinen Eigenwerten der Korrelati-
onsmatrix kann es bei der Anwendung der I'-Methode zu numerischen Instabilitdten bei
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der Cholesky-Zerlegung kommen, weshalb hier fiir die Fehlerabschiatzung das Jackknife-
Binning gewihlt wird. Sandbrink [24] hat fiir die Massenbestimmung von Gluebéllen
beobachtet, dass beide Methoden vergleichbare Ergebnisse liefern.
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5. Massenbestimmung des
Gluino-Glueballes

Die Variationsmethode wurde in der DESY-Miinster-Kollaboration bereits verwendet,
um das Signal bei der Massenbestimmung fiir Gluebélle zu verbessern, indem die Konta-
mination durch angeregte Zustédnde verringert und somit ein Fit bereits bei kleinen Zei-
ten ermoglicht wurde [24, 26]. Die Massenbestimmung des Grundzustandes des Gluino-
Glueballes hingegen erfolgte durch den direkten Fit an die zeitliche Entwicklung der
Korrelationsfunktion. Dennoch wurden auch hier APE- und Jacobi-Smearing verwen-
det, um den Einfluss angeregter Zusténde fiir kleine Zeiten zu verringern [30), 37].

Ziel dieser Arbeit ist die Bestimmung der Masse des ersten angeregten Zustandes des
Gluino-Glueballes in der N/ = 1 supersymmetrischen Yang-Mills-Theorie mit der Eich-
gruppe SU(2). Wie in Abschnitt dargelegt, ist die Variationsmethode dazu geeignet,
dieses Ziel zu erreichen. Zusétzlich ist, zumindest bei gleicher Statistik, eine Verbesse-
rung der bisherigen Ergebnisse fiir die Bestimmung des Grundzustandes zu erwarten.
Zunéchst werden dazu verschiedene verschmierte Operatoren und die aus ihnen zusam-
mengesetzten Korrelationsmatrizen untersucht, um eine optimale Wahl von Operatoren
zu finden. Durch diese Vorauswahl kann die notwendige Rechenzeit bei der Messung
der Korrelatoren verringert werden. Anschliefend erfolgt die Analyse fiir verschiedene
Parameter und ausreichende Statistik. Zunéchst wird das verallgemeinerte Eigenwertpro-
blem nach der t-Eigenvektor-Methode mit ¢y = 0 geldst, ein Vergleich mit den anderen
Methoden erfolgt fiir die finalen Parameter der Variationsmethode.

5.1. Einfluss und Optimierung des verwendeten
Smearings

Zunéchst wird der Einfluss von APE-Smearing auf die Massenbestimmung mittels ei-
nes einzelnen Korrelators betrachtet. Dafiir wird ein Gitter der Groe 323 x 64 mit den
Parametern 8 = 1,9 und & = 0,14415 und einem Level Stout-Smearing gemifl
gewihlt. Bei expg = 0.4 geméf werden die effektiven Massen nach fiir ver-
schiedene Smearinglevel Napg aufgetragen. In Abbildung sind die Massen fiir den
unverschmierten Korrelator und die APE-Levels 2,4,6 und 12 gezeigt. Fiir alle Korrelato-
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Abbildung 5.1.: Effektive Massen von Korrelatoren mit steigendem Napg und expg = 0.4
fiir ein 323 x 64-Gitter mit 5 = 1,9 und x = 0,14415. Zur besseren
Veranschaulichung der Unterschiede sind lediglich kleine Zeiten gezeigt.

ren zeigen die effektiven Massen das erwartete Verhalten: Zunéchst fallen die Werte fiir
steigende t ab, bis sie, wenn die Spektralzerlegung nur noch vom Grundzustand
beeinflusst ist, ein Plateau erreichen. Die verschmierten Korrelatoren erreichen dieses
Plateau mit steigendem Smearing schneller. Die Einfliisse angeregter Zustdnde werden
fiir kleine Zeiten also verringert. Fiir Napg = 12 ist meg(t = 1) < meg(t = 2). Dies
wére mit den monoton fallenden Exponentialfunktionen der Spektralzerlegung und ih-
ren positiven Koeffizienten nicht zu erkldaren. Diese Eigenschaften der Spektralzerlegung
beruhen auf der Forderung nach Reflexionspositivitdt nach Osterwalder und Schrader
[56], 57] fiir die euklidischen Korrelationsfunktionen. Die Reflexionspositivitdt kann im
Falle von Stout-Smearing fiir At = 1 verletzt sein, womit der negative Ausschlag in der
effektiven Masse zu erkldren wére. Der Effekt wird auch spéter bei der Analyse mittels
Variationsmethode sichtbar. Nichtsdestotrotz hat der Ausschlag bei ¢ = 1 keinen Ein-
fluss auf die fiir die Massenbestimmung relevanten zeitlichen Distanzen [30]. Aufgrund
dieses Effekts des Smearings werden Fits zur Massenbestimmung stets erst ab ¢, = 2
gestartet.

Eine dhnliche Analyse ist fiir das Jacobi-Smearing moglich. Die Ergebnisse fiir ein
Gitter mit k = 0,14335 sind in Abbildung gezeigt. Hier wurden die APE-Level null,
fiinf und 15 verwendet und mit den entsprechenden Korrelatoren mit einem Jacobi-
Smearing mit den Parametern N; = 4 und x; = 0.2 nach verglichen. Der Effekt
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Abbildung 5.2.: Effektive Massen von Korrelatoren mit steigendem Napg mit expg = 0.4
und N; = 4 mit x; = 0.2 fiir ein 323 x 64-Gitter mit 5 = 1,9 und
k = 0,14435. Zur besseren Veranschaulichung der Unterschiede sind le-
diglich kleine Zeiten gezeigt.

durch das Jacobi-Smearing entspricht dem des APE-Smearing. Auch hier werden die
Einfliisse der angeregten Zusténde fiir kleine Zeiten verringert.

In den Abbildungen und ist zu erkennen, dass die effektiven Massen aller
gezeigten Korrelatoren gegen ein gemeinsames Plateau gehen, welches die Masse des
Grundzustandes widerspiegelt. Der nachste Schritt ist die Untersuchung der effektiven
Massen, welche aus den Eigenwerten des verallgemeinerten Eigenwertproblems fiir die
Korrelationsmatrix gewonnen werden. Der Verlauf der effektiven Masse fiir Korrelati-
onsmatrizen aus wenig verschmierten Operatoren ist in Abbildung dargestellt.

Da die Einfliisse von Jacobi- und APE-Smearing auf die Massenbestimmung sich nicht
unterscheiden, wird die Analyse auf Korrelatoren mit APE-Smearing beschriankt. Dies
ermoglicht eine ausfithrliche Untersuchung des Einflusses der Anzahl und Auswahl ver-
schiedener APE-verschmierter Korrelatoren zum Aufbau der Korrelationsmatrix. Dazu
wird zunéchst fir § = 1,9 und x = 0,14415 die Messung fiir eine 21 x 21 Korrelati-
onsmatrix fiir eine begrenzte Statistik von 418 Konfigurationen vorgenommen. Die hier
prisentierten Ergebnisse beruhen auf Messungen auf 1671 Konfigurationen. Eine Dis-
kussion der Unterschiede zwischen den Analysen mit kleiner und verbesserter Statistik
erfolgt im Anschluss. Die Korrelationsmatrix enthélt neben dem unverschmierten Korre-
lator APE-verschmierte Korrelatoren mit dem Abstand ANapg = 5. Die volle gemessene

50



5.1. FEinfluss und Optimierung des verwendeten Smearings
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Abbildung 5.3.: Effektive Massen mgf) (t) aus den Eigenwerten der Korrelationsmatrizen
aus den mit Napgp mit eapg = 0.4 verschmierten Korrelatoren fiir ein
323 x 64-Gitter mit 8 = 1,9 und x = 0,14415. Zur besseren Veranschau-
lichung der Unterschiede sind lediglich kleine Zeiten gezeigt.

Korrelationsmatrix enthilt also Korrelatoren der APE-Level
Napr € {0, 5,10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}.

Da die die Anzahl der Operatoren L/2 = 16 iibersteigt, wird davon ausgegangen,
dass eine Analyse der gesamten Matrix mittels Variationsmethode nicht moglich ist,
da die Operatoren in der Matrix linear abhéngig sind [46]. Daher erfolgt die Auswertung
zunéchst fiir Submatrizen steigender Grofle, in denen sukzessive der Korrelator mit dem
néchstgroferen Smearinglevel hinzugefiigt wird. Da die Massenbestimmung des ersten
angeregten Zustandes optimiert werden soll, werden im Folgenden lediglich die effektiven
Massen m?2; aus den Eigenwerten nach betrachtet. Auf der linken Seite von Abb.
ist in blau die effektive Masse zum Zeitpunkt ¢ = 3 fiir die verschiedenen Grofien der
sukzessive vergroflerten Matrix aufgetragen. Die Wahl des Zeitpunktes ¢ = 3 liegt darin
begriindet, dass fiir groflere Zeiten die Werte der effektiven Masse bereits anfangen stark
zu schwanken und grofler werdende Fehler besitzen, wahrend sich bei ¢ = 2 noch nicht
unbedingt ein Plateau eingestellt hat. Unter der Annahme, dass die effektive Masse zu
diesem Zeitpunkt eine erste Ndherung fiir die aus einem Fit gewonnene Masse ist, wird
der Verlauf der effektiven Massen untersucht.

In Abb. [5.4]ist zu sehen, dass der Wert der effektiven Masse fiir eine steigende Grofle
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Abbildung 5.4.: Effektive Massen mgf) (t = 3) fiir verschiedene GroBlen der Korrelati-
onsmatrix aus verschmierten Operatoren mit links: AN pr = 5 rechts:
ANapp = 10 und eppr = 0.4 fiir ein 322 x 64-Gitter mit 8 = 1,9 und
k = 0,14415.

der Korrelationsmatrix und damit auch der verwendeten Smearinglevel abnimmt. Es ist
davon auszugehen, dass mit steigender Matrixgrofle das Plateau eher erreicht wird und
somit ein Fit zu fritheren Zeiten moglich ist. Gleichzeitig nimmt der Fehler bis zu einer
Grofle von 14 x 14 ab und steigt danach leicht wieder an. Bei N = 16 ist der Fehler
so grof3, dass nicht mehr von einer erfolgreichen Massenbestimmung gesprochen werden
kann. Fiir alle grofleren Matrizen ist eine Losung des Eigenwertproblems nicht moglich,
da die zu invertierende Matrix schlecht konditioniert ist. Die Aussage von Liischer und
Wolft [46], dass die Operatoren ab N = L/2 linear abhéngig sind, scheint sich also zu
bestétigen. Gleichzeitig ist auch eine Analyse von mindestens 3 Operatoren notwendig,
um ein Ergebnis fiir die Eigenwerte des ersten angeregten Zustandes zu erhalten.

Um die Effekte einer vergroflerten Matrix von denen grofler Smearinglevel zu trennen,
wird nun eine Auswertung fiir eine Matrix mit groflen Napg vorgenommen. Um gleich-
zeitig das Vorhandensein von méoglichst orthogonalen Operatoren zu gewéhrleisten, wird
hier der Grundzustand mit beriicksichtigt. Ausgehend von einer Matrix mit den Smea-
ringleveln Napg € {0, 95, 100} wird nun eine Vergréferung erreicht, indem Operatoren
mit absteigendem Napg hinzugefiigt werden. Der Verlauf der effektiven Masse fiir dieses
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Verfahren ist in rot ebenfalls auf der linken Seite von Abbildung[5.4]zu sehen. Bereits fiir
das minimale Set von 3 Operatoren ist die Masse im Vergleich zum vorherigen Fall deut-
lich verringert und hat einen kleinen Fehler. Nichtsdestotrotz sinkt auch hier die Masse
bei einer Vergroflerung der Matrix weiter ab. Der Fall von linear abhéngigen Operatoren
scheint hier bereits bei acht Operatoren erreicht. Dies ldsst darauf schlieflen, dass sich die
Operatoren bei groflen Napg weniger stark unterscheiden als dies bei kleinen Npg der
Fall ist. Trotzdem ist die effektive Masse hier kleiner als im Falle kleinerer Smearinglevel,
wéhrend der Fehler vergleichbar ist.

Um trotz der Begrenzung der Grofle der Matrix die volle Spanne der gemessenen
Operatoren untersuchen zu konnen, wird obige Analyse fiir sukzessive vergréfierte Ma-
trizen erneut vorgenommen, wobei fiir den Abstand der Smearinglevel nun ANjpg = 10
gewahlt wird. Eine Ausnahme bildet hier das erste verschmierte Level, fiir das Napg = 5
gewahlt wird. Die volle Grofle der Matrix, die bei beiden Methoden erreicht wird, ist
also 11 x 11, sie enthiélt die Level

Napg € {0,5, 15, 25, 35, 45, 55, 65, 75, 85, 95}. (5.1)

Das Ergebnis der erneuten Auswertung ist auf der rechten Seite von Abbildung dar-
gestellt. Qualitativ bestétigt sich das Verhalten aus der vorherigen Analyse. Bei steigen-
dem Napg wird der niedrigste Wert fiir die effektive Masse hier erst bei der vollstéandigen
Grofle der Matrix erreicht. Die Masse erreicht bei kleinerem Fehler einen geringeren Wert
als die beste Abschétzung, die mittels der vorher betrachteten 15 x 15-Matrix gewonnen
werden konnte. Dies ldsst darauf schlielen, dass die Verwendung der Operatoren mit
Napg > 70 die Qualitdt der Massenbestimmung verbessert. Die Tatsache, dass sich im
Falle des Hinzufiigens von Operatoren mit Npapg < 45 keine signifikante Verdnderung
der Massen ergibt, zeigt, dass diese Operatoren fiir die Extraktion der zweitgrofiten Fi-
genwerte A (¢,ty = 0) nicht mehr entscheidend sind.

Eine Untersuchung des Beitrags der einzelnen Operatoren ldsst sich auch an-
hand der Eigenvektoren des FKEigenwertproblems vornehmen. Dafiir wird hier ex-
emplarisch der normierte Eigenvektor fiir die Matrix mit Operatoren der Level
Napg € {0, 45, 55,65, 75, 85,95}

v = (1,8-1077; —0,015; 0,125; —0,420; 0,688; —0,552;0,174)" (5.2)
mit dem der vollstdndigen Matrix nach (/5.1

v?=(4,0-10"% 1,7-107% —9,0-107°; 0,002; —0,016;
0,088; —0,284; 0,557; —0,648; 0,410; —0,108)" (5.3)
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verglichen, wobei wie oben ¢t = 3 gewahlt ist. Im ersten Vektor ist zu sehen, dass der
unverschmierte Operator, dessen Beitrag durch den ersten Eintrag gekennzeichnet ist,
nicht signifikant zum Eigenwert A() beitrigt. Stattdessen haben die Operatoren mit den
Smearingleveln Nypg = 65,75 und 85 den grofiten Beitrag. Dies bestétigt die Aussage,
die aus der Untersuchung der effektiven Masse gewonnen werden konnte. Wie dies fiir
den Grundzustand erwartet wurde, gilt auch fiir den ersten angeregten Zustand, dass die
lokalen Operatoren mit wenig Smearing weniger Uberlapp mit der physikalischen Wel-
lenfunktion haben. Zum Vergleich ist der Eigenvektor fiir AV (t = 3.ty = 0) dargestellt:

vi=(-43-10"7;6,2-107°% 2,3-107% 5,1-107% —1,2-107%
—3,4-107% —1,2-107% —0,005; —0,021; —0,122; —0,992)".  (5.4)

Hier hat der Operator mit dem grofiten Smearinglevel eindeutig den gréfiten Effekt auf
den Eigenwert, alle anderen Operatoren tragen nur marginal bei. Fiir A®) lisst sich der
Schluss ziehen, dass ein noch grofleres Smearing nicht zur Verbesserung der Massenbe-
stimmung fiihrt, das Optimum scheint zwischen Napg = 65 und Napg = 85 erreicht zu
werden.

Die urspriingliche Analyse wurde anhand von Messergebnissen von 418 Konfiguratio-
nen vorgenommen. Obwohl die grundlegenden Ergebnisse dieselben sind, ergeben sich
Unterschiede zu der hier vorgenommenen Analyse der Daten von 1671 Konfigurationen,
die iiber die reine Verbesserung der Fehler hinausgehen. Die Analyse der Matrix, wel-
che durch das Hinzufiigen von Operatoren kleiner werdender Smearinglevel im Abstand
ANppg = 5 vergroflert wird, fithrt bei kleinerer Statistik nicht bereits bei acht, son-
dern erst bei 14 Operatoren zu stark vergroflerten Fehlerbalken. Erst bei 17 Operatoren
ist eine Inversion nicht mehr moglich. Durch die kleinere Statistik scheint die lineare
Abhéngigkeit der Operatoren, welche in obiger Analyse eine Vergroflerung der Matrix
verhinderte, durch die gréferen Fehler der Messungen noch nicht zu Tage zu treten.
Dies lédsst darauf schlieffen, dass bei einer noch besseren Statistik auch fiir kleinere Ma-
trixgroBen Probleme auftreten konnen. Daher erscheint die Wahl von ANjpg = 10 fiir
weitere Messungen angebracht. Fiir die mit ANapg = 10 konstruierte Matrix zeigen sich
keine solche Auswirkungen. Nichtsdestotrotz sollte auch hier nicht die kleinstmogliche
Matrix, welche ein gutes Ergebnis fiir die Massenbestimmung liefert, gewahlt werden.
Fiir den Fall, dass sich herausstellt, dass auch hier bei steigender Statistik Probleme
bei der Losung des Eigenwertproblems auftreten, erscheint es ratsam, auch Operatoren
kleinerer Smearinglevel mit in die Matrix einzubeziehen. Fiir alle weiteren Messungen
bei 8 = 1,9 werden die in gewahlten Operatoren verwendet.
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5.2. Massenfits

Wie in Kapitel erlautert, stellt die effektive Masse nur einen Anhaltspunkt fiir die
Masse eines Zustandes dar. Zu einem Zeitpunkt ¢ beinhaltet sie lediglich die Informa-
tionen der Korrelationsfunktion beziehungsweise des Eigenwertes des verallgemeinerten
Eigenwertproblems zu den beiden Zeitpunkten ¢ und ¢ + 1. Prinzipiell ist es moglich, die
Informationen weiterer Zeiten zu integrieren, indem ein mit den Fehlern der effektiven
Massen gewichteter Mittelwert iiber die effektiven Massen in einem Plateau vorgenom-
men wird. Ohne den Umweg {iber die effektiven Massen ist allerdings auch ein direkter
Exponentialfit moglich.

Im Folgenden wird lediglich die Massenbestimmung anhand der Eigenwerte der Kor-
relationsmatrix betrachtet. Diese Eigenwerte A fallen, wie in (4.45|) gezeigt, abhingig
von der Masse exponentiell mit der Zeit ab. Da das Eigenwertproblem lediglich fiir eine
endliche Korrelationsmatrix gelost werden kann, sind weitere, exponentiell abfallende
Storungen zu erwarten. Die Herausforderung beim Fit liegt nun darin, ein moglichst
grofes Fitintervall zu finden, in dem die Einfliisse durch andere Zustédnde und die statis-
tischen Fehler klein genug sind, so dass ein zuverldssiger Wert fiir die Masse extrahiert
werden kann. Der Fit erfolgt nach der Methode der kleinsten Fehlerquadrate (siche zum
Beispiel [58]) mit Hilfe der GNU Scientific Library [59]. Die Qualitét kann dabei mittels
des Parameters y? beurteilt werden. Dieser stellt die Summe der gewichteten Fehlerqua-
drate dar, wobei in der Analyse stets die Beriicksichtigung der Korrelation zwischen den
Messwerten der Eigenwerte erfolgt. Das reduzierte x? ist fiir K Freiheitsgrade beim Fit
als

X2

Xfed - K (5.5)
definiert. Fiir x2, > 1 wird ein Fit als schlecht angesehen, die Abweichungen zwischen
Daten und Fitfunktion ist zu groff. Fiir x2, < 1 ist der Fit zu gut. In diesem Fall
verringern die Fehler der Daten das x? zu stark. Erstrebenswert ist also ein Wert von
X%q &~ 1 [60]. Der Fehler der Fitparameter eines Fits kann mittels Kovarianzmatrix
bestimmt werden. Um die statistischen Fehler angemessen zu beriicksichtigen, erfolgt in
dieser Arbeit die Bestimmung der Fehler mittels Jackknife-Verfahren, diese Fehler sind

stets grofler als die aus dem Fit extrahierten.

5.2.1. Automatisierte Massenbestimmung

Das X2 4-Kriterium ist meist nicht ausreichend, um aus einer Vielzahl an unterschied-
lichen Fitintervallen und -ergebnissen das beste zu bestimmen. Erstrebenswert ist eine
automatisierte Auswahl des besten Fitintervalls, um eine Beeinflussung des Ergebnis-
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ses und ein daraus folgendes Bias bei der Auswertung zu verhindern. Die automatische
Auswahl eines Fitintervalls wurde in dieser Arbeit durch die Anwendung eines von Cais
et al. [61] fir die Projektionsmethode eingefiithrten fitting robot vorgenommen. Der Al-
gorithmus basiert auf drei Axiomen:

1. Ein akzeptabler Fit muss ein 2, besitzen, das kleiner als ein definierter Maximal-
wert ist.

2. Das Fitintervall wird so grofl wie moglich gewéhlt.
3. Kleine Startzeiten des Intervalls werden bevorzugt.

Durch das erste Axiom wird das oben beschriebene Kriterium fiir einen guten Fit im-
plementiert. In der Praxis wird hier %, < 1,1 gewéhlt. Die Tatsache, dass keine untere
Schranke angegeben werden muss, hiangt direkt mit dem zweiten Axiom zusammen.
Das Signal-Rausch-Verhéaltnis der Eigenwerte des verallgemeinerten Eigenwertproblems
nimmt mit steigendem zeitlichen Abstand zu, weshalb es sinnvoll erscheint, nur Eigen-
werte bis zu einer bestimmten Grenze in den Fit einzubeziehen. Eigenwerte mit groflem
Fehler verringern den Wert fiir x2, < 1,1 kiinstlich, ohne den Fit zu verbessern. Alle Ei-
genwerte, fiir die der relative Fehler groBer als 50% ist, werden daher nicht beriicksichtigt.
Dies fiithrt zu einer oberen Schranke t,,., fiir das Fitintervall. Da das Signal-Rausch-
Verhiltnis ab- und der Fehler der Eigenwerte damit zunimmt, beschranken die Eigen-
werte bei kleinen Zeiten den Fit am meisten. Um die volle Genauigkeit der Daten nutzen
zu konnen, ist es also sinnvoll, diese Eigenwerte in den Fit mit einzubeziehen und somit
nach dem dritten Axiom kleine Startzeiten t,,;, zu bevorzugen.

Die praktische Umsetzung eines Fits anhand obiger Axiome kann in verschiedenen
Varianten erfolgen. Nachfolgend werden die beiden Verfahren, wie sie in [61] beziehungs-
weise [50] und [62] eingefithrt werden, erlautert und in ihrer Anwendung verglichen.
In beiden Fillen wird anhand der Fehler der Eigenwerte zunéchst eine obere Grenze
tmax festgelegt. Die untere Grenze t,,;, wird so klein wie moglich gewahlt, dabei werden
durch Kontaktterme oder Stout-Smearing beeintréichtigte Zeitscheiben ausgeschlossen.
Nun erfolgt ein Fit im so festgelegten maximalen Fitintervall. Wenn dieser nicht das
XZq-Kriterium erfiillt, muss das Intervall verringert werden. In der Art und Weise, wie
nun das maximale Intervall [¢.,in; tmax] durch kleinere Fitintervalle abgedeckt wird, un-
terscheiden sich die beiden Methoden. In der ersten Methode wird das Intervall um
eine Zeiteinheit verkleinert. Anschlieffend erfolgt ein Fit beginnend von t¢,;,. Ist dieser
nicht erfolgreich, wird die Startzeit nach und nach um eins erhéht, bis die obere Grenze
des Intervalls .« erreicht ist. Ist nun wieder kein akzeptabler Fit gelungen, wird das
Intervall wiederum verkleinert. Bei dieser Methode ist ein grofies Fitintervall also wich-
tiger als eine moglichst kleine Startzeit. Bei der anderen Variante wird t,,;, als Startzeit
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fiir den Fit festgehalten und die Intervalllinge nach und nach verringert, bis entweder
ein Fit akzeptiert oder eine vorher definierte kleinste Intervalllinge erreicht ist. Wenn
letzteres geschieht, wird die Startzeit vergroflert und es werden erneut Fits mit kleiner
werdender Intervalllinge vorgenommen. Die geforderte Mindestléinge kann vom Problem
abhéngen. So kann zum Beispiel fiir die Massenbestimmung des Grundzustandes eine
groflere Mindestldnge als bei angeregten Zustdnden gefordert werden. In dieser Methode
wird das dritte Axiom, die Bevorzugung kleiner Startzeiten, als wichtiger angesehen als
die Maximierung der Intervalllainge.
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Abbildung 5.5.: Eigenwerte A\(?)(¢,ty = 0) und Exponentialfits fiir verschiedene Interval-
le in logarithmischer Skala fiir ein 323 x 64-Gitter mit 8 = 1,9 und
Kk = 0,14415.

Wenn die beiden Methoden verschiedene Fitintervalle liefern, sollte bei der Massenbe-
stimmung fiir mehrere Parameter § und x eine der beiden Methoden fiir alle Parame-
terkombinationen ausgewé#hlt werden, damit eine Beeinflussung des Ergebnisses durch
die Auswertung ausgeschlossen werden kann. Bei der Massenbestimmung des angeregten
Zustandes des Gluino-Glueballes mit dem Korrelator C ergibt sich lediglich fiir die Kom-
bination 8 = 1,9 und x = 0,14415 auf einem 323 x 64-Gitter und 1671 Konfigurationen
eine Differenz zwischen beiden Methoden, weshalb dieser Fall hier veranschaulicht wird.
Die Eigenwerte A(?)(¢) sind in Abbildung bis zu ty.x = 15 aufgetragen. Wird nun
der fitting robot zur Bestimmung der Masse verwendet, liefert die erste Variante, welche
das Fitintervall maximiert, einen Fit im Intervall [5; 13] mit der Masse am’ = 0.437(28).
Mit der zweiten Variante des robots hingegen wird die Masse durch einen Fit im In-
tervall [2;5] die Masse am” = 0.537(9). Die entsprechenden Exponentialfunktionen mit
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5. Massenbestimmung des Gluino-Glueballes

ihren Fehlern, wie sie anhand eines Fits an die Mittelwerte der Eigenwerte und nicht
mit dem Jackknife-Verfahren berechnet werden, sind ebenfalls in Abbildung |5.5| gezeigt.
Die Ubereinstimmung mit den Eigenwerten in den jeweiligen Fitbereichen ist klar er-
sichtlich. Um eine konsistente Massenbestimmung fiir diesen und andere Werte von « zu
ermoglichen, muss eine Entscheidung getroffen werden, welche der beiden Methoden eine
bessere Abschétzung fiir die Masse liefert. Fiir diese Entscheidung kann auch die effek-
tive Masse herangezogen werden. Diese ist, zusammen mit den beiden Massen am’ und
am” und ihren Jackknife-Fehlern, in Abbildung [5.6| gezeigt. Der Verlauf der effektiven
Masse zeigt klar, warum die beiden verschiedenen Verfahren unterschiedliche Intervalle
auswahlen. Ein erstes Plateau ist bereits ab t = 2 zu erkennen, es erstreckt sich jedoch
nur bis t = 4. Ab ¢t = 5 scheint sich ein weiteres, nach unten verschobenes Intervall zu
formen. Entscheidend fiir die Wahl einer Methode ist nun, dass das erste Plateau bereits
ab dem ersten zuverlassig verwendbaren Wert ¢ = 2 gebildet wird und nicht erst ein Ab-
fall zu einem Plateau stattfindet. Es gibt also keinen Grund, die Punkte mit dem besten
Signal-Rausch-Verhéltnis aus dem Fit auszuschliefen, weshalb hier die zweite Variante,
also der Fit im Intervall [2;5], gewéhlt wird.

0,9
0,8 F am”, Fit [z;g]
0,7 | ’ -
0,6 _I_ -
0,5 + T | T -
0.4+, [ T ]L ]
0,3 |
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Abbildung 5.6.: Effektive Massen mgf) (t) und aus Exponentialfits bestimmte Massen fiir
ein 323 x 64-Gitter mit 8 = 1,9 und x = 0,14415.

5.3. Fehlerabschdtzung und Autokorrelation

Neben der Bestimmung eines Wertes fiir die Masse ist die Abschéitzung des mit dem
Wert verkniipften Fehlers von entscheidender Bedeutung. Die statistischen Fehler fgat
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5.3. Fehlerabschétzung und Autokorrelation

der durch die Fits extrahierten Massen werden mittels des in Abschnitt[4.6.3] vorgestellten
Jackknife-Verfahrens bestimmt. Die systematischen Fehler fs, der Massenbestimmung
mittels Exponentialfits haben ihren Ursprung in der Auswahl des Fitintervalls. Durch
die Anwendung der automatisierten Auswahl wird versucht, diesen Fehler zu minimie-
ren. Dennoch muss davon ausgegangen werden, dass die extrahierten Massen mit einem
systematischen Fehler behaftet sind. Sandbrink [24] hat verschiedene Ansitze fir die
Abschétzung des durch die Auswahl eines bestimmten Fitintervalls zustande kommen-
den systematischen Fehlers vorgestellt. Fiir diese Arbeit wird fiir den systematischen
Fehler die maximale Differenz zu benachbarten, durch Fits derselben Intervalllinge ex-
trahierten Massen der Form

foys = maxt {|ma(t) — mac(t + 1)[, [mac(t) — mac(t — 1)[} (5.6)

gewihlt. Dabei werden Fits fiir ¢t < t,,;, oder einer oberen Intervallgrenze, welche iiber
tmax hinausgeht, nicht beriicksichtigt. Der Gesamtfehler f kann iiber

f = SQtat + s2ys (57)
berechnet werden. Die einzelnen Fehler werden in der Reihenfolge ( fsiat)(fsys) angegeben.

Wie in Kapitel erlautert, ist die Beachtung einer moglichen Autokorrelation ent-
scheidend fiir die angemessene Einschétzung eines statistischen Fehlers. Die verwendeten
priméren Observablen sind die Eintréige der Korrelationsmatrix C;;(¢). Eine Analyse die-
ser Eintrige mittels der in Abschnitt aufgefithrten Methoden zeigt, dass die einzel-
nen Eintrédge korreliert sind, dabei nimmt die Korrelation mit steigendem Smearing zu.
Eine Quantifizierung der Autokorrelationszeiten ist aufgrund der kleinen Statistik nicht
zuverlassig moglich, es kann jedoch der Schluss gezogen werden, dass auch fiir die se-
kundéren Observablen Autokorrelation zu erwarten ist. Fiir die hier untersuchten Werte
von k stehen jeweils 10 000 beziehungsweise 20 000 Konfigurationen zur Verfiigung. Da
die Inversion der Fermionmatrix bei der Messung der Eintrige der Korrelationsmatrix
numerisch aufwéndig ist, ist es nicht moglich, auf allen vorhandenen Konfigurationen
Messungen vorzunehmen. Um moglichst unkorrelierte Messergebnisse zu erhalten, wer-
den die Messungen daher mit einer Schrittweite s in Monte-Carlo-Zeit vorgenommen,
die so gewahlt wird, dass die volle Spannweite der vorhandenen Konfigurationen aus-
genutzt werden kann. Fiir k = 0,14435 erfolgen die Messungen mit s = 8. Anhand
von Jackknife-Binning und der Untersuchung der Varianz fiir steigende Bingrofle kann
nach eine Abschéitzung fiir die integrierte Autokorrelationszeit getroffen werden.
Anschliefend ist die Bestimmung einer optimalen Bingrofie nach moglich. In Ab-
bildung ist die Abschétzung fiir 73, mit dem Fehler nach fiir die Massenfits fiir

m® und m® aufgetragen. Trotz der bereits gewihlten Schrittweite ist erkennbar, dass
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5. Massenbestimmung des Gluino-Glueballes

Tabelle 5.1.: Ubersicht iiber die aus dem Jackknife-Binning abgeschétzten Autokorrela-
tionszeiten und optimalen Bingréflen fiir kK = 0,14435. Die hier angegebene
integrierte Autokorrelationszeit 73, bezieht sich auf die betrachteten Konfi-
gurationen mit der Schrittweite s. Beziiglich aller Konfigurationen wiére 7y,
in etwa um einen Faktor s = 8 grofiter.

Observable  Tiy Bopt

o m  2.1(6) 22
om® 113 13
o m  2.1(6) 22
“oom@ 092 12

die Daten korreliert sind und Binning zur richtigen Bestimmung des statistischen Fehlers
verwendet werden muss. Die integrierte Autokorrelationszeit der Grundzustandsmasse
m( ist hier in etwa doppelt so groB wie die von m(?. Dies kann daran liegen, dass der
Eigenwert des Grundzustandes, wie im Vergleich der Eigenvektoren gezeigt, vor allem
vom Operator mit dem grofiten Smearinglevel beeinflusst wird. Dieser Operator hat die
grofite raumliche Ausdehnung auf dem Gitter, weshalb es plausibel ist, dass er auch
am stéarksten korreliert ist. Die Tendenz der Zunahme der integrierten Autokorrelations-
zeit der Eintrdge der Korrelationsmatrix bei der Vergroflerung des Smearinglevels kann
mittels Binning qualitativ bestétigt werden.

Fir vk = 0,14435 erfolgt zusétzlich der Vergleich mit der I'-Methode. Hier zeigt
sich, dass fiir die gewdhlten Bingroflen der Jackknife-Fehler mit dem der I'-Methode
iibereinstimmt. Des Weiteren ist zu erkennen, dass die Autokorrelationszeit fiir die Mas-
senfits mit steigender Intervalllinge zunimmt. Durch den Vergleich beider Methoden
kann darauf geschlossen werden, dass die mittels Jackknife-Binning bestimmten statis-
tischen Fehler nicht unterschéitzt werden und diese stabilere Methode fiir alle weiteren
Massenfits verwendet werden kann.

5.4. Resultate fiir 5 =19

Fiir die Bestimmung der Massen im supersymmetrischen Limes ist es zunéchst notwen-
dig, fiir die verwendeten Werte von [ eine Extrapolation der fiir verschiedene x extrahier-
ten Werte zum Limes der verschwindenden Gluinomasse vorzunehmen. Dafiir erfolgen
zunachst Messungen fiir § = 1,9 mit den in gewihlten Operatoren. Fiir diesen Wert
von 3 liegen viele Konfigurationen vor, gleichzeitig entspricht er der Kopplung, welche
dem Kontinuumslimes am néchsten ist. Um die vorhandenen Konfigurationen mit der
verfiigbaren Rechenzeit optimal nutzen zu kénnen und gleichzeitig die Autokorrelation
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5.4. Resultate fiir § = 1,9
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Abbildung 5.7.: Integrierte Autokorrelationszeit nach (4.69) fiir die beiden Massen m!
und m® auf Grundlage der Korrelatoren Cy und C,, fir k = 0,14435.

zu verringern, erfolgen die Messungen mit einer Schrittgrofle s in Monte-Carlo-Zeit. Pro
k werden N ong-viele Messungen vorgenommen.

5.4.1. Korrelator (;

Die Massenbestimmung erfolgt zunéchst mit dem in den bisherigen Untersuchungen ver-
wendeten Korrelator C';. Die aus den Eigenwerten extrahierten effektiven Massen und
die gefitteten Massenplateaus sind in den Abbildungen bis gezeigt. Tabelle
fithrt die gefitteten Massen fiir die verschiedenen Werte von k auf. Der Fokus dieser
Arbeit liegt auf der Massenbestimmung fiir die angeregten Zusténde. Mit dem Operator
C4 ist lediglich fiir m® eine zuverlissige Massenbestimmung moglich, fiir alle kleineren
Eigenwerte sind die Fluktuationen und Fehler zu grof8. Die ermittelten Massen fiir die
drei verschiedenen Werte von x konnen zur Extrapolation zum Punkt verschwindender
Gluinomassen verwendet werden, diese Extrapolation ist in Abbildung gezeigt. Da-
bei wird angenommen, dass das Massenquadrat des adjungierten Pions a-7 linear mit der
Gluinomasse abfillt, m, oc m2__ [33]. Dadurch ist eine Extrapolation in Gittereinheiten
a moglich und die Massen am™ kénnen gegen die quadrierte Pionmasse (am,_,)? aufge-
tragen werden [26]. Fiir den ersten angeregten Zustand ergibt sich am® (k) = 0,439(34).
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5. Massenbestimmung des Gluino-Glueballes
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Abbildung 5.8.: Effektive und aus Exponentialfits bestimmte Massen fiir ein 323 x 64-
Gitter mit 5 = 1,9 und x = 0,14387.
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Abbildung 5.9.: Effektive und aus Exponentialfits bestimmte Massen fiir ein 323 x 64-
Gitter mit 5 = 1,9 und xk = 0,14415.

2) ist durch die Variationsmethode und die

Zusétzlich zur Bestimmung von m/
Berticksichtigung verschiedener Operatoren eine Verkleinerung der Fehler der bisheri-
gen Werte fiir m™) aus [26] moglich. Dabei werden fiir alle Werte von x Intervalllingen,

welche grofler als 20 sind, verwendet. Da alle Korrelatoren vor der Analyse antisym-
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5.4. Resultate fiir § = 1,9
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Abbildung 5.10.: Effektive und aus Exponentialfits bestimmte Massen fiir ein 323 x 64-
Gitter mit = 1,9 und k = 0,14435.

metrisiert wurden, entspricht dies Fits iiber einen grofien Anteil der vollen verfiighbaren
euklidische Zeit T'/2. Im Vergleich zur relativ kleinen Anzahl an verwendeten Konfi-
gurationen Neongs sind die Messungen fiir die aus [26] stammenden Werte auf mehr
als acht mal so vielen Konfigurationen erfolgt, dabei wurden die Massen jedoch nur
durch den direkten Fit an die Korrelationsfunktion ohne Verwendung der Variations-
methode bestimmt. Die Extrapolation zum Limes m, = 0 fiir m) ist in Abbildung
5.15| gezeigt. Hierbei wurde zusétzlich zu den in Tabelle gezeigten Werten der Wert
amM(k = 0,1433) = 0,324(11) aus [26] verwendet, welcher durch den direkten Fit an
den Korrelator bestimmt wurde. Mit diesen vier Werten bei verschiedenen x ergibt sich
fiir die extrapolierte Masse in Gittereinheiten am(" (k) = 0,185(7).

Tabelle 5.2.: Extrahierte Massen fiir C; mit 8 = 1,9 auf einem 323 x 64-Gitter, ge-
messen auf N Konfigurationen mit der Entfernung s in Monte-Carlo-
Zeit. Wird die Extrapolation ohne x = 0,1433 durchgefiihrt, ergibt sich
amW (k.) = 0,174(8)

K Neonfs S am® am®

0,14387 1276 8 0,2781(39)(31) 0,589(12)(7)
0,14415 1671 12 0,2405(34)(3) 0,538(10)(15)
0,14435 1343 8 0,2197(52)(6) 0,505(17)(11)

Ke - - 0,185(7) 0,439(34)
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5. Massenbestimmung des Gluino-Glueballes

5.4.2. Korrelator C,,
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Abbildung 5.11.: Effektive und aus Exponentialfits bestimmte Massen fiir ein 323 x 64-
Gitter mit = 1,9 und x = 0,14387.
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Abbildung 5.12.: Effektive und aus Exponentialfits bestimmte Massen fiir ein 323 x 64-
Gitter mit § = 1,9 und s = 0,14415.

Wie in Kapitel eingefiihrt, kann der Korrelator des Gluino-Glueballes in die beiden
Anteile C; und C,, aufgeteilt werden. Beide Korrelatoren lieferten in der Vergangenheit

64



5.4. Resultate fiir § = 1,9

1’4 T T T T T T T T T T
12 OV
) améff gt; >
" am® ——
Lr } am$) (1) e 7
£
0,8 | : ]
g X : %
3
06}  x ]
x x N * | %
04 |4 X Jf % ]
+
02 | LA S S S +E ]
O | | | | | | | | |

1 2 3 4 5 6 7 8 9 10 11
t

Abbildung 5.13.: Effektive und aus Exponentialfits bestimmte Massen fiir ein 323 x 64-
Gitter mit = 1,9 und k = 0,14435.

dieselbe Masse fiir den Grundzustand; die zeitlich antisymmetrische Komponente C4
zeigte fiir die effektive Masse langere Plateaus, was kleinere Fehler beim Exponentialfit
bedeutete. Daher wurde diese Komponente fiir die finale Massenbestimmung verwendet
[37]. Der Grund dafiir, dass die symmetrische Komponente C,, ein schlechteres Plateau
liefert, ist der langsame Abfall der Anteile angeregter Zusténde. Dies ldsst die Vermu-
tung zu, dass C,, fiir die Massenbestimmung eben dieser angeregten Zustdnde mittels
Variationsmethode geeignet ist.

Die Verldufe der effektiven Massen fiir die verschiedenen Werte von s sind in den
Abbildungen bis gezeigt. Auch hier ist eine zuverliassige Massenbestimmung
fiir alle Werte von « nur fiir die beiden grofiten Eigenwerte moglich. Fiir alle Werte von
 und fiir beide Massen mlz und m2g erfolgt fiir kleine Zeiten ein Abfall zum Plateau.
Das Verhalten der Eigenwerte ist fiir kleine Zeiten also verschieden vom vorher fiir Cy
beobachteten Verhalten. Gleichzeitig &hnelt der Verlauf der effektiven Massen jedoch
dem in [37] fiir den unverschmierten Korrelator beobachteten. Aufgrund der exponentiell
abfallenden Fehler fiir kleine Zeiten liefert die fiir C7 verwendete zweite Variante des
fitting robot Massenfits, die iiber dem Plateau der effektiven Masse liegen. Die erste
Variante, welche die Maximierung des Fitintervalls bevorzugt, kann jedoch fiir alle Werte
von & und alle m( fiir eine konsistente Massenbestimmung verwendet werden. Die so
extrahierten Massen sind in Tabelle und den Abbildungen [5.14] und [5.15] gezeigt.

Sowohl die Massen fiir die einzelnen Werte von k als auch die Massen bei k. stimmen
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5. Massenbestimmung des Gluino-Glueballes

Tabelle 5.3.: Extrahierte Massen fiir C.,, mit § = 1,9 auf einem 32% x 64-Gitter, gemessen
auf Neongs Konfigurationen mit der Entfernung s in Monte-Carlo-Zeit.

K Neonts S am® am® am®

0,14387 1276 8 0,2768(95)(34) 0,554(13)(22) 0,75(3)(7)
0,14415 1671 12 0,2383(71)(18) 0,472(21)(18) 0,68(4)(1)
0,14435 1343 8 0,2262(90)(34) 0,488(16)(22) -

e - - 0,182(18) 0,415(48) -

mit Ausnahme des Wertes fiir K = 0,14415 im Rahmen ihrer Fehler mit denen in Tabelle
iberein. Aufgrund der kiirzeren Plateaus fiir den Fit sind die Fehler jedoch grofer.

Wie im vorherigen Abschnitt angefiihrt, ist eine zuverlédssige Massenbestimmung fiir
weitere Zustinde des Gluino-Glueballes anhand der Eigenwerte A™(¢) mit n > 2 mittels
C1 nicht moglich. Hier ist fiir alle Werte von x kein Plateau der effektiven Masse m3;
auszumachen. Die Werte schwanken bereits fiir kleine Zeiten stark und sind mit grofien
Fehler behaftet. Anders stellt sich dies fiir C, dar. Auch hier sind die Fehler und Schwan-
kungen der Eigenwerte grofler, dennoch ist es moglich, mit Hilfe der Fitroutine Massen
zu extrahieren. Die effektiven Massen m‘(jf) (t) und die aus dem Fit gewonnenen Massen
mit ihren Fehlern sind ebenfalls in den Abbildungen bis gezeigt. Auch hier ist
das Abfallen des Wertes der effektiven Masse erkennbar, jedoch bilden sich hier keine
klaren Plateaus mehr aus. Dennoch ist es anhand des Fits an die Eigenwerte moglich,
Massen mit entsprechend groflem Fehler zu extrahieren. Lediglich fiir k = 0,14435, also
dem Wert, welcher k. am néchsten ist, ist es nicht mdoglich, eine eindeutige Massenbe-
stimmung mit angemessenen Fehlern durchzufiihren. Die erste Variante des fitting robot,
welche hier auch zur Bestimmung der anderen Massen verwendet wird, gibt den Fit im
Intervall [7;11] mit dem Wert am® = 0,54(10)(23) aus. Der statistische Fehler betriigt
also bereits ca. 20% des Wertes, der systematische Fehler ist noch deutlich grofier. Dies
spricht dafiir, dass die Massenbestimmung hier nicht zuverliassig moglich ist. Die zweite
Variante des fitting robot mit der Mindestintervalllinge 3 liefert am® = 0,81(2)(1) fiir
den Fit im Intervall [3;5]. Wird hingegen eine Lénge von 4 gefordert, wird ebenfalls der
Fit im Intervall [7;11] ausgewéhlt. Der Fit ab ¢ = 3 scheint, auch im Vergleich mit den
anderen Fits fiir C,, zu friih, also vor dem Abfallen zum Plateau, zu starten und daher
einen zu groBen Wert zu liefern. Eine zuverlissige Bestimmung von am® (k = 0,14435)
ist also nicht mdoglich. Daher ist auch eine Extrapolation zum Limes verschwindender
Gluinomasse nicht durchfiihrbar.
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Abbildung 5.14.: Extrapolation von am(® zum Limes verschwindender Gluinomasse fiir
ein 32° x 64-Gitter mit g = 1,9 fiir die Korrelatoren C; und C.,.
Zur besseren Sichtbarkeit sind die Werte fiir am®(Cy) zu gréBeren
Pionmassen verschoben.
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Abbildung 5.15.: Extrapolation von am®) zum Limes verschwindender Gluinomasse fiir
ein 32% x 64-Gitter mit 8 = 1,9 fiir die Korrelatoren Cy und C.,.

Zur besseren Sichtbarkeit sind die Werte fiir am®(Cy) zu gréBeren
Pionmassen verschoben.
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5. Massenbestimmung des Gluino-Glueballes

Tabelle 5.4.: Extrahierte Massen mit f = 1,9 auf einem 32% x 64-Gitter, gemes-
sen auf Ny, Konfigurationen mit der Entfernung s in Monte-Carlo-
Zeit. Wird die Extrapolation ohne x = 0,1433 durchgefiihrt, ergibt sich
am™M (k.) = 0,174(10).

K Neonts S am™® am®

0,14387 1276 8 0,2778(45)(32) 0,581(11)(11)
0,14415 1671 12 0,2401(37)(5)  0,518(9)(16)
0,14435 1343 8 0,2212(56)(12) 0,499(14)(15)

Ke - 0,187(7) 0,425(34)

5.5. Finale Massenbestimmung

Die oben auf Grundlage der beiden verschiedenen Korrelatoren bestimmten Massen stim-
men mit Ausnahme von m® (x = 0,14415) im Rahmen ihres Fehlers iiberein. Dies gilt
auch fiir die Werte, welche durch die Extrapolation zum Limes verschwindender Glui-
nomassen bestimmt wurden. Da beide Korrelatoren dieselben Zustdnde beschreiben,
konnen die vorhandenen Abweichungen auf systematische Fehler hindeuten. Um eine
endgiiltige Abschétzung fiir die Masse des Gluino-Glueballes bei g = 1,9 treffen zu
konnen, miissen die Ergebnisse fiir C; und €., sinnvoll verkniipft werden. Damit dabei
die verschieden groflen Fehler der Fits berticksichtigt werden, wird fiir jeden Wert von &
das gewichtete arithmetische Mittel beider Massen m™ gebildet, wobei statistische und
systematische Fehler beriicksichtigt werden. Anschlieend erfolgt eine Extrapolation zum
Limes verschwindender Gluinomassen anhand der ermittelten Werte m™ (k).

Da die Messungen fiir beide Korrelatoren auf denselben Konfigurationen stattgefunden
haben, ist anzunehmen, dass die Ergebnisse korreliert sind. Eine einfache Verkniipfung
der Mittelwerte und ihrer Fehler birgt also die Gefahr, diese Fehler zu unterschétzen. An-
stelle einer einfachen Fehlerfortpflanzung wird fiir den statistischen Fehler des gewichte-
ten Mittels die Jackknife-Methode verwendet. Hier wird @™ auf den einzelnen Jackknife-
Bins berechnet, was die Bestimmung des statistischen Fehlers nach ermoglicht.

Auch fiir den systematischen Fehler des Mittels kann keine einfach Fehlerfortpflanzung
verwendet werden. Der schlechteste Fall liegt vor, wenn die Fitintervalle beider Korre-
latoren so gewéahlt werden, dass die Masse grundsétzlich zu grof3 oder grundsétzlich
zu klein bestimmt wird. In diesem Fall addieren sich die systematischen Fehler beider
Massen (gewichtet) auf. Fiir konservative Abschétzung des systematischen Fehlers wird
dieser schlechteste Fall angenommen.

Die mit dieser Methode ermittelten gewichteten Mittelwerte und der zu Kk = k. ex-

trapolierte Wert sind in Tabelle sowie in den Abbildungen und gezeigt.
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Abbildung 5.16.: Extrapolation von aim® zum Limes verschwindender Gluinomasse fiir

ein 323 x 64-Gitter mit 3 = 1,9 fiir das gewichtete Mittel.

0,36
0,34
0,32

0,3
0,28
0,26
0,24
0,22

0,2
0,18
0,16

am

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08
(ama,ﬂ)Q

Abbildung 5.17.: Extrapolation von aim) zum Limes verschwindender Gluinomasse fiir
ein 323 x 64-Gitter mit 3 = 1,9 fiir das gewichtete Mittel.
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5. Massenbestimmung des Gluino-Glueballes

5.6. Verschiedene Versionen der Variationsmethode

In Abschnitt [4.5|sind drei verschiedene Methoden zur Anwendung der Variationsmethode
vorgestellt. Fiir obige Auswertung wurde durchgéngig die t-Eigenvektor-Methode mit
to = 0 verwendet. Diese Methode ist fiir alle Werte von & stabil, die Aufteilung der
Korrelationsmatrix C'(0) mit der Cholesky-Zerlegung, wie in gezeigt, ist bei einem
passenden Satz von Operatoren stabil und kann daher konsistent angewendet werden.
Nach Blossier et al. [47] konnen die Fehler der Eigenwerte verringert werden, wenn beim
Lésen des Eigenwertproblems to > t/2 gewihlt wird. Dies ist fiir die vorliegenden
Daten des Gluino-Glueballes nicht moglich. Bereits ab ¢ty = 3 kann es dazu kommen,
dass C(ty) nicht mehr positiv definit und eine Losung des Eigenwertproblems nicht mehr
moglich ist. Fiir die Bestimmung von m®, bei der Fits mit ¢ty = 27 durchgefiihrt
werden konnen, ist eine Erhohung von ¢y nicht zielfithrend, da die Bedingung tq > t/2
nicht eingehalten werden kann. Des Weiteren kann es auch bei t; = 2 aufgrund von
numerischen Schwankungen bei der Losung des Eigenwertproblems zur Vergrofierung

2) sind die Plateaus sehr kurz. Eine Erhohung von t, kann

der Fehler kommen. Fiir m/
hier dazu fithren, dass die Daten fiir kleine Zeiten t = 2 oder ¢ = 3 nicht mehr verwendet
werden konnen, was das Plateau unnotig verkiirzt. Eine Verbesserung der Statistik und
eine damit einhergehende kleinere Schwankung der kleinsten Eigenwerte konnte dazu
beitragen, die t-Eigenvektor-Methode auch mit grofleren Startzeiten ¢y zu nutzen.

Die Problematik der Zerlegung der Matrix C'(t) mit ¢ > 3 hat unmittelbar Konsequen-
zen auf die Anwendbarkeit der Projektionsmethode. Hier muss C(t) fiir jeden betrachteten
Zeitpunkt t zerlegt werden, was dazu fiihrt, dass lediglich Daten fiir kleine Zeiten ¢ ge-
wonnen werden kénnen, bevor die Zerlegung scheitert. Diese Daten reichen nicht aus,
um aus ihnen weitere Schliisse zu ziehen.

Die fized-vector Methode ist besonders dazu geeignet, die Massenbestimmung bei bei-
nahe entarteten Eigenwerten zu verbessern. Sind die Eigenwerte weit genug voneinander
separiert, wird keine Verbesserung erwartet, da die Orthogonalitdt der Eigenvektoren
lediglich fiir einen Zeitpunkt gewéhrleistet ist und fiir alle grofleren Zeiten Stérungen des
Grundzustandes zu erwarten sind. Die Verwendung der fixed-vector Methode bringt fiir
die vorliegenden Daten keine Verbesserung der Fehler oder Verldngerung der nutzbaren
Fitintervalle. Da mit dem Korrelator C., eine Abschétzung fiir die Masse m® getrof-
fen werden kann und die Eigenwerte klar genug voneinander separiert zu sein scheinen,
ist eine solche Verbesserung jedoch auch nicht zu erwarten. Die Eigenwerte von C., fiir
k = 0,14387 sind in Abbildung gezeigt. Hier ist klar erkennbar, dass die Eigenwerte
nicht entartetet sind.
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5.6. Verschiedene Versionen der Variationsmethode
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Abbildung 5.18.: Eigenwerte A\(™ () fiir ein 323 x 64-Gitter mit 3 = 1,9 und x = 0,14387
fiir den Korrelator C,,. Wenn die Symbole gréfier als die Fehlerbalken
sind, sind diese nicht dargestellt.
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6. Zusammenfassung und Ausblick

Die von der DESY-Miinster-Kollaboration durchgefiihrten Untersuchungen der Multi-
plettstruktur der niederenergetischen gebundenen Zustinde der N' = 1 supersymmetri-
schen Yang-Mills-Theorie mit der Eichgruppe SU(2) umfassen unter anderem die Mas-
senbestimmung dieser Zustéinde anhand von rein gluonischen, mesonischen und fermio-
nischen Operatoren. Durch die Analyse fiir verschiedene Gittergréfien, Kopplungen und
Gitterkonstanten ist eine Extrapolation zum Kontinuum moglich, welche darauf schlieffen
lasst, dass die Supersymmetrie, welche auf dem Gitter gebrochen ist, im Kontinuumsli-
mes wieder hergestellt ist. Dieser Schluss wird aus der Tatsache gezogen, dass die Massen
der im leichtesten Supermultiplett erwarteten Teilchen hier im Rahmen von zwei Stan-
dardabweichungen iibereinstimmen. Eine Aussage iiber das schwerere Multiplett konnte
bisher nicht getroffen werden. Dies liegt vor allem darin begriindet, dass eine mdogliche
Mischung zwischen den gluonischen und mesonischen Zustdnden erwartet wird, das Mi-
schungsverhéltnis jedoch noch nicht bekannt ist. Eine Moglichkeit Aussagen iiber das
schwere Multiplett zu treffen ist durch die Betrachtung des ersten angeregten Zustandes
des Gluino-Glueballes gegeben, weshalb dieser Zustand im Zentrum dieser Arbeit stand.

Um die zur Massenbestimmung des ersten angeregten Zustandes verwendete Varia-
tionsmethode so zu optimieren, dass aussagekriftige Resultate erzielt werden konnen,
wurde zunéchst der Einfluss von Smearing auf den verwendeten Operator des Gluino-
Glueballes untersucht. Dabei stellte sich heraus, dass stark verschmierte Operato-
ren nicht nur bei der Massenbestimmung des Grundzustandes anhand eines Korrelators,
sondern auch bei der Variationsmethode das Signal verbessern. Die Analyse verschieden
aufgebauter Korrelationsmatrizen anhand des Signals bei der Massenbestimmung und
der Eigenvektoren des verallgemeinerten Eigenwertproblems zeigt, dass fiir den ersten
angeregten Zustand die Verwendung von stark verschmierten Operatoren von Vorteil ist,
hier jedoch im Gegensatz zum Grundzustand innerhalb des untersuchten Bereichs der
APE-Smearinglevel ein Optimum erreicht wird. Diese Untersuchungen ermdglichten die
Auswahl einer Menge von Operatoren, welche einerseits die Qualitiat der Massenbestim-
mung optimiert und andererseits klein genug gehalten ist, um die zur Messung benétigte
Rechenzeit nicht unnétig zu verldngern. Diese fiir £ = 0,14415 ausgewéhlten Operatoren
wurden anschlieflend fiir alle weiteren Werte von x verwendet.

Bei den zur Massenbestimmung verwendeten Exponentialfits besteht eine Gefahr der
Beeinflussung des Messergebnisses durch den Experimentator, beispielsweise durch die
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manuelle Auswahl eines geeigneten Fitintervalls. Die Anwendung des hier verwende-
ten fitting robot kann diese Beeinflussung verringern, da hier das Intervall automatisch
gewdhlt wird. Dennoch bleibt ein mittels fitting robot gewonnenes Ergebnis weiterhin
nicht unbeeinflusst. So werden in dieser Arbeit zwei verschiedene Interpretationen der
drei Axiome préasentiert, die jeweils besser zu einem der hier betrachteten Korrelatoren
zu passen scheinen. Es musste also weiterhin eine Auswahl getroffen werden. Dennoch
war es moglich, jeweils eine der beiden Varianten konsistent fiir einen Korrelator zu
verwenden. Trotz der Automatisierung der Massenbestimmung miissen die erhaltenen
Ergebnisse beispielsweise anhand der effektiven Masse weiterhin auf ihre Plausibilitét
iiberpriift werden. Hier sollte jedoch keine Beeinflussung des Ergebnisses sondern ledig-
lich eine Beurteilung geschehen, ob im vorliegenden Fall eine im Rahmen der Fehler
zuverldssige Massenbestimmung moglich ist. Ein weiterer Aspekt des fitting robot ist
die Automatisierbarkeit der Massenbestimmung. Bereits bei den hier bestimmen 15 ver-
schiedenen Massen bedeutet dies eine Arbeitserleichterung. Im Falle der Verwendung
der fixed-vector Methode erméglicht diese Automatisierung der Auswertung die Unter-
suchung der Massenbestimmung fiir verschiedenste Werte von ¢, und ¢; [61].

Bei jeder Massenbestimmung ist die richtige Abschétzung der statistischen und syste-
matischen Fehler von entscheidender Bedeutung fiir die Verwendbarkeit des Ergebnisses.
Die Untersuchung der Autokorrelationszeiten der extrahierten sekundédren Observablen
und der daraus resultierenden richtigen Abschétzung fiir den statistischen Fehler wurde
hier anhand von Jackknife-Binning getétigt. Diese Methodik wurde bereits in [23] und
[24] bei der Massenbestimmung der Gluebille verwendet und scheint auch im Falle der
Gluino-Gluebélle zuverlédssig zu funktionieren. Obwohl Jackknife-Binning eine stabile
Methode zur Bestimmung der statistischer Fehler und der Autokorrelationszeiten se-
kundérer Observablen darstellt, liefert die ['-Methode eine zuverléssigere und genauere
Bestimmung dieser Grofien [53]. Die Anwendung auf die Variationsmethode kann jedoch
zu numerischen Instabilitdten fithren. Da bereits das Jackknife-Binning zu ausreichen-
den Fehlerabschétzungen fithrt, wurde eine verbesserte Anwendung der I'-Methode auf
die Variationsmethode nicht weiter untersucht, durch diese kénnte in der Zukunft eine
Verbesserung des Analyseablaufs erfolgen.

Obwohl bei der Bestimmung von m(? Resultate erzielt werden konnten, sind die Feh-
ler hier deutlich grofler, als fiir die Masse des Grundzustandes. Um mit der vorhandenen
Messzeit die vorliegenden Konfigurationen stets optimal nutzen zu koénnen, wurde die
Schrittweite s in Monte-Carlo-Zeit bei der Erhohung der Statistik halbiert. So konnte
beobachtet werden, dass die Verbesserung des statistischen Fehlers bei Halbierung der
Schrittweite und einer damit einhergehenden Verdopplung der Messungen beinahe mit
dem Faktor 1/4/2 erfolgt ist. Dies lisst darauf schlieBen, dass eine weitere Erhohung der
Statistik die Fehler weiter verringern kénnte. Eine obere Grenze fiir diese Verbesserung
ist jedoch durch die Anzahl der unabhingigen Konfigurationen gegeben. Wenn die in
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6. Zusammenfassung und Ausblick

Tabelle angegebenen konservativ abgeschétzten integrierten Autokorrelationszeiten
als Grundlage fiir die Bestimmung der Anzahl der vorhandenen effektiv unabhéngigen
Konfigurationen gewéhlt werden, ist nicht eindeutig, ob eine Verbesserung des Fehlers
des Grundzustandes erwartet werden kann. Fiir eine Schrittweite s = 16 kann mit-
tels Jackknife-Binning fiir am™(Cy) die integrierte Autokorrelationszeit 7, = 1,2(4)
abgeschétzt werden. Der Vergleich mit dem Wert aus Tabelle zeigt, dass eine Hal-
bierung der Schrittweite nicht mit einer Verdoppelung von 7y, einhergeht. Auch fiir den
ersten angeregten Zustand ist keine Verbesserung mit dem Faktor 1/4/2 zu erwarten. Da
jedoch die Fehler der integrierten Autokorrelationszeiten nicht zu vernachléssigen sind,
ist eine Aussage iiber die Anzahl der unabhéngigen Konfigurationen nicht zuverléssig.

Trotz der im Vergleich zu m™ groSeren Fehler ist es gelungen, zuverlissige Massen-
bestimmungen fiir m® mit = 1,9 und drei Werte von & vorzunehmen. Durch die Be-
trachtung der beiden Anteile Cy und C., des Korrelators des Gluino-Glueballes kénnen
dabei grobe systematische Fehler in der Auswertung ausgeschlossen werden. Anhand
der Massen fiir drei Werte von s konnte des Weiteren eine Extrapolation zum Limes
verschwindender Gluinomassen vorgenommen werden. Um endgiiltige Aussagen iiber
die Masse des ersten angeregten Zustandes des Gluino-Glueballes im Kontinuumslimes
mit wieder hergestellter Supersymmetrie tétigen zu kénnen, sind jedoch Massenbestim-
mungen fiir andere Werte von [ notwendig. Diese liegen zur Zeit aufgrund des wegen
der Inversion der Fermionmatrix hohen Rechenaufwandes bei der Messung der Korre-
lationsmatrix nicht vor. Zu Beginn der Untersuchungen des Gluino-Glueballes wurden
erste Messungen fiir § = 1,75 und sk = 0,14925 vorgenommen. Hier konnte jedoch keine
zuverlissige Massenbestimmung fiir m®) erfolgen. Zum damaligen Zeitpunkt war nicht
klar, ob dies in dem gewéhlten Wert von § mit der zur Verfiigung stehenden Statistik be-
griindet war, weshalb fiir die weiteren Messungen § = 1,9 gew#hlt wurde. Riickblickend
ist es jedoch moglich, dass fiir § = 1,75 zur Konstruktion der Korrelationsmatrix Ope-
ratoren mit einem zu kleinen Njpg gewédhlt wurden und eine Massenbestimmung mit
dhnlichen Parametern wie bei § = 1,9 moglich ist.

Obwohl keine Aussage iiber den Fall einer wieder hergestellten Supersymmetrie
getétigt werden kann, kann vermutet werden, dass der untersuchte Zustand Teil des
schwereren Supermultipletts nach Farrar et al. [10] ist. In diesem Fall wird ein weiterer
skalarer und pseudoskalarer Zustand mit einer im supersymmetrischen Limes gleichen
Masse erwartet. Aufgrund der zu erwartenden Mischung der gluonischen und mesoni-
schen Zusténde ist nicht klar, ob die verwendeten Operatoren auf denselben niedrigen
Zustand oder verschiedene gebundene Zustédnde projizieren. Fiir den Grundzustand des
0~ *-Glueballes und den ersten angeregten Zustand des 07 "-Glueballes gibt es Hinweise,
dass auch diese Zusténde Teil eines schwereren Supermultipletts sein kénnten [26].

Neben der Untersuchung des ersten angeregten Zustandes, wurde auch die Masse m1)
des Grundzustands des Gluino-Glueballes neu bestimmt. Hier ergeben sich im Vergleich
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zu den auf der Grundlage eines Fits an die Korrelationsfunktion gewonnenen Massen
leicht verdnderte Werte, gleichzeitig kénnen die Fehler klar reduziert werden. Bei der
Extrapolation zum Limes m, = 0 macht es einen Unterschied, ob der Wert bei x = 0,1433
mit in den Fit einbezogen wird. Dieser wurde nicht mittels Variationsmethode bestimmt,
dennoch sollte auch die aus dem Fit an die Korrelationsfunktion extrahierte Masse ein
richtiges Ergebnis liefern. Die Untersuchung von x = 0,1433 mit der Variationsmethode
und eine damit einhergehende Verbesserung des Ergebnisses der Extrapolationen von
m® und m® ist geplant, jedoch wegen des Rechenaufwandes noch nicht abgeschlossen.

Die Untersuchung der durch die Betrachtung von C,, bestimmten Eigenwerte zeigt,
dass auch fiir n > 2 Abschéitzungen fiir Massen getroffen werden konnen. Eine Ein-
ordnung dieser hoheren Zustidnde in mogliche weitere Multiplettstrukturen oder Streu-
zusténde kann jedoch im Rahmen dieser Arbeit nicht getétigt werden. Dennoch kann
anhand der Eigenwerte in Abbildung[5.18|geschlossen werden, dass diese weit genug sepa-
riert sind, um zuverlassig mit der t-Eigenvektor-Methode und nicht mit der fixed-vector
Methode bestimmt zu werden. Die Nutzung anderer Methoden als der t-Eigenvektor-
Methode oder die Verwendung groflerer Startzeiten ¢y hat sich als nicht durchfithrbar
oder nicht gewinnbringend erwiesen. Neben den hier vorgestellten Versionen die Varia-
tionsmethode zu nutzen, konnten in Zukunft auch andere Verfahren zur Massenbestim-
mung angeregter Zustinde verwendet werden. Die AMIAS-Methode [63] 64] ermdoglicht
die Einbeziehung der bereits gemessenen Korrelationsmatrizen, nutzt zur Massenbestim-
mung jedoch ein grundlegend anderes Verfahren.

Aufbauend auf den Erfahrungen, welche in dieser Arbeit gemacht wurden, kénnen
Untersuchungen in verschiedenen Richtungen erfolgen. Zum einen ist es moglich, die
fiir B = 1,9 verwendeten Smearingparameter auch fiir andere Werte von [ zu testen
und somit Massenbestimmungen fiir verschiedene Kopplungen vorzunehmen, welche ei-
ne Extrapolation zum Kontinuumslimes ermdoglichen. Zum anderen scheint auch fiir die
Gluebélle und Gluinobélle eine Untersuchung hoherer Zusténde ratsam, um Schliisse
iiber eine mdégliche Multiplettstruktur ziehen zu kénnen. Des Weiteren ist nicht klar,
ob die hier beobachteten angeregten Zustdnde wirklich zu Ein-Teilchen-Zusténden des
Gluino-Glueballes gehoren, oder ob hier gebundene Zustédnde, beispielsweise aus einem
0t *-Glueball und einem Gluino-Glueball, auftreten. Diese Mdoglichkeiten kénnen durch
eine reine Betrachtung der Massen nicht unterschieden werden. Eine Untersuchung der
Streuzustiande mittels Zwei-Teilchen-Operatoren konnte in Zukunft mehr Klarheit brin-
gen. Auch die genauere Untersuchung der Eigenwerte A der Gluino-Gluebélle fiir n > 2
kann dazu genutzt werden, Aussagen iiber mogliche Streuzustande zu tétigen. Im Falle
des Auftretens von Streuzustinden wird auf einem endlichen Gitter ein dichtes Spek-
trum diskreter Zustdnde mit variierendem Relativimpuls oberhalb des niedrigsten Zwei-
Teilchen-Zustandes erwartet. Zusétzlich zur Untersuchung der Eichgruppe SU(2), kann
ein analoges Vorgehen fiir SU(3) erfolgen [65].
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A. Notation

Im Folgenden werden die Konventionen aufgelistet, welche in dieser Arbeit verwendet
werden. In der gesamten Arbeit werden natiirliche Einheiten betrachtet, es gilt also A = 1
und ¢ = 1.

Die Anzahl der Farben in der betrachteten SU(2)-SYM-Theorie ist N = 2. Die entspre-
chenden Farbindizes der adjungierten Darstellung werden mit lateinischen Buchstaben
ab,...€{1,...,N?2—1} gekennzeichnet. Die Farbindizes der fundamentalen Darstellung
werden nicht explizit ausgeschrieben. Die Anzahl der Flavors ist N/ = 1. Spin-Indizes
werden mit griechischen Buchstaben von Beginn des Alphabets «,f3,... € {1,...,4} ge-
kennzeichnet. Die Raumzeitkomponenten werden mit griechischen Buchstaben aus der
Mitte des Alphabets, also u,v, . . . gekennzeichnet. In der Minkowski-Metrik nehmen diese
die Werte 0, ...,3 ein. Im iiberwiegenden Teil der Arbeit wird jedoch in der euklidischen
Metrik gearbeitet, hier gilt u,v,... € {1,...,4}. Wenn lediglich die rdumlichen Kompo-
nenten betrachtet werden, werden diese durch lateinische Buchstaben aus der Mitte des
Alphabets gekennzeichnet, i,7.k,... € {1,2,3}. Wenn nicht anders gekennzeichnet, wird
die Einsteinsche Summenkonvention verwendet, Summierungen iiber doppelt auftretende
Indizes sind impliziert.

A.l1. Pauli-Matrizen

Die Generatoren der SU(2) sind durch

1
T, = 3% a=1,23 (A1)

gegeben. Dabei sind o, die Paulimatrizen gegeben durch

0 1 0 —i 1 0
01:<1 0), @z(i 0), 01:(0 _1>. (A.2)
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A.2. Dirac-Matrizen

A.2. Dirac-Matrizen

Beim Wechsel vom Minkowski-Raum in den euklidischen Raum muss beachtet werden,
dass hier die Dirac-Matrizen anders definiert sind. Die Beziehung zwischen den Matrizen
ist
Klid. . Mink. Klid. ink.
7(13}12,3 = _17?42,3 ) Vi = %1)\/1 . (A1)

Die euklidischen Dirac-Matrizen werden mit v, (¢ = 1,2,3,4) bezeichnet. Sie sind hermi-
tesch und erfiillen

T = 7;5 = 7;17 {7/1771/} = 25uu- (AQ)

Mit den Paulimatrizen kénnen die Dirac-Matrizen explizit ausgeschrieben werden, es gilt

0 —io
M,2,3 = < 1’2’3) . (A.3)
0123 0

In der chiralen Darstellung werden 4 und 5 = v17927v374 durch

0 1, 1, 0
= = A4
T (12 0 ) ;Y ( 0 _12> (A.4)

dargestellt.
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B. Nichtabelsche Eichtheorien

Die Notwendigkeit der Einfiihrung von Eichfeldern wird bei der Forderung nach lokaler
Eichinvarianz deutlich. Ein aus Feldern mit N komplexen Komponenten

¢1(x)
)= =+ |, o =(¢i),... on(x)) (B.1)
on(z)
gebildetes Skalarprodukt
¢(z) - é(z) = 3 _ 7o (B.2)

ist invariant unter globalen Transformationen
¢ — ¢ = Qo (B.3)

mit 2 € SU(N). Da die Transformation global ist, vertauschen Ableitungen mit €2, sodass
alle Terme der Langrangedichte eine freien Feldes

£ = 9,0 (x) - 9(x) — m*6 () - $(a) (B.4)

invariant sind. Bei lokalen Transformationen mit

N2-1

Q= Q(z) = exp <—i > a“(a:)Ta> e SU(N) (B.5)

a=1

ist diese Invarianz nicht mehr gegeben. Dabei sind T, die N> —1 Generatoren der SU(N).

Bei der SU(2) sind dies die drei Paulimatrizen %aa fiir a = 1,2,3. Bei der Ableitung des

transformierten Feldes treten nun inhomogene Terme auf,

Oud' () = Ux)0u0(x) + (0u82(x)) ¢(2). (B.6)
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Die Invarianz lasst sich durch die Einfithrung der kovarianten Ableitung D, mit

D,6(x) = B,(x) —ig 3 A%a)Tuo(x) (B.7)
= Mqﬁ(:ﬂ) — igAM(:B)gb(x), mit Au(x) = AZ(x)Ta (B.8)

wieder herstellen, wobei die N? — 1 vielen Eichfelder A7 und die Kopplungskonstante g
verwendet wurden. Aus der Forderung, dass

D,/ (x) = a) Dub(a) (B.9)

gelten muss, damit die Lagrangedichte invariant unter lokalen Eichtransformationen ist,
ldsst sich herleiten, dass die Eichfelder geméafl

A, = Q(2) Ay ()2 (z) + éQ(:c)@qu(:I;) (B.10)

transformieren. Die Lagrangedichte der Eichfelder lésst sich {iber den Feldstirketensor
F,,, bestimmen. Dieser wird mit Hilfe der kovarianten Ableitung mittels

F, [D,,D,] = (0,A, — 0, A,) —ig[A,,A] (B.11)

i
g
= 0, AT, — 0,A0T, + gAL A} & T =: F T, (B.12)

berechnet und transformiert geméaf

FL, () = Q&) Fu ()2 (). (B.13)

Die eichinvariante Lagrangedichte der sogenannten Yang-Mills-Wirkung lautet dann

1 1
Ly = 5 TY[Fy P = — Fj, P, (B.14)
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C. GraBmann-Algebra

Fiir die Beschreibung von Fermionen ist die Nutzung von antikommutierenden Graf3-
mannzahlen vonnoten. Es wird ein Satz von Grafimannzahlen n;,7 = 1,... N betrachtet,
welche

nin; = —n;in; Vi,j (C.1)

erfiillen. Durch diese Eigenschaft sind diese Variablen nilpotent, es gilt also n? = 0. Daher
bricht die Reihenentwicklung einer Funktion nach einer endlichen Anzahl an Termen ab

F(n,...mn) =a+ Z a;n; + Z a;inin; + Z QNN Mk + -+ + a2 N2 - . . NN

i<j i<j<k
(C.2)
mit den komplexen Koeffizienten a,a;, . . . ,a12.. y. Die Ableitung nach einer Gramannzahl
ist durch
0
an, Mk = Oik (C.3)
definiert und erfiillt die Eigenschaften
0 o 0 o 0 0 0
1=0, —— =55 A= —Nin— (C.4)
om; on; On; dn; On; on; o

Das Integral iiber Grafimannzahlen ist aufgrund der Struktur der GraBmannzahlen
dghnlich zur Ableitung. Es gilt:

0
Ay F = —F C.5
[anr= (C.5)
/&MmF——/mmmF (C.6)
/d?’]N . dnl F=a, yeC (07)
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Fiir die Beschreibung von Fermionen auf dem Gitter wird das Gauflintegral fiir Gra$-
mannzahlen benétigt. Dazu wird eine Grafimannalgebra mit N = 2M Generatoren

,n2, - - a”Mﬂ?laﬁ?v S 777M

eingefiihrt. Das Skalarprodukt wird iiber

7714,77 Z Th igTj (08)
i,7=1
definiert. Fiir die Funktion
Mo 1
m=1 ’
gilt nun
1 _ _
M(UA,U)M = Y s Aris - A - T (C.10)
’ 1M
=(det A) um - .. e, (C.11)

wobei €, 5, ;,, das Levi-Civita-Symbol ist. Damit gilt fiir das Integral iiber F'(ny, ... ,7u)
/ dmdd, . .. dnadiag ™47 = det A. (C.12)
Nach der Einfiithrung von Quelltermen 6;,6; lassen sich die folgenden Integrale berechnen:

/dnl...andnl...ane"A")+(’79)+9’7) (det A)e=(@A7'0) (C.13)

/d?h e dT_]M mﬁje(ﬁA’") = /dnl . dﬁM e(ﬁA,n)Jr(ﬁ,Q)Jr(G_m)
]

(det A ) (C.14)

Die Verallgemeinerung zu einer funktionalen Gramannalgebra liefert fiir n(x),n(x):

| Pupn ex { [ dalnte)(an) @) + o) + e<x>n<x>]}
— (det A) exp {— / diz é(x)(A—lm(x)} (C.15)

81



Literaturverzeichnis

1]

[10]

[11]

[12]

82

P. Langacker und S. Gasiorowicz, ,,Elementary Particles in Physics®, in
,Encyclopedia of Physics, Third Edition“, R. C. Lerner und G. L. Trigg, Hrsg.,
S. 671. Wiley-VCH, 2005.

Particle Data Group Collaboration, C. Patrignani et al., ,,Review of Particle
Physics“, Chin. Phys. C'40 (2016) 100001.

I. J. R. Aitchison, ,,Supersymmetry and the MSSM: An Elementary Introduction®,
arXiv:hep-ph/0505105.

G. Bertone, D. Hooper und J. Silk, ,,Particle dark matter: Evidence, candidates
and constraints“, Phys. Rept. 405 (2005) 279-390, arXiv:hep-ph/0404175.

S. P. Martin, ,A Supersymmetry Primer“, in , Perspectives on Supersymmetry “
S. 1-98. World Scientific, 1997. larXiv:hep-ph/9709356.

P. Bechtle, T. Plehn und C. Sander, ,,Supersymmetry“, in ,, The Large Hadron
Collider: Harvest of Run 1%, T. Schorner-Sadenius, Hrsg., S. 421-462. Springer
International Publishing, 2015. arXiv:1506.03091.

G. Bergner und S. Catterall, ,Supersymmetry on the lattice®, Int. J. Mod. Phys.
A 31 (2016) 1643005, [arXiv:1603.04478.

G. Veneziano und S. Yankielowicz, ,An effective lagrangian for the pure N =1
supersymmetric Yang-Mills theory“, Phys. Lett. B 113 (1982) 231 — 236.

G. R. Farrar, G. Gabadadze und M. Schwetz, ,,On the Effective Action of N =1
Supersymmetric Yang-Mills Theory*“, Phys. Rev. D 58 (1998) 015009,
arXiv:hep-th/9711166.

G. R. Farrar, G. Gabadadze und M. Schwetz, ,,The Spectrum of Softly Broken
N =1 Supersymmetric Yang-Mills theory“, Phys. Rev. D 60 (1999) 035002,
arXiv:hep-th/9806204.

C. Gattringer und C. Lang, ,Quantum Chromodynamics on the Lattice: An
Introductory Presentation®, Springer Science & Business Media, 2009.

I. Montvay und G. Miinster, ,,Quantum fields on a Lattice“, Cambridge University
Press, 1997.


http://xxx.lanl.gov/abs/hep-ph/0505105
http://xxx.lanl.gov/abs/hep-ph/0404175
http://xxx.lanl.gov/abs/hep-ph/9709356
http://xxx.lanl.gov/abs/1506.03091
http://xxx.lanl.gov/abs/1603.04478
http://xxx.lanl.gov/abs/hep-th/9711166
http://xxx.lanl.gov/abs/hep-th/9806204

Literaturverzeichnis

[13]

[14]

[15]

[21]

[22]

[23]

[26]

[27]

G. Miinster und M. Walzl, | Lattice gauge theory: A Short primer“, in
,Phenomenology of gauge interactions. Proceedings, Summer School, Zuoz,
Switzerland, August 13-19, 2000, S. 127-160. 2000. arXiv:hep-1lat/0012005.

U.-J. Wiese, ,An Introduction to Lattice Field Theory*, 15th Saalburg Summer
School, 2009.

R. Gupta, ,,Introduction to Lattice QCD: Course*, in ,,Probing the standard
model of particle interactions. Proceedings, Summer School in Theoretical Physics,
NATO Advanced Study Institute, 68th session, Les Houches, France, July
28-September 5, 1997. Pt. 1, 2% S. 83-219. 1997. arXiv:hep-1at/9807028.

G. Miinster, ,,Quantentheorie“, De Gruyter, Berlin, New York, 2010.

M. E. Peskin und D. V. Schroeder, ,,An Introduction to Quantum Field Theory“,
Addison-Wesley, Reading, Massachusetts, 1995.

K. G. Wilson, ,,Confinement of quarks®, Phys. Rev. D 10 (1974) 2445-2459.

H. Nielsen und M. Ninomiya, ,,Absence of neutrinos on a lattice“, Nucl. Phys. B
185 (1981) 20 — 40.

H. Nielsen und M. Ninomiya, ,,A no-go theorem for regularizing chiral fermions*,
Phys. Lett. B 105 (1981) 219 — 223.

H. Kalka und G. Soff, ,,Supersymmetrie“, Teubner, 1997.

S. Luckmann, ,,Supersymmetrische Feldtheorien auf dem Gitter“, Dissertation,
Westfilische Wilhelms-Universitat Miinster, 2001.

K. Demmouche, ,A' =1 SU(2) Supersymmetric Yang-Mills theory on the lattice
with light dynamical Wilson gluinos®, Dissertation, Westfélische
Wilhelms-Universitat Miinster, 2009.

D. Sandbrink, ,,Numerische Bestimmung von Quarkpotential, Glueball-Massen
und Phasenstruktur in der N' = 1 supersymmetrischen Yang-Mills-Theorie*,
Dissertation, Westfilische Wilhelms-Universitdt Miinster, 2014.

A. Ferling, ,,Numerische Methoden zur Erforschung einer N'= 1 Super
Yang-Mills-Theorie mit SU(2), und SU(3), Wilson Fermionen*, Dissertation,
Westfilische Wilhelms-Universitat Miinster, 2009.

G. Bergner, P. Giudice, G. Miinster, I. Montvay und S. Piemonte, ,, The light
bound states of supersymmetric SU(2) Yang-Mills theory“, JHEP 03 (2016) 080,
arXiv:1512.07014l

I. Montvay, ,,Supersymmetric Yang-Mills Theory on the Lattice“, Int. J. Mod.
Phys. A 17 (2002) 2377-2412, arXiv:hep-1lat/0112007.

83


http://xxx.lanl.gov/abs/hep-lat/0012005
http://xxx.lanl.gov/abs/hep-lat/9807028
http://xxx.lanl.gov/abs/1512.07014
http://xxx.lanl.gov/abs/hep-lat/0112007

Literaturverzeichnis

[28]

[29]

[30]

[31]

32]

[33]

[34]

84

A. Feo, P. Merlatti und F. Sannino, , Information on the Super Yang-Mills
spectrum®, Phys. Rev. D 70 (2004) 096004, arXiv:hep-th/0408214.

G. Curci und G. Veneziano, ,,Supersymmetry and the lattice: A reconciliation?“,
Nucl. Phys. B 292 (1987) 555 — 572.

G. Bergner, T. Berheide, G. Miinster, U. D. Ozugurel, D. Sandbrink und
I. Montvay, ,, The gluino-glue particle and finite size effects in supersymmetric
Yang-Mills theory“, JHEP 09 (2012) 108, arXiv:1206.2341.

I. Montvay, ,,An Algorithm for Gluinos on the Lattice®, Nucl. Phys. B 466 (1996)
259-284, arXiv:hep-lat/9510042.

G. Bergner, ,Complete supersymmetry on the lattice and a No-Go theorem*,
JHEP 01 (2010) 024, arXiv:0909.4791.

G. Miinster und H. Stiiwe, ,, The mass of the adjoint pion in N’ =1
supersymmetric Yang-Mills theory“, JHEP 05 (2014) 034, arXiv:1402.6616.

DESY-Miinster-Roma Collaboration, F. Farchioni, C. Gebert, R. Kirchner,

I. Montvay, A. Feo, G. Miinster, T. Galla und A. Vladikas, ,, The supersymmetric
Ward identities on the lattice®, Eur. Phys. J. C' 23 (2002) 719-734,
arXiv:hep-1lat/0111008.

K. Symanzik, ,,Continuum Limit and Improved Action in Lattice Theories. 1.
Principles and ¢* Theory“, Nucl. Phys. B 226 (1983) 187-204.

K. Symanzik, ,,Continuum Limit and Improved Action in Lattice Theories. 2.
O(N) Nonlinear Sigma Model in Perturbation Theory“, Nucl. Phys. B 226 (1983)
205-227.

K. Demmouche, F. Farchioni, A. Ferling, I. Montvay, G. Miinster, E. E. Scholz
und J. Wuilloud, ,,Simulation of 4d A/ = 1 supersymmetric Yang-Mills theory with
Symanzik improved gauge action and stout smearing“, Fur. Phys. J. C'69 (2010)
147-157, |arXiv:1003.2073.

C. Morningstar und M. J. Peardon, ,, Analytic smearing of SU(3) link variables in
lattice QCD“, Phys. Rev. D 69 (2004) 054501, arXiv:hep-lat/0311018.

A. Donini, M. Guagnelli, P. Hernandez und A. Vladikas, ,, Towards N =1
Super-Yang-Mills on the Lattice“, Nucl. Phys. B 523 (1998) 529-552,
arXiv:hep-1at/9710065.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller und E. Teller,
,Equation of State Calculations by Fast Computing Machines“, J. Chem. Phys.
21 (1953) 1087-1092.


http://xxx.lanl.gov/abs/hep-th/0408214
http://xxx.lanl.gov/abs/1206.2341
http://xxx.lanl.gov/abs/hep-lat/9510042
http://xxx.lanl.gov/abs/0909.4791
http://xxx.lanl.gov/abs/1402.6616
http://xxx.lanl.gov/abs/hep-lat/0111008
http://xxx.lanl.gov/abs/1003.2073
http://xxx.lanl.gov/abs/hep-lat/0311018
http://xxx.lanl.gov/abs/hep-lat/9710065

Literaturverzeichnis

[41]

[42]

[43]

[44]

[45]

[46]

[49]

[50]

[51]

I. Montvay und E. Scholz, ,,Updating algorithms with multi-step stochastic
correction®, Phys. Lett. B 623 (2005) 73-79, arXiv:hep-1lat/0506006.

Ape Collaboration, M. Albanese, F. Costantini, G. Fiorentini, F. Flore,

M. Lombardo, R. Tripiccione, P. Bacilieri, L. Fonti, P. Giacomelli, E. Remiddi,

M. Bernaschi, N. Cabibbo, E. Marinari, G. Parisi, G. Salina, S. Cabasino,

F. Marzano, P. Paolucci, S. Petrarca, F. Rapuano, P. Marchesini und R. Rusack,
,»Glueball masses and string tension in lattice QCD“, Phys. Lett. B 192 (1987) 163
- 1609.

UKQCD Collaboration, C. R. Allton, C. T. Sachrajda, R. M. Baxter, S. P.
Booth, K. C. Bowler, S. Collins, D. S. Henty, R. D. Kenway, B. J. Pendleton,
D. G. Richards, J. N. Simone, A. D. Simpson, B. E. Wilkes und C. Michael,

,Gauge-invariant smearing and matrix correlators using Wilson fermions at
f =6.2% Phys. Rev. D 47 (1993) 5128-5137.

C. Best, M. Gockeler, R. Horsley, E.-M. Ilgenfritz, H. Perlt, P. E. L. Rakow,

A. Schifer, G. Schierholz, A. Schiller und S. Schramm, ,,Pion and Rho Structure
Functions from Lattice QCD*, Phys. Rev. D 56 (1997) 2743-2754,
arXiv:hep-1lat/9703014.

C. Cohen-Tannoudji, B. Diu und F. Laloé, ,Quantum Mechanics, Volume 2,
Wiley, 1992.

M. Liischer und U. Wolff, ,How to calculate the elastic scattering matrix in

two-dimensional quantum field theories by numerical simulation“, Nucl. Phys. B
339 (1990) 222 — 252.

B. Blossier, M. Della Morte, G. von Hippel, T. Mendes und R. Sommer, ,,On the
generalized eigenvalue method for energies and matrix elements in lattice field
theory“, JHEP 04 (2009) 094, arXiv:0902.1265.

C. Gattringer, ,,Excited hadrons on the lattice“, in ,, NSTAR 2007: Proceedings of
The 11th Workshop on The Physics of Excited Nucleons, 5-8 September 2007,
Bonn, Germany “, H.-W. Hammer, V. Kleber, U. Thoma und H. Schmieden, Hrsg.,
S. 1-6. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

A. C. Lichtl, ,,Quantum Operator Design for Lattice Baryon Spectroscopy “,
Dissertation, Carnegie Mellon University, 2006. arXiv:hep-1at/0609019.

M. S. Mahbub, A. 0. Cais, W. Kamleh, B. G. Lasscock, D. B. Leinweber und
A. G. Williams, , Isolating Excited States of the Nucleon in Lattice QCD*, Phys.
Rev. D 80 (2009) 054507, arXiv:0905.3616.

W. H. Press, S. A. Teukolsky, W. T. Vetterling und B. P. Flannery, ,,Numerical
Recipes 3rd Edition: The Art of Scientific Computing“, Cambridge University
Press, New York, NY, USA, 3. Ed., 2007.

85


http://xxx.lanl.gov/abs/hep-lat/0506006
http://xxx.lanl.gov/abs/hep-lat/9703014
http://xxx.lanl.gov/abs/0902.1265
http://xxx.lanl.gov/abs/hep-lat/0609019
http://xxx.lanl.gov/abs/0905.3616

Literaturverzeichnis

[52]

[53]

[54]

[60]

[61]

[62]

[63]

[64]

86

N. Madras und A. D. Sokal, ,, The pivot algorithm: A highly efficient Monte Carlo
method for the self-avoiding walk“, J. Statist. Phys. 50 (1988) 109-186.

ALPHA Collaboration, U. Wolff, ,Monte Carlo errors with less errors“, Comput.
Phys. Commun. 156 (2004) 143-153, arXiv:hep-1at/0306017, [Erratum:
Comput. Phys. Commun. 176 (2007) 383].

W. Janke, , Statistical Analysis of Simulations: Data Correlations and Error
Estimation, in ,Quantum Simulations of Complex Many-Body Systems: From
Theory to Algorithms“, J. Grotendorst, D. Marx und A. Muramatsu, Hrsg.,

Bd. 10 aus NIC Series, S. 423-445, John von Neumann Institute for Computing,
Jiilich. 2002.

H. Flyvbjerg und H. G. Petersen, ,,Error estimates on averages of correlated
data“, J. Chem. Phys. 91 (1989) 461-466.

K. Osterwalder und R. Schrader, ,, Axioms for Euclidean Green’s functions®,
Comm. Math. Phys. 31 (1973) 83-112.

K. Osterwalder und R. Schrader, , Axioms for Euclidean Green’s functions 11,
Comm. Math. Phys. 42 (1975) 281-305.

H. D. Young, , Statistical Treatment of Experimental Data“, McGraw-Hill New
York, 1962.

M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth und
F. Rossi, ,,GNU Scientific Library Reference Manual“, Network Theory, Bristol,
3. Ed., 2009.

R. Andrae, T. Schulze-Hartung und P. Melchior, ,,Dos and don’ts of reduced
chi-squared “, arXiv:1012.3754.

A. O. Cais, D. Leinweber, S. Mahbub und T. Williams, ,, A Fitting Robot for
Variational Analysis®, PoS LATTICE2008 (2008) 137, arXiv:0812.1872.

M. S. Mahbub, , Excitations of the nucleon in lattice QCD*, Dissertation,
University of Adelaide, 2010.

C. N. Papanicolas und E. Stiliaris, ,,A novel method of data analysis for hadronic
physics“, arXiv:1205.6505.

C. Alexandrou, T. Leontiou, C. N. Papanicolas und E. Stiliaris, ,,Novel analysis
method for excited states in lattice QCD: The nucleon case“, Phys. Rev. D 91
(2015) 014506, arXiv:1411.6765.

S. Ali, G. Bergner, H. Gerber, P. Giudice, I. Montvay, G. Miinster und
S. Piemonte, ,,Simulations of N' = 1 supersymmetric Yang-Mills theory with three
colours®, PoS LATTICE2016 (2016) 222, arXiv:1610.10097.


http://xxx.lanl.gov/abs/hep-lat/0306017
http://xxx.lanl.gov/abs/1012.3754
http://xxx.lanl.gov/abs/0812.1872
http://xxx.lanl.gov/abs/1205.6505
http://xxx.lanl.gov/abs/1411.6765
http://xxx.lanl.gov/abs/1610.10097

Danksagung
Fiir die zur Verfiigung gestellte Rechenzeit auf den Clustern PALMA, PALMA-NG und

NWZPHI der Westfilischen Wilhelms-Universitat und auf dem Cluster JURECA am
Jiilich Supercomputing Centre mochte ich herzlich danken.

87



	Einleitung
	Feldtheorien auf dem Gitter 
	Euklidische Feldtheorie
	Gitterdiskretisierung 
	Eichtheorien auf dem Gitter
	Fermionen auf dem Gitter

	Supersymmetrische Yang-Mills-Theorie 
	Poincaré-Superalgebra
	SUSY-Teilchen
	Superfelder
	Supersymmetrische Lagrangedichten
	N=1 supersymmetrische Yang-Mills-Theorie
	SYM-Massenmultipletts 
	Gitterdiskretisierung der N=1 SYM
	Diskretisierungseffekte
	Verbesserung der Wirkung 
	Korrelator des Gluino-Glueballes 

	Numerische Methoden
	Markow-Ketten
	Metropolis-Algorithmus
	Korrelatoren und Massenbestimmung 
	Smearing
	APE Smearing 
	Jacobi-Smearing 

	Variationsmethode 
	Numerische Lösung der Eigenwertprobleme

	Fehleranalyse 
	Autokorrelation 
	Binning
	Jackknife-Verfahren 


	Massenbestimmung des Gluino-Glueballes 
	Einfluss und Optimierung des verwendeten Smearings
	Massenfits
	Automatisierte Massenbestimmung

	Fehlerabschätzung und Autokorrelation
	Resultate für ß=1,9
	Korrelator C1
	Korrelator C4

	Finale Massenbestimmung
	Verschiedene Versionen der Variationsmethode

	Zusammenfassung und Ausblick 
	Notation
	Pauli-Matrizen
	Dirac-Matrizen 

	Nichtabelsche Eichtheorien 
	Graßmann-Algebra 

