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EinleitungJedem von uns begegnen in der Alltagswelt st�andig Symmetrien in den unters
hiedli
h-sten Fa
etten und Auspr�agungen. Dar�uber hinaus mag jeder einzelne eine etwas andereVorstellung des Begri�s Symmetrie haben. Einige werden si
h Symmetrien als Figurenoder Formen verans
hauli
hen, die bei einer Bewegung invariant sind, d.h. unver�andertbleiben. Als Beispiel sei hier die Drehung einer Kugel um ihr Zentrum genannt. Na
hRotation um einen beliebigen Winkel bietet si
h stets das glei
he Bild. Weitere, suggesti-vere Beispiele k�onnten etwa S
hneekristalle, Bl�uten, das Muster eines Pakettbodens oderdie bekannten Graphiken vonM. C. Es
her sein. Andererseits kann die Betra
htung vonObjekten im Berei
h der Ar
hitektur oder der bildenden K�unste von der �Asthetik und dengew�ahlten Proportionen Faszination aus�uben, und au
h in vielen Werken der Musik undLiteratur verbinden si
h k�unstleris
he Freiheit mit dem Wuns
h na
h Einhaltung gewisserOrdnungss
hemata. Die diesen unters
hiedli
hen Assoziationen zugrunde liegende Idee istdabei die Beibehaltung oder insbesondere au
h Erhaltung einer vorgegebenen Struktur.Au
h in der Physik spielen Symmetrien eine wesentli
he Rolle. Dabei war man seit jeherbem�uht, der Natur bzw. dem Naturges
hehen gewisse Symmetrien abzus
hauen, aber au
hzuzus
hreiben, oftmals allerdings in Form eher irrationaler, mythis
her Gedankenkonstruk-te. Als Beispiel seien hier die Weltharmonievorstellungen von Pythargoras und Platogenannt. Diese Denkweise wurde allerdings bald abgel�ost, und man versu
ht stattdessenSymmetrien in rationaler Weise zu erfassen und sie in einen mathematis
hen Formalismus,der Gruppentheorie einzubetten. Dabei hat si
h gezeigt, da� diese zun�a
hst rein mathema-tis
he Theorie au
h ein probates Hilfsmittel zur L�osung von physikalis
hen Problemstellun-gen sein kann, indem man die in den physikalis
hen Modellen erwarteten Symmetrien, diesowohl in ans
hauli
her, aber man
hmal au
h in ganz indirekter Art vorkommen k�onnen,mit den abstrakten Begri�en der Gruppentheorie verbindet. Beispielsweise gelang es ge-gen Ende des neunzehnten Jahrhunderts bei der Klassi�kation von Kristallen erstmals,den Symmetrie-Gedanken gruppentheoretis
h zu erfassen. Aber au
h s
hon vor dieser Zeitnutzte man in der Physik geeignete Symmetrieeigens
haften aus, etwa in dem na
h J.Kepler benannten Kepler-Problem, bei dem man aus physikalis
h sinnvollen Invarianz-forderungen des Raumes die Drehimpulserhaltung folgerte und letztendli
h die m�ogli
henBahnkurven der Himmelsk�orper erhielt. Sp�ater sollte si
h herausstellen, da� dieses Resul-tat ein Spezialfall des Anfang des zwanzigsten Jahrhunderts von E. Noether bewiesenenTheorems ist, wona
h jede Symmetrie mit einer physikalis
hen Erhaltungsgr�o�e verkn�upftist. Symmetrieargumente dienen somit u.a. zur Eins
hr�ankung der Dynamik eines Systemsund sind in allen Berei
hen der Physik generell f�ur physikalis
he Fragestellungen oftmals



2 Einleitungvon zentraler Bedeutung. Dies gilt in besonderem Ma�e au
h f�ur die moderne Theorie derElementarteil
hen, der wir uns nun zuwenden wollen.Ohne auf die historis
he Entwi
klung bis hin zum heutigen Verst�andnis der Elementarteil-
hen als kleinste Bausteine der Materie n�aher eingehen zu wollen, ist allgemein bekannt,da� bereits seit Jahrhunderten immer wieder Vors
hl�age zur Bes
hreibung der elementa-ren Bestandteile unserer Welt gema
ht worden sind. Dabei wurden die unters
hiedli
hstenModelle aufgestellt, die in der Folgezeit entweder verbessert oder aber verworfen wurden.Na
h unserem derzeitigen Kenntnisstand wird die Materie des uns umgebenden Universummit Hilfe des Standardmodells der Elementarteil
hen bes
hrieben, womit vorerst ein ge-wisser Abs
hlu� {zumindest innerhalb des derzeit experimentell zug�angli
hen G�ultigkeits-berei
hes{ bei den Bem�uhungen um eine Vereinheitli
hung der Teil
henwelt errei
ht ist.Das Standardmodell basiert auf der Tatsa
he, da� Elementarteil
hen gewissen We
hsel-wirkungen unterliegen, von denen dieses Modell drei miteinander verkn�upft. Insgesamtsind zur Zeit vier fundamentale We
hselwirkungen bekannt, wobei die vierte, die Gravita-tion, no
h ni
ht in zufriedenstellender Weise in die Theorie eingebunden werden konnte.Die anderen drei fundamentalen We
hselwirkungen sind zum einen die starke Kraft, dief�ur den Zusammenhalt der Bausteine der Atomkerne verantwortli
h ist, zum anderen dies
hwa
he We
hselwirkung, die u.a. Ursa
he f�ur den radioaktiven �-Zerfall von Atomker-nen ist; als letzte We
hselwirkung ist die elektromagnetis
he Kraft zu nennen, mit derenHilfe si
h drei klassis
he Gebiete der Physik {Optik, Magnetismus und Elektrizit�at{, dieimmerhin bis in die Anf�ange des zwanzigsten Jahrhunderts no
h unters
hieden wurden,vereinheitli
hen lie�en. Die dieser Kraft zugrunde liegende, relativistis
he Quantentheoriewird dabei heute als Quantenelekrodynamik (QED) bezei
hnet. Man ist nun grunds�atzli
hdaran interessiert, alle vier We
hselwirkungen dur
h ein gemeinsames Modell zu erfas-sen. Ein erster S
hritt in diese Ri
htung erfolgte dur
h die von Glashow, Weinbergund Salam in den se
hziger Jahren formulierte Theorie der elektros
hwa
hen We
hsel-wirkung, die die beiden zuletzt genannten fundamentalen Kr�afte miteinander verbindet.Dieses Modell {und au
h s
hon das der elektrodynamis
hen We
hselwirkung{ basiert da-bei auf gewissen Symmetrien. Man spri
ht in diesem Zusammenhang au
h physikalis
hexakter von sog. Symmetriegruppen, die, wie oben bereits erw�ahnt, eigentli
h mathemati-s
hen Ursprungs sind. Zusammen mit der Quanten
hromodynamik (QCD) als Theorie derstarken Kraft bes
hreibt die Glashow-Salam-Weinberg-Theorie das heutige Standardmo-dell der Elementarteil
henphysik. Die zugeh�orige Symmetriegruppe besteht dabei aus dreiunters
hiedli
hen sog. Ei
hgruppen und s
hreibt si
h in mathematis
her Formulierung alsGSM = SU(3)� SU(2) � U(1) = SU(3)�GGSW : (1)Das Standardmodell ist somit eine lokale Ei
htheorie, die auf Grundlage einer relativisti-s
hen Quantenfeldtheorie formuliert ist. Um eine Vorstellung von der eminenten Bedeu-tung dieser Theorie in Bezug auf die Teil
henphysik zu bekommen, sei an dieser Stelleangemerkt, da� bislang kein experimenteller Befund auf Unstimmigkeiten mit den aufder Grundlage des Standardmodells getro�enen Vorhersagen hindeutet. {Dagegen gibt esPh�anomene, die zur Zeit ni
ht konsistent im Rahmen des minimalen Standardmodells er-kl�arbar sind, z.B. die Asymmetrie von Materie und Antimaterie im Universum.{ Stattdes-sen waren oftmals Folgerungen aus dem theoretis
hen Zugang Ausl�oser f�ur experimetelle



Einleitung 3Dur
hbr�u
he im Rahmen der Theorie, wie z.B. zuletzt bei der Entde
kung des Top-Quarks(1994).Das Teil
henspektrum des Standardmodell zerf�allt in Quarks und Leptonen. Quarks un-terliegen der starken Kraft und lassen si
h z.B. in geeigneter Weise zu Protonen und Neu-tronen zusammenf�ugen, den Bausteinen der Atomkerne. Leptonen wie etwa das Elektronoder das Elektron-Neutrino bleiben dagegen von der starken Kraft unber�uhrt. Sie we
h-selwirken �uber die s
hwa
he Kraft. Beide Sorten von Teil
hen haben allerdings au
h einesgemeinsam: Jedem physikalis
hen Teil
hen l�a�t si
h ein zus�atzli
her, 
harakteristis
her,innerer Freiheitsgrad (Spin) zuordnen, na
h der die Elementarteil
hen ebenfalls klassi�-ziert werden k�onnen. Quarks und Leptonen haben allesamt einen halbzahligen Spin undwerden somit als Fermionen bezei
hnet. Ihr Pendant sind die sog. Bosonen mit ganzzahli-gem Spin. Sie wirken als Vermittler der Kr�afte zwis
hen den Fermionen. Als bekanntestesBeispiel sei hier das Photon als Austaus
hteil
hen der elektromagnetis
hen We
hselwir-kung genannt. Au
h im Rahmen der Elementarteil
henphysik spielt der Symmetriebegri�nun wieder eine wesentli
he Rolle, da si
h ihre Eigens
haften aus denen einer physikalis
hmotivierten Symmetriegruppe, der Poin
ar�e-Gruppe, ableiten lassen.Na
hdem Wilson in den siebziger Jahren erstmals eine gitterregularisierte, ei
hinvarian-te, euklidis
he Quantenfeldtheorie formulierte, zeigte si
h das Konzept alsbald als au�er-gew�ohnli
h fru
htbar f�ur die Entwi
klung der Teil
henphysik. Der Grund hierf�ur liegt indem in dieser Theorie o�en gelegten, direkten Zusammenhang zwis
hen statistis
her Phy-sik und der Quantenfeldtheorie, so da� zahlrei
he Methoden aus diesem Gebiet f�ur Unter-su
hungen im Rahmen des Standardmodells �ubernommen werden konnten. Zudem bietetsie eine theoretis
he Grundlage und Re
htfertigung f�ur eine {neben den bislang erw�ahnten,traditionsrei
henMethoden zum AuÆnden physikalis
her Zusammenh�ange: Modellbildungund Experiment{ weitere M�ogli
hkeit der mittlerweile standardm�a�ig dur
hgef�uhrten Un-tersu
hung von physikalis
hen Sa
hverhalten. Die Entwi
klung moderner, leistungsf�ahi-ger Gro�re
hner hat es in den vergangenen zwanzig Jahren erm�ogli
ht, die oftmals teu-ren und zeitaufwendigen Bes
hleunigerexperimente dur
h 
omputergest�utzte Simulations-re
hnungen zu erg�anzen. Dabei hat man aufgrund der endli
hen, zur Verf�ugung stehen-den Re
hnerleistungen die kontinuierli
he, physikalis
he Raum-Zeit dur
h ein vierdimen-sionales, kubis
hes Gitter zu ersetzen, so da� fortan physikalis
he Zust�ande {bzw. sog.Feldkon�gurationen{ nur no
h auf Gitterpl�atzen oder ihren Verbindungslinien de�niertsind. Die oben s
hon einmal erw�ahnten Invarianzforderungen des physikalis
hen Raum-es m�ussen dabei allerdings zum Teil aufgegeben werden. Im Falle des dreidimensionalen,euklidis
hen, uns umgebenden Raumes bedeutet das beispielsweise, da� die nat�urli
heRotationsinvarianz aufgrund der nunmehr gitterhaften, r�aumli
hen Struktur dur
h eineuntergeordnete, diskrete Symmetrie zu ersetzen ist. Betra
htet man dazu der Einfa
h-heit halber ledigli
h einen Auss
hnitt eines dreidimensionalen Gitternetzes in Form einesW�urfels, so bedeutet das gerade, da� er si
h nur mittels Drehungen um geeignete A
h-sen (Symmetriea
hsen) und Winkelma�e in sein Ebenbild �uberf�uhren l�a�t. Insbesondereauf diesen Sa
hverhalt wird im Rahmen der vorliegenden Arbeit no
h genauer einzugehensein.Trotz des �uberaus gro�en Erfolges des Standardmodells werden weiterhin Versu
he un-



4 Einleitungternommen, weitrei
hendere Theorien und Modelle zu entwi
keln, die das Standardmodellm�ogli
herweise als einen Spezialfall enthalten. Fernziel ist es dabei, irgendwann einmal allevier fundamentalen We
hselwirkungen mit Hilfe einer "Theory of Everything\ bes
hrei-ben zu k�onnen. Heute glaubt man erkannt zu haben, da� die Supersymmetrie wesentli
herBestandteil einer sol
hen Theorie sein mu�. Daher begann man bereits Anfang der sieb-ziger Jahre mit der Untersu
hung supersymmetris
her Theorien, auf die nun als letzteseingegangen werden soll.Die ents
heidend neue Idee der Supersymmetrie (SUSY) ist es, da� si
h fermionis
he undbosonis
he Teil
hen {mittels geeigneter, neu hinzugef�ugter Transformationen{ ineinander�uberf�uhren lassen. Daraus resultiert allerdings eine Erweiterung des bisher vierdimensio-nal bes
hriebenen, physikalis
hen Raumes um vier weitere Dimensionen und in letzterKonsequenz eine Verdoppelung des erwarteten Teil
henspektrums. Damit hat beispiels-weise jedes Boson des Standardmodells ab sofort ein Fermion als sein supersymmetris
hesPendant und umgekehrt jedes Fermion einen bosonis
hen SUSY-Partner. SUSY-Partnersollten si
h nur { aufgrund der De�nition von Boson und Fermion{ in ihrem Spinfreiheits-grad unters
heiden, ansonsten aber identis
he physikalis
he Eigens
haften besitzen. DieTatsa
he, da� bis zum heutigen Tage no
h keine supersymmeris
hen Teil
hen in Ho
h-energieexperimenten na
hgewiesen werden konnten, deutet na
h derzeitigem Kenntnis-stand allerdings darauf hin, da� die SUSY-Teil
hen eine i.a. h�ohere Masse tragen d�urftenals ihre Partner aus dem Standardmodell. In physikalis
her Formulierung spri
ht man indiesem Zusammenhang von einer sog. gebro
henen supersymmetris
hen Theorie. Weiter-hin sei hier angemerkt, da� aus diesem Grunde derzeit gro�e Ho�nungen auf die neue,h�oherenergetis
he Bes
hleunigergeneration gesetzt werden, um in zuk�unftigen Experimen-ten erste zuverl�assige Daten zur Best�atigung der Evidenz von supersymmetris
hen Teil
henzu erhalten.Es stellt si
h nun die Frage, wel
he Gr�unde f�ur eine supersymmetris
he Bes
hreibungjenseits des Standardmodells spre
hen. Stellvertretend seien hier drei h�au�g zu �ndendeArgumente genannt:Das wohl �uberzeugendste unter ihnen ist das sog. Hierar
hie-Problem. In der Quanten-feldtheorie {und damit insbesondere au
h im Standardmodell{ sind die physikalis
henFelder der betra
hteten Theorie dur
h sog. Kopplungskonstanten miteinander verbunden.Diese sind in der Theorie des Standardmodell ni
ht konstant, sondern energieabh�angig.Man spri
ht in diesem Zusammenhang von laufenden Kopplungen. Renormierungsgrup-pentheoretis
he Untersu
hungen zeigen, da� diese Kopplungen in keinem Energieberei
hzusammentre�en, aber si
h zumindest {sp�atestens bei einer Energie von ungef�ahr 1014GeV{ ann�ahern. Auf der Grundlage eines supersymmetris
hen Standardmodells w�urdensi
h die entspre
henden Kopplungen dagegen in einem Berei
h um etwa 1016 GeV vereinen,so da� man oberhalb dieser Energieskala eine "Grand Unifying Theory\ (GUT) erwartenk�onnte, die die starke und elektros
hwa
he We
hselwirkung dur
h eine gemeinsame Kopp-lungskonstante bes
hreiben k�onnte. Das Problem besteht nun darin, da� man aufgrund vontheoretis
h sehr �uberzeugenden, physikalis
hen Betra
htungen annimmt, da� im Energie-berei
h von "ledigli
h\ 100 GeV ein Teil
hen ( das sog. Higgs-Boson) existiert, wel
hes f�urden Me
hanismus der Massenerzeugung im Standardmodell verantwortli
h gema
ht wird.



Einleitung 5Wegen seiner wi
htigen Bedeutung f�ur das Standardmodell erwartet man, da� es au
hin GUT-Theorien eine wesentli
he Rolle spielen mu�te. Seine relativ geringe Energie unddie weitaus h�oher liegende Energieskala einer "Gro�en Vereinheitli
hten Theorie\ w�urdees nun notwendig ma
hen, re
ht willk�urli
h wirkende Restriktionen an die Parameter sol-
her GUT-Theorien zu stellen. Dieses Problem bezei
hnet man als Hierar
hie-Problem.Die Supersymmetrie ents
h�arft in gewisser Weise dieses Problem dur
h in ihr formulierte"non-renormalization\-Theoreme. Es mu� allerdings einger�aumt werden, da� bislang einexperimenteller Na
hweis des Higgs-Bosons no
h aussteht.Als weiteres Argument f�ur die Anwendbarkeit von supersymmetris
hen Theorien sei hierno
h angemerkt, da� si
h eine supersymmetris
he Bes
hreibung unserer Natur zudemdur
h gewisse Anhaltspunkte hinsi
htli
h der Vereinigung von Ei
h- und Gravitations-we
hselwirkung motivieren l�a�t, womit si
h erste Ans�atze zu einer allumfassenden Theoriealler vier fundametaler We
hsewirkungen anbieten.Zuletzt sei auf experimentelle Befunde zur Bestimmung der Protonmasse eingegangen.Experimenten entnommene Daten deuten m�ogli
herweise auf deren Diskrepanz mit denVorhersagen aus dem Standardmodell hin. Sollten si
h diese Ergebnisse in der Zukunftbewahrheiten, so w�urde ein erster experimenteller Widerspru
h zu den Prognosen desStandardmodells vorliegen, wohingegen si
h die Resultate mit Hilfe der supersymmetri-s
hen Theorien erkl�aren lie�en.Wie im Zuge der Einf�uhrung in diese Arbeit bereits erw�ahnt wurde, hat man bislang keinedirekten experimentellen Hinweise auf supersymmetris
he Teil
hen �nden k�onnen, so da�theoretis
h angelegte Untersu
hungen und numeris
he Methoden im Sinne von 
omputer-gest�utzen Simulationen insbesondere au
h f�ur supersymmetris
he Theorien geeignete undnotwendige Ansatzpunkte darstellen. Die vorliegende Arbeit wird si
h im folgenden mitbeiden Aspekten bes
h�aftigen, wobei ein deutli
her S
hwerpunkt auf den theoretis
henBetra
htungen liegen wird. Sie besteht dabei aus se
hs Kapiteln, deren Inhalt an dieserStelle kurz skizziert werden soll.Na
hdem in einem vorangestellten Kapitel gruppentheoretis
he Vorbereitungen getro�enwerden, um die im ersten Teil der Arbeit betra
hteten Gitter-Operatoren untersu
hen zuk�onnen, gibt das folgende Kapitel einen Einbli
k in die Theorie der Existenz von Glueball-Zust�anden in stark gekoppelten Gitterei
htheorien und ihrer Massenbestimmung mit Hilfevon Gitter-Simulationen.Im zweiten Kapitel erfolgt eine Ausarbeitung eines Artikels von B. Berg undA. Billoire[19℄, der die gruppentheoretis
hen Untersu
hung von Wilson-Loops unter der untergeord-neten Gitter-Symmetriegruppe O der Drehgruppe SO(3) beinhaltet. Dabei wird die zu-grunde liegende Konstruktionsmethode zur Bestimmung von Darstellungen der kubis
henGruppe �uber Wilson-Loops anhand von ausgew�ahlten Beispielen ausf�uhrli
h erl�autert unddie im Artikel angegebenen Resultate explizit reproduziert.Eine formale Einf�uhrung in supersymmetris
he Theorien, wobei insbesondere auf die inder Supersymmetrie vorkommenden Supermultipletts eingegangen wird, gibt das dritteKapitel. S
hlie�li
h wird die Konstruktion der Wirkung der N = 1 Super-Yang-Mills-Theorie des vierdimensionalen Kontinuums skizziert.



6 EinleitungDas n�a
hste Kapitel s
hlie�t si
h thematis
h und formal an das einf�uhrende Kapitel an.In ihm wird einerseits die dort bereits behandelte Darstellungstheorie endli
her Gruppenauf das Konzept der Produktgruppen erweitert, und zum anderen die kubis
he Gruppeauf ihre �Uberlagerungsgruppe ausgeweitet. In diesem Sinne dient es der Bereitstellung derf�ur das letzte Kapitel ben�otigten Hilfsmittel.Nun folgt unter Verwendung und Ausbau der Methoden des zweiten Kapitels eine grup-pentheoretis
he Behandlung unters
hiedli
her Gitter-Operatoren der N = 1 Super-Yang-Mills-Theorie. Den dur
h die Supersymmetrie �uberdies in Form von Majorana-Spinorenhinzukommenden, fermionis
hen Freiheitsgraden wird dabei sowohl dur
h die im vorhe-rigen Kapitel eingef�uhrten Erweiterungen hinsi
htli
h der Darstellungstheorie endli
herGruppen, als au
h dur
h die den Untersu
hungen zugrunde liegende erweiterte Gitter-Symmetriegruppe Re
hnung getragen.Die Arbeit s
hlie�t mit einer Zusammenfassung und einem Ausbli
k.



Kapitel 0Grundlagen der Gruppentheorie IDieses vorangestellte Kapitel gibt in kompakter Form eine Einf�uhrung in die Darstel-lungstheorie endli
her Gruppen, wie sie f�ur die beiden folgenden Kapitel ben�otigt wird.Desweiteren soll es der Festlegung von Notationen dienen. Dem Konzept der Produkt-gruppen und ihrer irreduziblen Darstellungen wird sp�ater ein eigenes Kapitel gewidmetsein, da ihre Konstruktion im ersten Teil der Arbeit ni
ht ben�otigt wird. Dagegen stehtzun�a
hst die kubis
he Gruppe O als eine endli
he Untergruppe der Drehgruppe SO(3) imMittelpunkt meiner Untersu
hungen, so da� sie in diesem einf�uhrenden Kapitel als Bei-spiel einer endli
hen Gruppe eingehend behandelt werden soll. Sp�ater werden wir dann zueiner "gr�o�eren\ Gruppe, n�amli
h ihrer �Uberlagerungsgruppe �ubergehen. Sie wird no
h angeeigneter Stelle vorzustellen sein.F�ur detailliertere Ausf�uhrungen zu diesem Kapitel sei auf die umfangrei
he Literatur zurGruppentheorie, z.B. [1{6℄, verwiesen.0.1 Elementare GruppentheorieZun�a
hst wollen wir einige gruppentheoretis
he De�nitionen angeben und dabei beginnenmitDe�nition 1 Eine Menge G = fa; b; 
; : : :g bildet eine Gruppe, wenn auf ihr eine Ver-kn�upfung Æ : G�G! G erkl�art ist, die folgende Eigens
haften besitzt:E1 : Die Operation Æ ist assoziativ, d.h. falls a; b; 
 2 G gilt, dann ist (a Æ b)Æ
 = aÆ(b Æ 
).E2 : Es gibt ein neutrales Element e 2 G mit a Æ e = e Æ a = a f�ur alle a 2 G.E3 : Es gibt f�ur alle a 2 G ein inverses Element a�1 2 G mit a Æ a�1 = a�1 Æ a = e.De�nition 2 Eine Gruppe G hei�t abels
h, falls die Vekn�upfung Æ kommutativ ist, d.h.falls a Æ b = b Æ a f�ur alle a; b 2 G gilt.De�nition 3 Unter der Ordnung einer endli
hen Gruppe versteht man die Anzahl ihrerElemente.



8 Grundlagen der Gruppentheorie IBeispiele: Das denkbar einfa
hste Beispiel ist die einelementige Gruppe G = feg beste-hend aus dem neutralen Element e. Sie ist eine abels
he Gruppe der Ordnung eins. Einebekannte ni
ht-triviale endli
he Gruppe ist die Permutationsgruppe Sn. Sie enth�alt alleKon�gurationen an n�Tupeln, die si
h aus Permutationen des Tupels (1; : : : ; n) bildenlassen. Die Sn enth�alt n! Elemente und ist f�ur n > 2 eine ni
ht-abels
he Gruppe. InAbs
hnitt 0.3 werden wir eine weitere endli
he ni
ht-abels
he Gruppe kennenlernen, diekubis
he Gruppe O, deren Ordnung 24 ist. In der Physik spielen insbesondere Gruppenmit unendli
h vielen Elementen eine wi
htige Rolle. Als Beispiele seien hier die Rotati-onsgruppe SO(3) und die SU(N) genannt, letztere dient insbesondere zur Bes
hreibungvon Ei
hsymmetrien im Standardmodell der Elementarteil
hen. Die SO(3) und SU(2)bes
hreiben Drehungen im dreidimensionalen reellen bzw. zweidimensionalen komplexenRaum. Diese Gruppen werden uns sp�ater {im Zusammenhang mit der �Uberlagerungsgrup-pe von O{ no
h mehrmals begegnen.Gehen wir nun no
h einmal kurz auf die Permutationsgruppe Sn mit n � 3 ein. Betra
htetman nur sol
he Elemente, die si
h ausgehend vom Einselement aus einer geraden Anzahlvon Transpositionen (das sind Vertaus
hungen zweier Komponenten in einem Tupel) er-geben, so bilden diese eine e
hte Teilmenge An � Sn. An besitzt wieder Gruppenstruktur,d.h. insbesondere, da� An abges
hlossen ist. Man sagt, An ist eine Untergruppe der Sn.Die De�nition dazu liest si
h so:De�nition 4 Eine Teilmenge H einer Gruppe G hei�t Untergruppe von G, falls sie mitder induzierten Verkn�upfung wieder eine Gruppe bildet.An dieser Stelle sei eine S
hreiberlei
hterung vereinbart: F�ur die Gruppenverkn�upfung Æs
hreibt man oftmals einfa
h ein � , oder man verzi
htet g�anzli
h auf ein Symbol. LetztereKonvention wollen wir von jetzt an einhalten, also a Æ b abk�urzend mit ab bezei
hnen.Man ist nun daran interessiert, jedes Elemente einer Gruppe eindeutig einer sog. Klassezuzuordnen und diese dann dur
h jeweils einen Repr�asentanten zu bes
hreiben. Hierzude�niert man eine �Aquivalenzrelation und daraus �Aquivalenzklassen.De�nition 5 Zwei Elemente a; b 2 G hei�en zueinander konjugiert bzgl. G (a � b), fallses ein g 2 G gibt, mit b = g�1ag.De�nition 6 Man nennt die Menge aller zu a konjugierten Elemente au
h Klasse von aund bezei
hnet sie mit (a).Da� diese De�nition das Verlangte leistet, best�atigtBemerkung 7 Jedes Gruppenelement g liegt in genau einer (konjugierten) Klasse vonG, d.h. die Klassen sind disjunkt und die Vereinigung ergibt G; insbesondere bildet dasneutrale Element eine Klasse f�ur si
h.Beweis: F�ur einen Beweis der Aussage sei auf [1℄ verwiesen.



0.2 Darstellungstheorie endli
her Gruppen 9Zum S
hlu� dieses Abs
hnitts wollen wir Abbildungen zwis
hen zwei Gruppen einf�uhren.Sie bilden die Grundlage f�ur das Konzept der Darstellungungstheorie, wel
hes im n�a
hstenAbs
hnitt behandelt wird.De�nition 8 Eine Abbildung � : G �! G0 von einer Gruppe G in eine andere GruppeG0 hei�t Gruppenhomomorphismus, falls sie die Gruppenverkn�upfung respektiert, d.h. f�ur� (gi) = g0i und g1g2 = g3 gilt g01g02 = g03 mit gi 2 G; g0i 2 G0; i 2 f1; 2; 3g.0.2 Darstellungstheorie endli
her GruppenIn geometris
hen und physikalis
hen Anwendungen ist die Gruppentheorie meist eng mitSymmetrietransformationen verbunden. Zur Erl�auterung seien zwei Beispiele angespro-
hen: Di�erentialglei
hungen sind oftmals invariant gegen�uber bestimmten Symmetrie-transformationen, die das AuÆnden von L�osungen erhebli
h vereinfa
hen k�onnen (s. Kep-lerproblem). Der Vektorraum der L�osungen bildet dabei einen Darstellungsraum auf demdie Symmetriegruppe dann wirkt.In der Quantenme
hanik ist der Hamiltonoperator des Wassersto�atoms invariant unterreinen Drehungen im dreidimensionalen Zustandsraum. Die Menge dieser Koordinaten-transformationen bildet dabei eine Gruppe, die sog. Invarianz-Gruppe des Hamiltonope-rators. Ordnet man nun jedem einzelnen Gruppenelement g genau ein Element DR(g) ausder Gruppe der ni
ht-singul�aren d � d Matrizen mit der gew�ohnli
hen Matrizenmultipli-kation als Verkn�upfung derart zu, da�DR(g1g2) = DR(g1)DR(g2) (1)gilt, ist R = fDR(g)g eine d-dimensionale Darstellung der Invarianz-Gruppe1, und eszeigt si
h, da� alle Energie-Eigenr�aume des Hamiltonoperators Darstellungsr�aume derInvarianz-Gruppe bilden. F�ur Details konsultiere man [1℄. Im folgenden werden nun dieGrundz�uge der Darstellungstheorie systematis
h eingef�uhrt. Wir beginnen mit dem Begri�der Darstellung.0.2.1 Grundbegri�eUnter der Darstellung einer Gruppe versteht man i.a. einen Homomorphismus, der in denRaum der Automorphismen eines Vektorraumes V abbildet. Die mathematis
he De�nitionlautet wie folgt:De�nition 9 Ein Homomorphismus R : G! Aut(V ) ; g 7! R(g) von G in eine Gruppevon Operatoren R (G) eines linearen Vektorraums V hei�t eine Darstellung der Gruppe Gmit dem Darstellungsraum V, wenn die Darstellungsoperatoren die glei
hen Verkn�upfungs-regeln erf�ullen, wie die Gruppe G, also wenn R (g1)R (g2) = R (g1g2) gilt.1Strenggenommen ist das Glei
hheitszei
hen an dieser Stelle fals
h, da wir im folgenden zwis
hen derDarstellungR und ihren DarstellungsmatrizenDR unters
heiden wollen. Es besteht aber ein eineindeutigerZusammenhang zwis
hen Darstellungen und ihren Darstellungmatrizen, so da� diese ungenaue Formulie-rung hier erlaubt sei.



10 Grundlagen der Gruppentheorie IDie Dimension der Darstellung ist dabei die Dimension des Vektorraumes V .Eine Darstellung hei�t treu, falls R ein Isomorphismus ist, andernfalls nennt man sie de-generiert.I
h werde mi
h bei den weiteren Betra
htungen auf endli
he Gruppen und endli
h-dimen-sionale Vektorr�aume bes
hr�anken, wobei nur am Rande zu bemerken ist, da� die meistenResultate au
h auf unendli
h-dimensionale R�aume ausgeweitet werden k�onnen. Diese Ein-s
hr�ankung gilt f�ur das gesamte Kapitel. Falls an vereinzelten Stellen auf die Endli
hkeitno
hmals explizit hingewiesen wird, hebt das die allgemeine Eins
hr�ankung keinesfalls auf,sondern dient ledigli
h der exakteren Formulierung.Aus der Linearen Algebra ist bekannt, da� die Menge der Automorphismen Aut(V ) ei-nes n-dimensionalen, C -linearen Vekorraums V isomorph zu der Menge C n�n ist, also� : Aut(V ) ��! C n�n . Betra
htet man nun die Darstellung M(R) : G ! C n�n ; g 7!�(R(g)), so ist das BildM(R)(G) eine Untergruppe von C n�n und damit isomorph zumBild R(G) � Aut(V ) von R. Dies gibt Anla� zu folgenderBemerkung und De�nition 10 Jede endli
h-dimensionale DarstellungR kann in Formvon DarstellungsmatrizenDR (g) ; g 2 G; bes
hrieben werden. Die induzierte Verkn�upfungist dann die Matrizenmultiplikation. Man sagt, die oben de�nierte Darstellung M(R)bildet eine Matrixdarstellung von G.Beispiele: Jede Gruppe G besitzt eine triviale Darstellung T , die dur
h DT (g) = 1 f�ur alleg 2 G de�niert ist. Der zugeh�orige Vektorraum ist R bzw. C .Sei G eine Gruppe von Matrizen (z.B. GL(n) oder SU(N)), V = C und DR(g) = det g.Dies de�niert eine ni
ht-triviale eindimensionale Darstellung R von G.Als weitere Beispiele seien die aus der Quantenme
hanik bekannten (irreduziblen) Ma-trixdarstellungen der Drehgruppe SO(3) genannt (A
htung: ord(SO(3)) = 1), die imZusammenhang mit den Spinfreiheitsgraden eines quantenme
hanis
hen Teil
hens einewi
htige Rolle spielen. Sie werden dur
h die Quantenzahl j 
harakterisiert und ihr Dar-stellungsraum ist 2(j + 1)-dimensional.Dar�uberhinaus �ndet man zus�atzli
he Beispiele in [4℄.0.2.2 Ni
ht-�aquivalente und irreduzible DarstellungenZu einer vorgegebenen Gruppe gibt es i.a. mehrere m�ogli
he Darstellungen. Eine Klassi-�kation dieser unters
hiedli
hen Darstellungen kann auf zwei vers
hiedene Arten ges
he-hen. Zum einen stellt Bemerkung 10 bereits einen direkten Zusammenhang zwis
hen denDarstellungsoperatoren und gew�ohnli
hen Matrizen her. Man f�uhrt nun den Begri� der�Ahnli
hkeit von Darstellungen ein, der bereits f�ur Matrizen aus der Linearen Algebra be-kannt ist. Er �ubertr�agt si
h auf die Darstellungstheorie ganz kanonis
h:Sei R eine Darstellung von G auf V und S ein invertierbarer Operator auf V . Dann istdie dur
h R0 (g) = SR (g) S�1 ;8g 2 G de�nierte Darstellung R0 eine Darstellung von G



0.2 Darstellungstheorie endli
her Gruppen 11mit glei
her Dimension. Die Darstellungsmatrizen der beiden Darstellungen h�angen dabeiin glei
hem Ma�e zusammen wie zwei Matrizen, die eine lineare Abbildung bzgl. zweierunters
hiedli
her Basen bes
hreiben. Man sagt R und R0 sind dur
h eine �Ahnli
hkeits-transformation ineinander �ubergegangen.De�nition 11 Zwei Darstellungen hei�en �aquivalent, falls sie dur
h eine �Ahnli
hkeits-transformation ineinander �uberf�uhrt werden k�onnen.�Aquivalente Darstellungen bilden eine �Aquivalenzklasse, und in den meisten F�allen gen�ugtes, einen Repr�asentanten aus jeder Klasse zu kennen. Wie ents
heidet man aber bei zweiDarstellungen, ob sie �aquivalent sind oder ni
ht? Man ben�otigt eine Charakterisierung,die si
h bei �Ahnli
hkeitstransformationen ni
ht �andert. F�ur Matrizendarstellungen ist dieSpur eine entspre
hende Invariante. Man de�niert daher:De�nition 12 Der Charakter �R (g) von g 2 G in einer Darstellung R ist dur
h�R (g) = TrR (g) (2)erkl�art. Falls DR(g) die zugeh�orige Darstellungsmatrix zu R (g) ist, gilt�R (g) =Xi (DR(g))ii : (3)Bemerkung 13 Alle Gruppenelemente einer Klasse (vgl. De�nition 6) haben den glei
henCharakter, d.h. der Charakter ist eine Klassenfunktion.Beweis: Seien g; p 2 G, dann gilt wegen der Invarianz der Spur gegen�uber zyklis
her Ver-taus
hung Tr �DR (p)DR (g)DR �p�1�� = TrDR (g) f�ur alle p 2 G.Ein weiteres wi
htiges Hilfsmittel, die unters
hiedli
hen Darstellungen einzuteilen, ist die-se, sie in eine direkte Summe aus irreduziblen Darstellungen zu zerlegen. Jede denkbareDarstellung einer beliebigen Gruppe enth�alt gewisse Informationen �uber sie. Ziel ist esnun, m�ogli
hst niedrigdimensionale Darstellungen zu �nden, die die gesamte Information,die man dur
h Darstellungen �uberhaupt erhalten kann, beinhalten. Um dieses Vorhabenin eine mathematis
he Form zu fassen, sind zun�a
hst einige Begri�e n�otig.De�nition 14 Sei R eine Darstellung von G auf dem endli
hen Vektorraum V und seiV1 ein Unterraum von V . Dann hei�t V1 invarianter Unterraum von V bzgl. R , falls f�uralle x 2 V1 und g 2 G R (g) (x) 2 V1 ist.Ein invarianter Unteraum istminimal, falls er keine ni
ht-trivialen invarianten Unterr�aumebzgl. R mehr enth�alt.Falls V1 invariant unter R ist, de�niert man die Eins
hr�ankung von R auf V1 alsR0 (g) = R (g) jV1 mit R0 (g) v1 = R (g) v1 ; g 2 G ; v1 2 V1: (4)Beispiele: Triviale invariante Unterr�aume von V bzgl. R sind der Vektorraum V selbstund der Nullraum.



12 Grundlagen der Gruppentheorie IDe�nition 15 Eine Darstellung R von G hei�t irreduzibel, wenn es keinen ni
ht-trivialeninvarianten Unterraum von V bzgl. R gibt, ansonsten ist die Darstellung reduzibel.Falls das orthogonale Komplement eines invarianten Teilraums ebenfalls invariant bzgl. Rist, nennt man die Darstellung R vollst�andig reduzibel.Es stellt si
h nun die Frage, was mit der Unters
heidung von reduziblen und irreduziblenDarstellungen gewonnen ist. Hier zeigt si
h, da� jede reduzible Darstellung in irreduzi-ble Darstellungen zerlegt werden kann und umgekehrt aus der Kenntnis aller irreduziblenDarstellungen alle reduziblen Darstellungen konstruiert werden k�onnen. Somit kommt denirreduziblen Darstellungen eine herausragende Rolle zu, und deren AuÆnden l�ost das Dar-stellungsproblem von Gruppen vollkommen. Die oben gema
hten Aussagen wollen wir amEnde dieses Unterabs
hnitts in einem Theorem pr�azisieren (vgl. Theorem 17), auf denBeweis soll allerdings verzi
htet und auf die bereits oben genannte Literatur verwiesenwerden. I
h m�o
hte an dieser Stelle allerdings darauf hinweisen, da� als wesentli
hes Hilfs-mittel die Aussage dient, da� man si
h bei der Beweisf�uhrung auf unit�are Darstellungenbes
hr�anken kann. Deshalb zun�a
hstTheorem 16 Jede Darstellung R einer endli
hen Gruppe auf einem Raum mit eineminneren Produkt ist �aquivalent zu einer unit�aren Darstellung. Dabei hei�t R eine unit�areDarstellung, falls auf dem Darstellungsraum der Gruppe G ein inneres Produkt (Skalar-produkt) de�niert ist und die Operatoren R (g) f�ur alle g 2 G unit�ar sind, d.h. falls siedas innere Produkt zweier Elemente invariant lassen.Man kann nun zeigen, da� jede reduzible unit�are Darstellung R : G! Aut(V ) auf V mitni
ht-trivialem invarianten Unterraum V1 ihren zu V1 orthogonalen Raum V ?1 ebenfalls alsinvarianten Unterraum besitzt. Somit sind au
h R0 : G ! Aut(V1) mit R0(g) = R(g) jV1und R00 : G! Aut(V ?1 ) mit R00(g) = R(g) jV ?1 eine Darstellung von G. Da V = V1 � V ?1legen R0 und R00 die Darstellung R eindeutig fest. Daher s
hreibt man R = R0 � R00.Man sagt, R ist die direkte Summe von R0 und R00 . Nimmt man nun o.B.d.A. an, da� V1der kleinste e
hte invariante Unterraum von V ist, so ist R0 zwangsl�au�g irreduzibel undV ?1 aufgrund obiger Aussage invariant unter R00. Falls R00 ni
ht irreduzibel ist, w�ahlt manau
h in V ?1 den kleinsten e
hten invarianten Unterraum aus {dieser ist dann invariantunter einer irreduziblen Darstellung R000{ und spaltet ihn ab; dieser Ablauf kann solangefortgef�uhrt werden, bis man die reduzible Darstellung R vollst�andig in irreduzible Anteilezerlegt hat. Da V endli
h-dimensional ist, bri
ht die Prozedur na
h endli
h vielen S
hrittenab. Man erh�alt s
hlie�li
h R = kM�=1 a�R� ; (5)wobei a� 2 N0 und die R� paarweise ni
ht-�aquivalent zueinander sind2.Es sei angemerkt, da� die Zerlegung (5) ni
ht eindeutig ist, es wird si
h aber im n�a
hstenAbs
hnitt herausstellen, da� die a� jedo
h f�ur jede Zerlegung eindeutig bestimmt sind.Man erh�alt also das bereits angek�undigte2Glei
hung (5) meint genauer R = R1 � � � � � R1| {z }a1-mal �R2 � � � � � R2| {z }a2-mal �� � � � Rk � � � � Rk| {z }ak-mal .



0.2 Darstellungstheorie endli
her Gruppen 13Theorem 17 Jede endli
h-dimensionale unit�are Darstellung einer endli
hen Gruppe kannvollst�andig in eine direkte Summe von irreduziblen unit�aren Darstellungen zerlegt werden.Am Ende dieses Abs
hnitts sei no
h einmal kurz auf die zugeh�origen Matrixdarstellungenirreduzibler Darstellungen eingegangen. Zerlegt man V in die direkte Summe V = V1�V ?1 ,so kann dur
h geeignete Wahl der Basisvektoren die zu R geh�orige Darstellungsmatrix ineine obere Dreie
ksform gebra
ht werden. Zerlegt man aber die DarstellungR gem�a� Theo-rem 17 vollst�andig in ihre irreduziblen Anteile, so erh�alt die Darstellungsmatrix Blo
kdia-gonalgestalt.0.2.3 Eigens
haften irreduzibler DarstellungenDas zentrale Problem in der Darstellungstheorie endli
her Gruppen ist zum einen dasAuÆnden aller ni
ht-�aquivalenten, irreduziblen Darstellungen, sowie praktis
he Metho-den zum Aufspalten reduzibler Darstellungen. Dieser Abs
hnitt stellt daher die daf�urwesentli
hen Theoreme vor. Zuvor wollen wir aber die beiden Lemmata von S
hur (ohneBeweis) zitieren, man �ndet sie u.a. in jedem der oben genannten B�u
her zur Gruppen-theorie. Mit Hilfe dieser Lemmata l�a�t si
h das Orthonormalit�atstheorem folgern, das {inbasisunabh�angiger Formulierung{ f�ur die Praxis von wesentli
her Relevanz ist.Lemmata von S
hurLemma 18 Sei R eine irreduzible Darstellung der (endli
hen) Gruppe G auf einem (end-li
h-dimensionalen) Vektorraum V und A ein beliebiger Operator auf V . Falls A mit allenOperatoren fR (g) ; g 2 Gg vertaus
ht, also AR (g) = R (g)A f�ur alle g 2 G gilt, dannmu� A ein Vielfa
hes des Identit�atsoperatores sein, d.h. es ist A = �11 mit einer komplexenZahl �.Lemma 19 Seien R und R0 zwei irreduzible Darstellungen einer (endli
hen) Gruppe Gauf den (endli
h-dimensionalen) Vektorr�aumen V bzw. V 0 und A eine lineare Transforma-tion von V 0 na
h V mit AR0 (g) = R (g)A f�ur alle g 2 G. Dann ist entweder (i) A = 0oder (ii) V und V 0 sind zueinander isomorph und damit R �aquivalent zu R0.Orthonormalit�atstheoremJetzt sind wir in der Lage, die zentralen Resultate der Darstellungstheorie endli
her Grup-pen anzugeben. Vorweg aber no
h einige Notationvereinbarungen:



14 Grundlagen der Gruppentheorie InG: Gruppenordnung;�; �: indiziert ni
ht-�aquivalente, irreduzible Darstellungen R� ;R� von G;d�: Dimension der Darstellung R� ;D�(g): die zu g 2 G geh�orige Matrix der MatrixdarstellungM �R�� bez�ug-li
h einer Orthonormalbasis;Ci: konjugierte Klasse, (i = 1; 2; : : : ; nC) ;�� (Ci): Charakter der Elemente in der Klasse Ci in der Darstellung R� ;ni: Anzahl der Elemente in der Klasse Ci ;nC : Anzahl der Klassen in der Gruppe G.Theorem 20 F�ur zwei beliebige, ni
ht-�aquivalente, irreduzible, unit�are Darstellungsma-trizen gilt: d�nGXg D�y(g)kiD�(g)jl = Æ��ÆijÆkl (6)mit der Konvention3 D�y(g)ki = D��(g)ik.Beweis: Eine Beweisskizze �ndet si
h in Anhang B.1.Man bea
hte, da� auf die Irreduzibilit�atsforderung keinesfalls verzi
htet werden darf. DerBeweis benutzt in beiden F�allen die Lemmata von S
hur, die nur f�ur irreduzible Darstel-lungen G�ultigkeit besitzen.An dieser Stelle eine Bemerkung zur Bezei
hnung "Orthonormalit�atstheorem\. Sie wirddur
h folgende geometris
he Ans
hauung motiviert: Fa�t man (d�=nG) 12 D�(g)j l f�ur einfestes Tripel (�; j; l) als einen nG-komponentigen Vektor im nG-dimensionalen "Gruppen-elemente\-Vektorraum auf (die Gruppenelemente g dur
hlaufen dabei die volle GruppeG), so besagt das Theorem, da� all diese Vektoren orthonormal zueinander sind. Da (j; l)genau (d�)2 Werte annehmen kann, gibt es insgesamtP�(d�)2 vers
hiedene orthonormaleVektoren in der �-Darstellung. Weil der zugeh�orige Vektorraum aber nG-dimensional ist,kann es maximal nG vers
hiedene orthonormale Vektoren geben. Es gilt also:X� (d�)2 � nG : (7)Tats�a
hli
h kann die obige Unglei
hung mit Hilfe der regul�aren Darstellung dahingehendvers
h�arft werden, da� in (7) die Glei
hheit gilt. Man verglei
he dazu Anhang A. Festhaltenwollen wir aber s
hon einmal dasVollst�andigkeitstheoremTheorem 21 Die Dimensionsparameter fd�g der ni
ht-�aquivalenten irreduziblen Darstel-lungen gen�ugen der Relation X� d�2 = nG ; (8)3Die hermites
he Konjugation umfa�t komplexe Konjugation mit zus�atzli
her Transposition. Mans
hreibt Ayij � �Ay�ij = �A�T �ij = (A�)ji � A�ji :



0.2 Darstellungstheorie endli
her Gruppen 15und f�ur die zugeh�origen Darstellungsmatrizen gilt damit wegen der maximalen Anzahllinear unabh�angiger Vektoren im nG-dimensionalen Raum die Vollst�andigkeitsrelationX�;l;k d�nGD�(g)lkD�y(g0)kl = Ægg0 ; (9)wobei Æij mit Æij � ( 1 falls i = j0 sonst das Krone
ker-Symbol bezei
hnet.Orthonormalit�ats- und Vollst�andigkeitsrelation f�ur irreduzible CharaktereDas Orthonormalit�ats- und Vollst�andigkeitstheorem ist aus theoretis
her Si
ht von �uberausgro�er Bedeutung. F�ur das AuÆnden von irreduziblen Darstellungen in der Praxis istes allerdings weniger geeignet, da die Gestalt der Darstellungsmatrizen von der konkretgew�ahlten Basis von V abh�angt. Eine Basistransformation f�uhrt aber nur auf �aquiva-lente Darstellungen. Sie spielt also f�ur die eigentli
h betra
htete irreduzible DarstellungR keine Rolle. Die Darstellungsmatrizen D(g) mit g 2 G tragen also im Prinzip "zuviel\ Information. In De�nition 12 wurde der Charakter einer Darstellung R als die Spur�uber die Operatoren R (g) eingef�uhrt. Sie sind unabh�angig von der Wahl der Basis imDarstellungsraum, d.h. invariant gegen�uber �Ahnli
hkeitstransformationen, und bilden ei-ne Klassenfunktion. Orthonormalit�ats- und Vollst�andigkeitstheorem k�onnen in der Tatbasisunabh�angig formuliert werden.Theorem 22 Die Charaktere der ni
ht-�aquivalenten, irreduziblen Darstellungen gen�ugenfolgenden Relationen:Xi ninG��y (Ci)�� (Ci) = Æ�� (Orthonormalit�at) (10)X� ninG�� (Ci)��y (Cj) = Æij (Vollst�andigkeit) ; (11)wobei gem�a� Konvention ��y (Ci) = (�� (Ci))� ist.Beweis: Eine Skizze des Beweises habe i
h in Anhang B.1 bereitgestellt.F�ur eine fest vorgegebene irreduzible Darstellung � bilden die (ni=nG) 12 �� (Ci) mit i =1; : : : ; nC einen Vektor im nC -dimensionalen Vektorraum. Von ihnen gibt es genau so vie-le, wie es ni
ht-�aquivalente irreduzible Darstellungen gibt. Theorem 22 besagt, da� allederart gebildeten Vektoren orthogonal zueinander stehen. Hieraus folgt, da� die Anzahlder ni
ht-�aquivalenten irreduziblen Darstellungen von G kleiner oder glei
h nC sein mu�.Man kann zeigen, da� au
h hier die Glei
hheit gilt (vgl. Theorem 21), einen Beweis hierzu�ndet man in [1℄. Als weitere wi
htige Folgerung notieren wirFolgerung 23 Die Anzahl der ni
ht-�aquivalenten, irreduziblen Darstellungen einer end-li
hen Gruppe ist glei
h der Anzahl von konjugierten Klassen von G. Also kann �� (Ci)als quadratis
he nC � nC Matrix aufgefa�t werden, wobei � die Zeilen und i die Spaltenindizieren. Man nennt eine aus diesen Spalten erzeugte Tabelle au
h Charakter-Tabelle.



16 Grundlagen der Gruppentheorie IWir wollen nun eine Aussage dar�uber ma
hen, wie oft eine irreduzible Darstellung in einerZerlegung einer reduziblen Darstellung einer endli
hen Gruppe vorkommt.Theorem 24 Zerlegt man eine reduzible Darstellung R in ihre irreduziblen Anteile, sobestimmt man deren H�au�gkeit a� gem�a� der Formela� = 1nGXi ni ��y (Ci)�R (Ci) : (12)Beweis: Der Beweis ist in Anhang B.1 skizziert.Zum S
hlu� dieses Abs
hnitts m�o
hte i
h no
h ein notwendiges und hinrei
hendes Krite-rium f�ur Irreduzibilit�at angegeben.Theorem 25 Eine Darstellung R mit den Charakteren f� (Ci)g ist genau dann irreduzi-bel, wenn Xi ni j� (Ci)j2 = nG : (13)Beweis: Die Beweisskizze kann ebenfalls in Anhang B.1 na
hgelesen werden.F�ur endli
he Gruppen gibt uns dieses Kriterium also einen lei
ht auszuf�uhrenden Test aufIrreduzibilit�at an die Hand.0.3 Kubis
he Gruppe und ihre irreduziblen DarstellungenNa
hdem nun die wesentli
hen Begri�e und Theoreme der Darstellungstheorie endli
herGruppen eingef�uhrt wurden, soll im folgenden die kubis
he Gruppe als Beispiel einerendli
he Gruppe genauer vorgestellt und insbesondere deren irreduziblen Anteile bestimmtwerden.0.3.1 Kubis
he Gruppe ODie kubis
he Gruppe ist eine ni
ht-abels
he, endli
he Gruppe mit 24 Elementen und wirdabk�urzend mit dem Symbol O bezei
hnet. Sie ist isomorph zur Permutationsgruppe S4.Ihre Elemente lassen si
h mit den Rotationen eines W�urfels identi�zieren, die seine Lageinvariant lassen. Die eindeutig bestimmten Rotationsa
hsen bezei
hnet man als Symme-triea
hsen des W�urfels.Ein dreidimensionaler W�urfel hat insgesamt 13 Symmetriea
hsen (vgl. Abb. 1).Verwendet man zur Bes
hreibung dieser A
hsen ein dreidimensionales kartesis
hes Koor-dinatensystem und legt dessen Nullpunkt in die Mitte des W�urfels, so lassen si
h dreivon ihnen dur
h die drei Koordinatena
hsen bes
hreiben, d.h. die A
hsen gehen dur
hdie Mittelpunkte gegen�uberliegende Seiten
�a
hen, hier sind Rotationen um Vielfa
he von��2 m�ogli
h. Weitere vier A
hsen mit Rotationen um Vielfa
he von �2�3 werden dur
hdie Raumdiagonalen bes
hrieben. Se
hs weitere A
hsen verlaufen parallel zu den Seiten-
�a
hendiagonalen dur
h den Ursprung des Koordinatensystems, erlaubt sind hier Rota-tionen um Vielfa
he von �. Um die 10 Rotationsa
hsen (ohne Koordinatena
hsen) nun



0.3 Kubis
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Abbildung 1: Symmetriea
hsen eines W�urfelsmit einer eindeutig bestimmten Orientierung zu versehen, bestimmt man vier E
kpunkte�; : : : ; 
 und se
hs Kantenmittelpunkte a; : : : ; f des W�urfels und l�a�t die A
hsen dur
hden Koordinatenursprung und dann dur
h die ausgezei
hneten Punkte verlaufen. Man be-zei
hnet sie entspre
hend mit O�, O�, O
, OÆ, Oa, Ob, O
, Od, Oe und Of (vgl. Abb. 1und 2).Wir wollen im folgenden nur aktive, d.h. linksh�andige Drehungen modulo 2� betra
hten,um die Anzahl der m�ogli
hen Drehungen minimal zu halten. Man bea
hte, da� insbeson-dere eine Drehung um �' identis
h mit einer Drehung um 2� � ' ist.Man unters
heidet nun die Symmetriea
hsen des W�urfels na
h ihrer Ordnung. Die Ord-nung einer A
hse ist dabei de�niert als Anzahl erlaubter Drehungen (eins
hlie�li
h derIdentit�at), die den W�urfel in si
h selbst �uberf�uhren, und wird mit Cj bezei
hnet, wobei jdie Anzahl der m�ogli
hen Drehungen indiziert. Beim W�urfel hat man also:� 3 C4-A
hsen C4i ; i 2 fx; y; zg Rotationen um n-mal �2 (n = 1; : : : ; 4)� 4 C3-A
hsen C3i ; i 2 f�; : : : ; Æg Rotationen um n-mal 2�3 (n = 1; 2; 3)� 6 C2-A
hsen C2i ; i 2 fa; : : : ; fg Rotationen um n-mal � (n = 1; 2)Die Rotationen k�onnen mit Cji (') bezei
hnet werden, die Rotationsma�e ' = ��2 ;�2�3 ; �sind dabei passend zur Wahl von j zu w�ahlen. Bea
htet man, da� die jeweils j-te Rotation
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Abbildung 2: Die A
hsen O�;O�;O
;OÆ;Oa;Ob;O
;Od;Oe;Of sowie x; y; z



18 Grundlagen der Gruppentheorie Ium die A
hse Cji die Identit�at ist, hat man insgesamt 24 Symmetrieoperationen. Diessind genau die 24 Elemente der kubis
hen Gruppe O. Sie l�a�t si
h demna
h in der FormO = �C4i (') ;C3j (') ;C2k (') j i = 1; 2; 3; j = 1 ; : : : ; 4 ; k = 1; : : : ; 6; ' = ��2 ; �;�2�3 	s
hreiben, wobei die ' geeignet zu w�ahlen sind. Gruppenverkn�upfung ist dabei die Hinter-einanderausf�uhrung zweier Rotationen. Diese sind in der Tat ni
ht kommutativ, d.h. dieGruppe O ist ni
ht-abels
h!Unter zur Hilfenahme einer Verkn�upfungstabelle kann man jetzt na
hre
hnen, da� die 24Elemente von O in f�unf konjugierte Klassen (vgl. De�nition 6) zerfallen, diese werdenmit E; 6C2; 8C3; 6C4 und 3C24 bezei
hnet4. In ihnen be�nden si
h jeweils auss
hlie�li
hDrehungen um Symmetriea
hsen glei
her Ordnung:� E = fidg : Identit�at� 6C2 = fC2i (')g mit i 2 fa; : : : ; fg und ' = �Rotationen um die A
hsen Oa, Ob, O
, Od, Oe, Of parallel zu dense
hs Seiten
�a
hendiagonalen, insgesamt also se
hs Elemente;� 8C3 = fC3i (')g mit i 2 f�; : : : ; Æg und ' = �2�3Rotationen um die vier Raumdiagonalen O�, O�, O
, OÆ, insgesamt alsoa
ht Elemente;� 6C4 = fC4i (')g mit i 2 fx; y; zg und ' = ��2Rotationen um die drei Koordinatena
hsen x, y, z, insgesamt alsose
hs Elemente;und s
hlie�li
h� 3C24 = fC4i (')g mit i 2 fx; y; zg und ' = �Rotationen um die drei Koordinatena
hsen x, y, z, insgesamt alsodrei Elemente.0.3.2 Irreduzible Darstellungen von ODie kubis
he Gruppe besitzt na
h der Folgerung aus Theorem 22 genau so viele ni
ht-�aquivalente, irreduzible Darstellungen wie konjugierte Klassen. Ihre Dimensionsparameterd� k�onnen mit Hilfe der Formel (8) aus Theorem 21 bestimmt werden, da si
h die Be-dingung P5�=1 d�2 = 24 nur f�ur (d1; : : : ; d5) = (1; 1; 2; 3; 3) erf�ullen l�a�t. Man bezei
hnetdie zwei eindimensionalen Darstellungen �ubli
herweise mit A1; A2, die zweidimensionaleDarstellung mit E und die beiden dreidimensionalen Darstellungen mit T1 und T2. Dietriviale Darstellung A1 wurde bereits in 0.2.1 als Beispiel erw�ahnt. T1 �ndet man h�au�gau
h unter dem Begri� Vektordarstellung.4Die Zahl vor dem Klassensymbol gibt die Anzahl ihrer Elemente an. Falls Verwe
hslungen ausges
hlos-sen sind, wird diese stellenweise au
h weggelassen.



0.3 Kubis
he Gruppe und ihre irreduziblen Darstellungen 19Es ist nun prinzipiell m�ogli
h, mit Hilfe des Orthonormalit�ats- und Vollst�andigkeitstheo-rems den kompletten Satz an Matrizen aller f�unf ni
ht-�aquivalenter irreduzibler Darstel-lungen zu bestimmen. Damit w�are das Problem, alle Darstellungen der kubis
hen Gruppeaufzu�nden, vollst�andig gel�ost, da si
h dur
h geeignete Wahl der Basis alle reduziblenMatrixdarstellungen blo
kweise aus den f�unf irreduziblen Matrizen aufbauen lassen. Wieallerdings s
hon erw�ahnt, ist eine basisunabh�angige Formulierung unter Verwendung irre-duzibler Charaktere wesentli
h kompakter, {wenn au
h �armer an Information{ aber f�ur un-sere Zwe
ke absolut ausrei
hend. Wir wollen also im folgenden Unterabs
hnitt alle �� (Ci)mit � 2 f1; : : : ; 5g; Ci 2 fC2; C3; C4; C24g bestimmen und in einer Charakter-Tabelle (vgl.Folgerung 1) anordnen.0.3.3 Charaktertabelle von ODie Konstruktion einer Charaktertabelle ist f�ur alle endli
hen Gruppen G der Ordnung nglei
h und kann na
h Bedarf in der Literatur, z.B. [3℄, na
hgelesen werden. Wir wollen aberder Vollst�andigkeit halber kurz die wi
htigsten Regeln, die f�ur das Erstellen der Tabellevon Bedeutung sind, aufz�ahlen.1. Die Anzahl der irreduziblen Darstellungen ist glei
h der Anzahl der konjugiertenKlassen. Die Gruppe O hat davon f�unf. Ihre Charaktertabelle besteht demna
h aus5 Zeilen und 5 Spalten.2. Die Dimension d� der irreduziblen Darstellungen ist gegeben dur
hP� d�2 = nG. ImAbs
hnitt 0.3.2 wurde f�ur die kubis
he Gruppe bereits die eindeutige L�osung mit 1,1, 2, 3 und 3 angegeben. Da das neutrale Element einer Gruppe in jeder Darstellungdur
h die Einheitsmatrix dargestellt wird, ist die Spur der Darstellungsmatrix f�uralle � glei
h d�, also in der ersten Spalte steht stets �� (11) = d�.Vereinbart man, da� die (irreduzible) Trivialdarstellung, die jedem Gruppenelementdie 1 zuordnet, mit � = 1 indiziert wird, so ist die erste Zeile der Tabelle dur
h�1 (Ci) = 1 f�ur alle Ci; i 2 f1; : : : ; nCg, gegeben.F�ur die kubis
he Gruppe erhalten wir demna
h als erste Zeile (1; : : : ; 1) und als ersteSpalte (1; 1; 2; 3; 3).3. F�ur die Zeileneintr�age der Tabelle gilt na
h (10)Xi ni ��y (Ci)�� (Ci) = nGÆ�� :Die Zeilen sind also orthogonal zueinander und die mit ni gewi
htete Summe ist aufnG normiert.4. Die Spalten der Tabelle sind na
h (11) ebenfalls orthogonal zueinander und aufnG=ni normiert, also gilt X� �� (Ci)��y (Cj) = nGni Æij : (14)



20 Grundlagen der Gruppentheorie IOftmals rei
hen die ersten drei Regeln aus, um die Charaktertabelle vollst�andig zu be-stimmen. Regel vier kann dann der Kontrolle dienen. F�ur die kubis
he Gruppe sind dieersten beiden Regeln bereits ausgef�uhrt worden. Die dritte Regel f�uhrt auf ein l�osbaresGlei
hungssystem, deren explizite Ausf�uhrung auf die folgende Tabelle f�uhrt:konj. Klassen E C2 C3 C4 C24j konj. Klassen j 1 6 8 6 3Darstellung A1 1 1 1 1 1A2 1 -1 1 -1 1E 2 0 -1 0 2T1 3 -1 0 1 -1T2 3 1 0 -1 -10.3.4 Gruppe OhWir s
hlie�en dieses Kapitel mit der Einf�uhrung der Gruppe Oh, die eng mit der kubi-s
hen Gruppe O verbunden ist. Sie besitzt 48 Elemente und wird h�au�g au
h als vollekubis
he Gruppe bezei
hnet. Ihre Elemente lassen si
h �ahnli
h wie im Falle der kubis
henGruppe mit den Symmetrieeigens
haften eines W�urfels in Verbindung bringen, indem manneben den in 0.3.1 eingef�uhrten Rotationen um die Symmetriea
hsen eines W�urfels au
hzus�atzli
h no
h eine Punktspiegelung (Inversion I) am Ursprung5 zul�a�t. Eine Inversiondreht die Vorzei
hen aller Koordinaten um, d.h. r wird zu �r f�ur alle r 2 R3 . Man kannalso jedes Element aus Oh mit einer Drehung und ans
hlie�ender optionaler Inversionidenti�zieren. Man bea
hte, da� die Reihenfolge dieser beiden Operationen f�ur die Endla-ge/Endkon�guration des W�urfels dabei eigentli
h keine Rolle spielt6. Die 24 zus�atzli
hen(gespiegelten) Elemente der Gruppe Oh ma
ht man dur
h ein I vor dem Rotationssymbolkenntli
h, demna
h bes
hreibt (IC2x) beispielsweise eine Drehung um � um die x-A
hseinklusive Punktspiegelung.Die Aussagen �uber die Gruppe O hinsi
htli
h konjugierter Klassen, irreduzibler Darstel-lungen und Charaktertabelle lassen si
h lei
ht auf die Gruppe Oh �ubertragen und seiendeshalb im folgenden kurz genannt.Irreduzible DarstellungenDa Rotation und Inversion kommutieren und si
h eine gespiegelte Kon�guration gh 2 Ohdes W�urfels7 ni
ht dur
h Hintereinanders
halten geeigneter Rotationen aus O erzeugenl�a�t, zerf�allt die volle kubis
he Gruppe in zehn konjugierte Klassen. Man bezei
hnet sie mitE;C2; C3; C4; C24 ; I; IC2; IC3; IC4; IC24 . Die Anzahl ni
ht-�aquivalenter, irreduzibler Dar-5Der Ursprung liegt im Mittelpunkt des W�urfels.6Mathematis
h ausgedr�u
kt ist die Gruppe Oh das direkte Produkt aus der kubis
hen Gruppe O und derzweielementigen Gruppe fe; Ig, also Oh = O � fe; I g, wobei e das neutrale Element der zweielementigenGruppe bezei
hnet. Der Begri� des direkten Produktes wird sp�ater in Kapitel 4 eingehender bespro
hen.7Die Elemente gh haben alle die Form gh = (g; e) oder gh = (g; I) mit g 2 O.



0.4 S
hlu�bemerkung 21stellungen ist na
h der Folgerung aus Theorem 22 damit ebenfalls zehn. Diese werden mitA�1 ; A�2 ; E�; T�1 und T�2 bezei
hnet8.CharaktertabelleDie Charaktertabelle von Oh l�a�t si
h mit einigem re
hneris
hen Aufwand mit Hilfe derin 0.3.3 angegebenen Regeln aufstellen. Man �ndet [1℄:konj. Klassen E C2 C3 C4 C24 I IC2 IC3 IC4 IC24j konj. Klassen j 1 6 8 6 3 1 6 8 6 3Darstellung A+1 1 1 1 1 1 1 1 1 1 1A+2 1 -1 1 -1 1 1 -1 1 -1 1Parit�at = 1 E+ 2 0 -1 0 2 2 0 -1 0 2T+1 3 -1 0 1 -1 3 -1 0 1 -1T+2 3 1 0 -1 -1 3 1 0 -1 -1A�1 1 1 1 1 1 -1 -1 -1 -1 -1A�2 1 -1 1 -1 1 -1 1 -1 1 -1Parit�at = �1 E� 2 0 -1 0 2 -2 0 1 0 -2T�1 3 -1 0 1 -1 -3 1 0 -1 1T�2 3 1 0 -1 -1 -3 -1 0 1 10.4 S
hlu�bemerkungWeitere gruppentheoretis
he Grundlagen �nden si
h in Kapitel 4, in dem insbesondereauf die Konstruktion direkter (endli
her) Produktgruppen und deren irreduziblen Dar-stellungen eingegangen wird. Ferner ist dann eine weitere, diskrete, endli
he Gruppe zudiskutieren, die �Uberlagerungsgruppe 2O der kubis
hen Gruppe O.Im folgenden Kapitel werde i
h zun�a
hst auf physikalis
he Fragestellungen eingehen, umans
hlie�end das Transformationsverhalten von damit in Zusammenhang stehenden Gitter-Operatoren unter der kubis
hen Gruppe zu untersu
hen.

8Das � steht f�ur die Parit�at P der Darstellung (vgl. Kapitel 2). Die Parit�at ist +1, falls f�ur die Charakterder irreduziblen Darstellung �(g � e) = �(g � I) gilt, die Parit�at ist �1, falls �(g � e) = ��(g � I).



Kapitel 1Glueballspektrum auf dem GitterIn diesem Kapitel soll ein kurzer �Uberbli
k �uber die Anwendung ni
ht-abels
her Gitter-ei
htheorien zur Bestimmung von Glueballmassen gegeben werden. Die zugrunde liegendenArbeiten sind ein Beispiel daf�ur, in wel
hem Ma�e Bere
hnungen auf dem Gitter Vorher-sagen f�ur die Kontinuumsphysik liefern k�onnen.In knapper Form werde i
h zun�a
hst die Grundgedanken der Ei
htheorie und ihrer Formu-lierung auf dem Gitter darstellen und auf die Existenz von massiven Zust�anden in starkgekoppelten Gitterei
htheorien eingehen. Daran ans
hlie�en wird si
h der Zusammenhangzwis
hen Spinzust�anden im Kontinuum und ihren Entspre
hungen auf dem Gitter. Dabeistellt si
h die Frage, wel
he Auswirkung die auf dem Gitter gebro
hene Drehsymmetrie aufihre irreduziblen Darstellungen hat und wie diese dur
h Gitteroperatoren zu realisierensind. Es wird si
h dabei herausstellen, da� gerade die irreduziblen Darstellungen der ku-bis
hen Gruppe zur Charakterisierung von Spinzust�anden auf dem Gitter benutzt werdenk�onnen.Auf numeris
he Ergebnisse im Rahmen der Glueball-Spektroskopie, die in erster Linie ausMonte-Carlo Simulationen aber au
h aus Ho
htemperaturentwi
klungen1 (strong 
ouplingexpansion) [7,8℄ stammen, soll hier ni
ht n�aher eingegangen werden. Hierzu verglei
he manz.B. [9,10℄ und die darin aufgef�uhrten Referenzen.1.1 Grundz�uge der Gitterei
htheorieVorab stelle i
h die grundlegenden Begri�e und Bezei
hnungen der Gitterei
hfeldtheoriezusammen. F�ur eine umfassendere Darstellung sei auf [11,12℄ und die darin angegebenenReferenzen verwiesen.1Der Begri� der Ho
htemperaturentwi
klung ist der statistis
hen Me
hanik entlehnt. Man bezieht si
hhierbei auf den engen Zusammenhang zwis
hen der Formulierung der euklidis
hen Quantenfeldtheorie undder statistis
hen Me
hanik in Form von Funktionalintegralen. Die Kopplungskonstante g2 wird dabei mitder Temperatur identi�zert. Eine Ho
htemperaturentwi
klung meint in unserem Zusammenhang also eineEntwi
klung in 1=g2 bzw. �.



1.1 Grundz�uge der Gitterei
htheorie 231.1.1 Ei
htheorie im KontinuumFundamentaler Bestandteil der heutigen Quantenfeldtheorie ist das Prinzip der Ei
hinvari-anz, wel
hes aufgrund des Noether-Theorems die Existenz von erhaltenen Str�omen und dendavon abgeleiteten physikalis
hen Gr�o�en garantiert. Insbesondere das lokale Ei
hprinziperlaubt es s
hlie�li
h, mit Hilfe von lokalen Ei
hfeldern und kovarianten Ableitungen lokal-ei
hinvariante Wirkungen aufzubauen.Ausgangspunkt lokal ei
hinvarianter Theorien ist hierbei die Forderung na
h Invarianz derWirkung bez�ugli
h Transformationen der Form�(x) �! ��1(x)�(x) f�ur alle �(x) 2 SU(N): (1.1)Die Invarianzforderung unter diesen lokalen Ei
htransformationen ma
ht die Einf�uhrungvon kovarianten Ableitungen in der Lagrangedi
hte n�otig, die si
h wiederum aus dem Kon-zept des Paralleltransports {um Felder an vers
hiedenen Orten der Raumzeit verglei
henzu k�onnen{ ergeben. Hierbei f�uhrt man Paralleltransporter U(C) 2 SU(N) entlang einesWeges C ein, die dann mit dem Ei
hfeld A� �uber das pfadgeordnete IntegralU(C) = Pe� RC dx�A� (1.2)verbunden werden. Das Ei
hfeld ist ein Element der Lie-Algebra su(N) der Gruppe SU(N)und transformiert si
h gem�a�A�(x) �! ��1(x) (�� +A�(x)) �(x) : (1.3)Die kovariante Ableitung erh�alt die FormD� = �� +A�(x) : (1.4)Damit de�niert man den Feldst�arketensor F�� der Theorie viaF�� := [D�;D� ℄ = ��A�(x)� ��A�(x) + [A�(x); A�(x)℄ : (1.5)Betra
htet man nun den Paralleltransport entlang in�nitesimal kleiner, ges
hlossener Kur-ven Cdx;dy, die dur
h dx und dy aufgespannt werden, etwa dur
h Polygonz�uge der Form
r �6 - 6x dx dy ,so ist dieser mit dem Feldst�arketensor F�� �uberU(Cdx;dy) = 1� F��dx�dy� (1.6)verbunden. Er transformiert si
h na
hF��(x) �! ��1(x)F��(x)�(x) : (1.7)



24 Glueballspektrum auf dem GitterF�ur die Komponentenfelder von A� und F�� setzt manA�(x) = �igAa�(x)Ta (1.8)F��(x) = �igF a��(x)Ta ; (1.9)wobei Ta die spurlosen, hermites
hen Generatoren der su(N) bezei
hnet. Sie erf�ullen dieRelationen Tr(TaTb) = 12Æab (1.10)[Ta; Tb℄ = ifab
T
 (1.11)mit den vollkommen antisymmetris
hen, reellen Strukturkonstanten fab
 der su(N). DieKomponenten des Feldst�arketensors sind mit denen des Ei
hfeldes �uber die BeziehungF a��(x) = ��Aa�(x)� ��Aa�(x) + gfab
Ab�(x)A
�(x) (1.12)verkn�upft, wobei g die Selbstkopplung der Ei
hfelder bezei
hnet.Dur
h Einf�uhren eines Terms in die ei
hinvariante Wirkung nimmt das Ei
hfeld selbst ander Dynamik teil. Man bezei
hnet ihn als Yang-Mills-Wirkung:SYM = � 12g2 Z d4x TrF��F�� = 14 Z d4x F a��F a�� : (1.13)1.1.2 Ei
htheorie auf dem GitterMan gelangt nun zu einer Diskretisierung der Theorie, indem man si
h bei seiner Betra
h-tung auf Raum-Zeitpunkte bes
hr�ankt, die auf einem vierdimensionalen, hyperkubis
henGitter � = aZ4 = fxjx� 2 aZ; � = 1; 2; 3; 4g angeordnet sind. Die Ri
htung der Gitter-a
hsen werden dabei mit �̂ = 1̂; 2̂; 3̂; 4̂ gekennzei
hnet. Die Materiefelder be�nden si
hnunmehr nur no
h auf den Gitterpunkten. Der Paralleltransporter als Mittler zwis
hendiesen Feldern wird mit den Gitterkanten (Links) identi�ziert und im Falle der bena
h-barten Punkte x und x + a�̂ mit Ux;� bezei
hnet. Der Paralleltransport in umgekehrterRi
htung s
hreibt si
h demna
h als Ux+a�̂;�� = U�1x;� und ist im Falle der SU(N) glei
hU yx;� . F�ur kleine Gitterabst�ande a ist er mit dem Ei
hfeld �uber die BeziehungUx;� = e�aA�(x) = 1� aA�x+ a22 A2�(x) + : : : (1.14)verkn�upft.Das Konzept des Paralleltransports f�uhrt wie bereits im Kontinuumsfall in nat�urli
herWeise zu einer Wirkung der Gittertheorie. Dabei betra
htet man wie in (1.6) m�ogli
hstkleine ges
hlossene Kurven. In der diskretisierten Bes
hreibung der Theorie sind in�nite-simal kleine Wegst�u
ke aufgrund des endli
hen Gitterabstandes a gar ni
ht de�niert, undals kleinste ges
hlossene Wege �ndet man gerade Quadrate mit der Kantenl�ange a. Siebilden die sog. Plaquettenvariablen Ux;�� mit den E
kenpunktenx; x+ a�̂; x+ a�̂+ a�̂ und x+ a�̂ �; � = 1; 2; 3; 4 ; � 6= � : (1.15)Diese lassen si
h folgenderma�en graphis
h verans
hauli
hen:
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rq qq-6�?-6 �̂�̂ a Gitterabstand ax x+ a�̂

x+ a�̂+ a�̂x+ a�̂
Ux;�

U yx+a�̂;� Ux+a�̂;�U yx;� Ux;��
K. Wilson s
hlug nun vor, aus sol
hen Plaquetten eine ei
hinvariante Wirkung f�ur dasEi
hfeld zu konstruieren [13,14℄. Dabei wird der Paralleltransport um eine sol
he Plaquettedur
h die PlaquettenvariableUp = Ux;�� = U yx;�U yx+a�̂;�Ux+a�̂;�Ux;� (1.16)bes
hrieben. Die Wilson-Wirkung f�ur das SU(N)-Ei
hfeld s
hreibt si
h dann alsSLat(x) =Xx X1��<��4 � �1� 12N TrnUx;�� + U yx;��o� ; (1.17)wobei wegenU yx;�� = U�1x;�� und TrnUx;�� + U yx;��o = 2Re fTrUx;��g (1.18)au
h SLat(x) =Xx X1��<��4 � �1� 1NRe fTrUx;��g� (1.19)gilt.In (1.17) bea
hte man, da� si
h U yx;�� au
h dur
h Ux;�� ausdr�u
ken l�a�t und somit diePlaquette Ux;�� umgekehrt dur
hl�auft.Setzt man in (1.16) die entspre
henden Paralleltransporter gem�a� (1.14) ein und entwi
keltdas Ei
hfeld A�(x) na
h dem Taylors
hen Lehrsatz, ergibt si
h unter Verwendung derBaker-Campell-Hausdor�-Formel f�ur die Plaquettenvariable Ux;�� auf dem GitterUx;�� = 1� a2F�� +O(a3) (1.20)mit dem Feldst�arketensorF�� = �f�A�(x)��f�A�(x) + [A�(x); A�(x)℄ (1.21)der Gitterei
htheorie, der analog zu (1.12) ist. Hierbei wurden wegen des endli
hen Git-terabstandes die partiellen Ableitungen des Kontinuum-Feldst�arketensors aus (1.5) dur
hGitterableitungen ersetzt. Die Vorw�artsableitung ist dabei dur
h�f�f(x) = 1a (f(x+ a�̂)� f(x)) (1.22)



26 Glueballspektrum auf dem Gitterde�niert. Entspre
hend l�a�t si
h au
h eine R�u
kw�artsableitung dur
h�b�f(x) = 1a (f(x)� f(x� a�̂)) (1.23)erkl�aren.Insgesamt erh�alt man unter Auslassung konstanter Terme f�ur die Gitter-Wirkung (1.17)[12℄ SLat = � �4N Xx a4 TrF��(x)F ��(x) +O(a5) : (1.24)Damit wird die Wilson-Wirkung im Kontinuumslimes a! 0 mita4Xx �! Z d4x (1.25)in die Yang-Mills Wirkung (1.13) �uberf�uhrt, wobei f�ur die Ei
hkopplung� = 2Ng2 (1.26)zu setzen ist.1.2 Glueball- und Spinzust�ande auf dem Gitter1.2.1 AusgangslageSeit Anfang der siebziger Jahre H. Fritzs
h und M. Gell-Mann [15℄ im Rahmen derQCD die Existenz von Teil
hen vorhersagten, die aus farblosen Kombinationen von Gluo-nen aufgebaut sein sollten (sog. "glueballs\), dauerte es immerhin no
h einige Jahre bisdiese Glueball-Hypothese dur
h theoretis
he Arbeiten im Rahmen der Gitterei
hfeldtheo-rien best�atigt und gesi
hert werden konnte. Erst gegen Ende des Jahrzehnts konnten K.Osterwalder und E. Seiler [16℄ zeigen, da� in (ni
ht-abels
hen) Gitterei
htheorien mitstarker Kopplung ein Massensprung auftritt, der mit sol
hen Glueballzust�anden im Spek-trum der Theorie identi�zierbar ist.An dieser Stelle s
heint es zwe
km�a�ig, in einem kleinen Eins
hub zun�a
hst zu umrei�en,wie �uberhaupt eine Massenskala in die skaleninvariante Ei
htheorie gelangt.Nat�urli
he Massenskala in der Gitterei
htheorieDa Massenterme in der Lagrangedi
hte die Ei
hinvarianz verletzen, besitzt die reine Ei
h-theorie a priori keine intrinsis
he Massenskala und ist daher skaleninvariant. Der Proze�der Gitterregularisierung, der der Einf�uhrung eines Impulsraum-Cuto� der Ordnung 1=aentspri
ht, erzeugt eine Massenskala in der quantisierten Theorie. Dieser zugrunde liegendeFormalismus ist aus der Theorie der Renormierungsgruppe bekannt (vgl. dazu z.B. [17℄);er soll am Beispiel der Gitterregularisierung hier nur kurz skizziert werden:



1.2 Glueball- und Spinzust�ande auf dem Gitter 27Da die renormierte Kopplungskonstante gR als mit physikalis
hen Gr�o�en identi�zierbarinterpretiert werden kann, fordert man von ihr die Unabh�angigkeit vom Regularisierungs-parameter a a ddagR = �a ��a � �Lat(g) ��g� gR(g;mRa) = 0 ; (1.27)wobei �Lat dur
h �Lat(g;mRa) = �a�g�a �����gR (1.28)bei festem gR gegeben ist2. Eine st�orungstheoretis
he Behandlung der Funktion �Lat(g)zeigt die Unabh�angigkeit der ersten beiden ni
ht-vers
hwindenden Ordnungen in der na
k-ten Kopplung g vom Renormierungss
hema. In der reinen SU(N)-Ei
htheorie �ndet man�Lat(g) = ��0g3 � �1g5 + : : : (1.29)mit den universellen Gr�o�en�0 = 113 � 316�2� und �1 = 343 � 316�2�2 :Es l�a�t si
h zeigen, da� g = 0 die Rolle eines ultravioletten Fixpunktes spielt [12℄, undman somit den Kontinuumslimes f�ur �xiertes gR dur
h �Ubergang von g na
h Null erh�alt.Dur
h Separation der Variablen und Einsetzen der Entwi
klung von (1.29) ergibt si
h dieL�osung der partiellen Di�erentialglei
hung (1.28) zua = ��1Lat ��0g2���12�20 exp�� 12�0g2� f1 +O �g2�g (1.30)mit einer Integrationskonstanten �Lat. Da der Term re
hts von ��1Lat dimensionslos istund die Gitterkonstante a die Dimension einer L�ange tr�agt, hat �Lat die Dimension einerMasse. Man bezei
hnet �Lat � limg!0 1a ��0g2���12�20 exp�� 12�0g2� (1.31)als Gitter-�-Parameter. Er ist somit na
h Grenz�ubergang unabh�angig von der unrenor-mierten Kopplung g.Mit �Lat tritt nun in der reinen Gitter-Ei
htheorie eine massenbehaftete Skala auf, so da�massive physikalis
he Gr�o�en der Proportionalit�atsbeziehungm = Cm�Lat (1.32)gen�ugen m�ussen. Demna
h verhalten si
h Massen, die aus Gitterre
hnungen bestimmtwerden, in der N�ahe des Kontinuumslimes gem�a�am(g) = Cm ��0g2���12�20 exp�� 12�0g2� f1 +O �g2�g ; (1.33)2Da eine allgemeine Theorie s
hon auf der Ebene der Lagrangedi
hte gew�ohnli
h eine Massenskala be-sitzen kann, h�angt die renormierte Kopplung i.a. au
h vonmR ab. Daher f�uhre i
h die Massenabh�angigkeitmR au
h hier mit.



28 Glueballspektrum auf dem Gitteroder in anderen Worten, sie erf�ullen die Renormierungsgruppenglei
hung�a ��a � �Lat(g) ��g�m = O �a2m2� : (1.34)In der Literatur �ndet man dieses Verhalten in der N�ahe des Kontinuumslimes au
h unterder Bezei
hnung "asymptoti
 s
aling\.F�uhrt man den Grenzwertproze� � !1 (bzw. a! 0) aus, so ergibt si
h dur
h Quotien-tenbildung von (1.33) ein Massenverh�altnis m1=m2 zweier physikalis
her Zust�ande (in derSU(N) z.B. gerade Glueb�alle) wel
hes dann im Kontinuumslimes wiem1m2 = C1C2 �1 +O �a2m2�	 (1.35)gegen einen konstanten Wert skalieren sollte.Anfang der a
htziger Jahre haben B. Berg und A. Billoire begonnen, mit Hilfe vonMonte-Carlo-Simulationen auf dem Gitter das massive Spektrum von Glueball-Zust�andenzu bere
hnen [18,19℄. Dazu benutzten sie m�ogli
hst einfa
he, ei
hinvariante Gitteroperato-ren (sog. Wilson-Loops), die si
h in geeigneter Weise unter den irreduziblen Darstellungender unterliegenden Symmetriegruppe eines kubis
hen Gitters transformieren. Im folgendensoll daher auf den Zusammenhang zwis
hen der Rotationssymmetrie des dreidimensionalenRaumes und der Symmetriegruppe eines r�aumli
hen Gitters n�aher eingegangen werden.1.2.2 Spinzust�ande und kubis
he GruppeIm Kontinuum werden bosonis
he Zust�ande dur
h Tensordarstellungen der DrehgruppeSO(3) 
harakterisiert, wobei die SO(3) aus der Menge aller Rotationen um beliebige A
h-sen undWinkelma�e im dreidimensionalen Raum besteht3. Dur
h die Gitterdiskretisierungwird die Rotationssymmetrie gebro
hen, da ein kubis
hes Gitter ni
ht rotationsinvariantist und demna
h Gitterzust�ande unter beliebigen Drehungen ni
ht invariant und somitals unphysikalis
h anzusehen sind. Man kann nun mit Hilfe der kubis
hen Gruppe O dieRotationsinvarianz des physikalis
hen Raumes (Gitters) wiederherstellen, indem man dieRotationsymmetrie der kontinuierli
hen Theorie dur
h die untergeordnete kubis
he Sym-metrie eines Gitters ersetzt. Die kubis
he Gruppe dient dabei als Symmetriegruppe derTheorie, so da� die Eigenzust�ande des Gitter-Hamiltonoperators na
h den irreduziblenDarstellungen von O klassi�ziert werden.Es stellt si
h aber au
h umgekehrt die Frage, wel
he Auswirkungen die Gitteregularisie-rung auf Spinzust�ande im Kontinuum hat. Betra
hten wir dazu eine irreduzible Darstel-lung Rj der SO(3), wobei j den Spinzustand f�ur j = 0; 1; 2; : : : bezei
hnen soll. Da diekubis
he Gruppe O eine Untergruppe der SO(3) ist, k�onnen ihre Elemente ebenfalls dur
h3Im allgemeinen zieht man die unit�aren irreduziblen Darstellungen der Gruppe SU(2) zur Klassi�kationvon Spinzust�ande heran, wobei zwis
hen den Darstellungen mit ganzzahligem Spin (Tensordarstellung)und halbzahligem Spin (Spinordarstellung) zu unters
heiden ist. Im bosonis
hen Sektor stimmen aber dieirreduziblen Darstellungen von SU(2) und SO(3) �uberein, so da� eine Bes
hreibung dur
h die "kleinere\Gruppe SO(3) ausrei
ht (vgl. [20℄ und au
h Anhang D).



1.2 Glueball- und Spinzust�ande auf dem Gitter 29Rj dargestellt werden. Insofern l�a�t si
h Rj als eine Darstellung RjO von O au�assen ("re-du
ed representation\), die im allgemeinen aber reduzibel ist. Man kann sie dann in ihreirreduziblen Anteile zerlegen und erh�alt f�ur j = 0; 1; : : : ; 12 [21℄:Spin Zerlegung in irreduziblej Darstellungen von O0 A11 T12 E � T23 A2 � T1 � T24 A1 �E � T1 � T25 E � 2T1 � T26 A1 �A2 �E � T1 � 2T27 A2 �E � 2T1 � 2T28 A1 � 2E � 2T1 � 2T29 A1 �A2 �E � 3T1 � 2T210 A1 �A2 � 2E � 2T1 � 3T211 A2 � 2E � 3T1 � 3T212 2A1 �A2 � 2E � 3T1 � 3T2Wie die Tabelle zeigt, sind ledigli
h die Darstellungen f�ur Spin-0- und Spin-1-Teil
henirreduzibel, d.h. ihr Darstellungsraum besitzt au
h na
h der Gitterdiskretisierung keine(ni
ht-trivialen) invarianten Unterr�aume. Im Falle eines Spin-2-Teil
hens zerf�allt dagegender von den 2j+1 = 5 Zust�anden aufgespannte Darstellungsraum in einen zwei- und einendreidimensionalen invarianten Unterraum. Dadur
h spaltet das von den f�unf Zust�andenglei
her Energie im Kontinuum gebildete Multiplett in ein Dublett E und ein Triplett T2mit unters
hiedli
hen Energien auf. Die Zust�ande des Dubletts transformieren si
h dabeiunter der irreduziblen Darstellung E der kubis
hen Gruppe, die des Tripletts unter derDarstellung T2. F�ur einen massiven Zustand mit Spin 2 bedeutet dies, da� man in der Git-tersimulation zun�a
hst zwei Massen m(E) undm(T2) mi�t, deren Verh�altnis m(E)=m(T2)im Kontinuumslimes (g ! 0) dann gem�a� der Restauration der vollen Rotationssymmetriegegen 1 konvergiert.Gehen wir nun kurz auf das inverse Problem ein: Sei j  i ein physikalis
her Zustand imKontinuum, der si
h aus Eigenzust�anden j  ni des Hamiltonoperators entwi
keln l�a�tj  i =Xn 
n j  ni ; (1.36)wobei n = (j;m;�) die �ubli
hen Quantenzahlen der Spin-j-Darstellung und einen zus�atz-li
hen Index f�ur z.B. angeregte Zust�ande mit identis
hem Spin bezei
hnet. Jeder Eigen-zustand j  ni geh�ort damit zu einem Multiplett mit eindeutig bestimmtem Spin j. Be-tra
htet sei nun ein Gitteroperator, der si
h unter der irreduziblen Darstellung R mitR = A1; A2; E; T1; T2 der kubis
hen Gruppe transformiert. Dur
h Anwendung auf das Va-kuum erzeugt man einen physikalis
hen (Gitter-)Zustand, der si
h im Kontinuumslimes



30 Glueballspektrum auf dem Gittergem�a� (1.36) in die Form j  Ri =Xn 
Rn j  ni (1.37)bringen l�a�t. j  Ri besitzt demna
h vers
hiedene Spinanteile mit der Eins
hr�ankung, da�deren Entspre
hungen auf dem Gitter alle die Darstellung R enthalten m�ussenRjO � DOJ : (1.38)Unter Ber�u
ksi
htigung dieser Bedingung ergeben si
h aus der vorherigen Tabelle die fol-genden Auswahlregeln Darstellung R Spinanteile jder kubis
hen Gruppe im KontinuumslimesA1 0, 4, 6, 8, . . .A2 3, 6, 7, 9, . . .E 2, 4, 5, 6, . . .T1 1, 3, 4, 5, . . .T2 2, 3, 4, 5, . . .F�ur die Bere
hnung von Glueballmassen ist der niedrigste Spinanteil von ents
heidenderBedeutung, da er i.a. der niedrigsten Glueballmasse zugeordnet werden kann, die dann ih-rerseits aus dem Abfallverhalten von geeigneten Korrelationsfunktionen {als grundlegendeObservablen einer Feldtheorie{ extrahierbar sind.1.2.3 Glueballzust�ande auf dem GitterWie aus der Quantenme
hanik hervorgeht, erh�alt man einen physikalis
hen Zustand  dur
h Anwendung der Linearkombinationen eines vollst�andigen Satzes geeigneter Opera-toren Oi; i = 1; 2; 3; : : : ; auf den Vakuumzustand 
. Dabei haben diese die Bedingungh
 j Oi j 
i = 0 zu erf�ullen. Au
h in der Gitterei
htheorie stellt man an die Operatoren diezus�atzli
he Forderung na
h Ei
hinvarianz. Als Kandidaten eignen si
h also insbesondereLinkprodukte entlang ges
hlossener, raumartiger Polygonz�uge Ci = Ci(~x; t) auf dem Gitter(Wilson-Loops), wobei ~x = (x1; x2; x3) den Startpunkt des Polygonzuges bezei
hnet. Einphysikalis
her Zustand ist dann dur
h (~x; t) =Xi 
iOi(~x; t) j 
i mit 
i 2 C (1.39)mit den MultiplikationsoperatorenOi (~x; t) = TrU (Ci)� hTrU (Ci)i (1.40)gegeben, wobei U der Paralleltransporter der Gittertheorie ist. Hierbei hat man ni
ht nuralle raumartigen Wilson-Loops zu ber�u
ksi
htigen, sondern im Prinzip au
h alle irredu-ziblen Darstellungen der Ei
hgruppe SU(N), also alle Operatoren der FormO�i (~x; t) = �� (U (Ci))� h�� (U (Ci))i : (1.41)



1.2 Glueball- und Spinzust�ande auf dem Gitter 31Man bes
hr�ankt si
h allerdings bei Bere
hnungen auf einem endli
hen Gitter zumeistauf die Fundamentaldarstellung (� = 1=2), da h�ohere Darstellungen in der Simulationunterdr�u
kt sind (vgl. [19℄ und die darin angegebenen Referenzen). Wir wollen den Index� daher im folgenden verna
hl�assigen.Um die zugeh�origen Eigenzust�ande eines Operators Oi(~x; t) im Impulsraum zu erhalten,projiziert man auf Zust�ande mit raumartigen Gitter-Impulsen mittels einer Fouriertrans-formation der Form Oi (~p; t) = 1pL3 X~x ei~p~xOi (~x; t) : (1.42)F�ur das Massenspektrum der Glueb�alle hat man Zust�ande mit vers
hwindendem Impuls~p = 0 zu betra
hten. Der Satz von Operatoren bes
hr�ankt si
h demna
h aufOi (t) = 1pL3 X~x Oi (~x; t) : (1.43)F�ur Simulationen s
hr�ankt man nun die Anzahl der zu ber�u
ksi
htigenden Operatorenerhebli
h ein. Im einfa
hsten Fall verwendet man in (1.41) auss
hlie�li
h Wilson-Loops derL�ange 4 in einer t = 0{Zeits
hi
ht, also gerade die Plaquettenvariablen Up aus (1.16) mitp = (~x;��) und �; � 2 f1; 2; 3g. Man erh�alt somit insgesamt die se
hs Einfa
h-PlaquettenU(~x;12) ; U(~x;31) ; U(~x;23) ; U(~x;21) ; U(~x;13) ; U(~x;32) ;wobei zu bea
hten ist, da� U(~x;��) = U�1(~x;��) ; 8�; � = 1; 2; 3, gilt. Aus ihnen lassen si
hgem�a� (1.41), (1.39) und (1.43) se
hs physikalis
he Zust�ande �� �  ��(0) � 1pL3 X~x f� (Up)� h� (Up)ig j 
i (1.44)erzeugen. Man bildet aus ihnen in geeigneter Weise Linearkombinationen, die si
h unterirreduziblen Darstellungen der kubis
hen Gruppe transformieren, und man �ndet [12℄:irreduzible Darstellung R� Linearkombinationender kubis
hen Gruppe der  ����A++1 Re f 12 +  31 +  23gE++ Re f 31 �  23g ;Re f�2 12 +  31 +  23gT+�1 Im 12 ;Im 31 ;Im 23Sie bes
hreiben einen Skalar-, einen Tensor- und einen Axial-Vektor-Glueball. Letztererexistiert nur in Ei
hgruppen mit e
ht komplexen Darstellungen, wie z.B. in der SU(3).Die Ei
hgruppe SU(2) besitzt dagegen nur reelle Darstellungen.



32 Glueballspektrum auf dem GitterDie Bere
hnung von Glueballmassen ges
hieht unter Benutzung der Zeits
heiben-Mittel-werte (festes t) aus (1.43) mit Hilfe von zusammenh�angenden Korrelationsfunktionen derForm hO(t0 + t)O(t0)i
 : (1.45)Im Falle der Einfa
h-Plaquetten bildet man aus den ObservablenS��(t) = 1pL3 X~x TrU(~x;t);�� (1.46)geeignete Linearkombinationen SR(t), die si
h unter einer irreduziblen Darstellung R derkubis
hen Gruppe transformieren. So erh�alt man f�ur die Korrelationsfunktionen mit derWahl t0 = 0:hSR(t)SR(0)i
 = h R j e�Ht j  Ri =Xn ��
Rn ��2 h n j e�Ht j  ni| {z }e�tmn j ni= C0 e�tm0 n1 + C1 e�t(m1�m0) + � � �o ; C0; C1 = 
onst :(1.47)F�ur t!1 dominiert o�enbar der erste Term, so da� aus der Korrelationsfunktion in derTat die niedrigste Glueballmasse mj eines Spin-j-Glueballs extrahiert werden kann. In derPraxis ges
hieht dies dur
h entspre
hende Exponential�ts der Resultate der numeris
henSimulation an das theoretis
h erwartete Abfallverhalten.Abs
hlie�end no
h zwei Erl�auterungen zu obiger Tabelle:� Eine gruppentheoretis
he Behandlung von Loop-Operatoren wird im n�a
hsten Kapi-tel erfolgen. Dabei wird si
h zeigen, da� neben den Transformationen unter der kubi-s
hen Gruppe zus�atzli
h zwei weitere diskrete Symmetrietransformationen ben�otigtwerden: Raumspiegelung und Ladungskonjugation. Ihre Eigenwerte �1 werden dabeimit P - und C-Parit�at bezei
hnet. Die irreduziblen Darstellungen der Gittersymme-triegruppe erhalten daher sp�ater die Bezei
hnungRPC , wie sie der Ri
htigkeit halberbereits in obiger Tabelle verwendet wird.� Der Ladungskonjugationsoperator C kehrt per De�nition die Orientierung vonWilson-Loops um. Betra
htet man Loop-Kombinationen der Form �Up + U�1p �, so giltTr�Up + U�1p 	 = 2Re fTrUpg (vgl. (1.18)) (1.48)und damit Tr�C[Up + U�1p ℄	 != 2Re fTrUpg : (1.49)F�ur �Up � U�1p � gilt dagegenTr�Up � U�1p 	 = 2i Im fTrUpg (1.50)und deshalb Tr�C[Up � U�1p ℄	 != �2i Im fTrUpg ; (1.51)



1.2 Glueball- und Spinzust�ande auf dem Gitter 33also insgesamt Tr fCUpg = (TrUp)� : (1.52)Der C-Operator wirkt also auf die Spur von Wilson-Loops komplex konjugierend.Da f�ur die in (1.44) verwandten Einfa
h-Plaquetten der ZusammenhangU(~x;21) = CU(~x;12) ; U(~x;13) = CU(~x;31) ; U(~x;32) = CU(~x;23)gilt, wird der si
h unter A++1 transformierende Zustand  beispielsweise gerade imwesentli
hen dur
h die OperatorenRe �Tr[U(~x;12) + U(~x;31) + U(~x;23)℄	= 
onst � Tr�[U(~x;12) + CU(~x;12)℄ + [U(~x;31) + CU(~x;31)℄ + [U(~x;23) + CU(~x;23)℄	= 
onst � Tr�U(~x;12) + U(~x;21) + U(~x;31) + U(~x;13) + U(~x;23) + U(~x;32)	 (1.53)gebildet.Analoge Betra
htungen lassen si
h f�ur die Darstellungen E++ und T+�1 in obigerTabelle dur
hf�uhren.



Kapitel 2Irreduzible Darstellungen derkubis
hen Gruppe �uberWilson-Loops der L�ange 4, 6 und 8Das vorherige Kapitel bes
h�aftigte si
h mit der Existenz und Bestimmung von Glueball-massen, die auf Grundlage der reinen Ei
htheorie in der Gitterregularisierung auftraten.Dabei zog man f�ur die Bere
hnung der Massen dur
h Monte-Carlo-Simulationen m�ogli
hsteinfa
he ei
hinvariante Gitteroperatoren (Wilson-Loops) heran, die si
h unter gewissen ir-reduziblen Darstellungen der kubis
hen Gruppe transformieren.In diesem Kapitel erfolgt nun die gruppentheoretis
he Behandlung der Wilson-Loops, diedie Bildung geeigneter Kombinationen f�ur die Simulation erm�ogli
ht. Ziel dabei ist es,das Transformationsverhalten von Wilson-Loops unter der vollen kubis
hen Gruppe Ohzu untersu
hen. Dazu wird na
h einigen Vorbereitungen zun�a
hst eine Darstellung derkubis
hen Gruppe �uber Wilson-Loops konstruiert und diese ans
hlie�end f�ur einige Loop-Operatoren in ihre irreduziblen Faktoren zerlegt. Dar�uber hinaus wird dann f�ur jede dieserDarstellungen explizit eine Orthonormalbasis aus Loop-Operatoren bestimmt. In Idee undVorgehensweise bin i
h vornehmli
h zwei Artikeln von B. Berg und A. Billoire [18,19℄gefolgt, in denen die wesentli
hen Resultate dieses Kapitels bereits angegeben, Zwis
hen-s
hritte und -re
hnungen allerdings meist ausgelassen worden sind. Zun�a
hst aber einkurzer R�u
kbli
k.2.1 Erinnerungen an Kapitel 0Wie aus Unterabs
hnitt 0.3.1 bereits bekannt ist, besitzt die kubis
he Gruppe 24 Elemente,die als Rotationen um die 13 Symmetriea
hsen eines W�urfels verstanden werden k�onnen.Man unters
heidet die Rotationsa
hsen na
h ihren Ordnungen und bezei
hnet sie gem�a�Abb. 1 bzw. Abb. 2 mit� x, y, z (C4-A
hsen)� O�, O�, O
, OÆ (C3-A
hsen)



2.1 Erinnerungen an Kapitel 0 35und� Oa, Ob, O
, Od, Oe, Of (C2-A
hsen) .Die 24 m�ogli
hen (vers
hiedenen) Rotationen werden dabei mit Cji (') gekennzei
hnet,wobei j 2 f4; 3; 2g, i 2 fx; y; z; �; : : : ; 
; a; : : : ; fg und ' 2 f��2 ;�2�3 ;��g passend zuw�ahlen sind.Da wir f�ur die Konstruktion von Darstellungen der Gruppe O �uber Wilson-Loops im fol-genden des �ofteren ihre Gruppenelemente explizit angeben m�ussen, wollen wir den S
hreib-aufwand ein wenig eins
hr�anken, indem wir f�ur ' > 0Cji (�') � C�1ji : (2.1)festlegen. Man bea
hte, da� wir die Winkelargumente ' zur eindeutigen Festlegung derRotationen von nun an ni
ht mehr ben�otigen, und die blo�e Indizierung jedes Elementsvon O dieses bereits eindeutig bestimmt; mit einer Au�nahme: Tats�a
hli
h ist f�ur Cji; j =4; i 2 fx; y; zg sowohl eine Rotation um ' = �2 als au
h eine um � erlaubt, die Bezei
hnungw�are demna
h ni
ht eindeutig. Da die Elemente C4i (�) ; i 2 fx; y; zg, eine eigene KlasseC24 bilden, wollen wir sie ab nun mit C2i; i 2 fx; y; zg, bezei
hnen1.Unter Verwendung der neuen Notation seien hier no
h einmal alle 24 Elemente der kubi-s
hen Gruppe klassenweise zusammengefa�t.Um die x-, y- und z-A
hse sind je vier Rotationen um jeweils ��2 , � und 2� m�ogli
h;letztere f�uhren f�ur alle drei A
hsen in die Identit�at und werden daher mit einem, n�amli
hdem neutralen Element von O� ididenti�ziert. Es bildet eine eigene Klasse E.Die �ubrigen Drehungen zerfallen in 2 konjugierte Klassen C4 und C24 . Ihre Elemente sind� C4x; C4y; C4z; C�14x ; C�14y ; C�14z f�ur die ��2 -Drehungenund� C2x; C2y; C2z f�ur die �-Drehungen.Um die Symmetriea
hsen O�; : : : ; OÆ sind je 3 Rotationen um jeweils �2�3 und 2� erlaubt.Letztere stimmen wieder mit id �uberein (s.o.), die a
ht restli
hen fa�t man in der KlasseC3 zusammen:� C3�; C3�; C3
 ; C3Æ; C�13� ; C�13� ; C�13
 ; C�13Æ .Die Drehungen um die A
hsen Oa; : : : ; Of haben als Rotationma�e � und 2�. UnterVerna
hl�assigung der 2�-Drehungen hat die f�unfte und letzte Klasse C2 se
hs Elemente.1Die Bezei
hnung ist deshalb so gew�ahlt, weil f�ur die Elemente der Klasse C24 die Koordinatena
hsenx; y; z die Ordnung 2 haben.
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hen Gruppe �uber Wilson-Loops� C2a; C2b; C2
; C2d; C2e; C2f .Zum S
hlu� eine weitere Erinnerung: Alle Rotationen werden aktiv ausgef�uhrt, d.h. dasKoordinatensystem bleibt starr und der W�urfel wird linksh�andig gedreht. Eine Rotati-on der Form (2.1) ist also gerade glei
hbedeutend mit einer re
htsh�andigen Drehung um+'. Man bea
hte, da� dur
h die Festlegung einer Orientierung der Symmetriea
hsen desW�urfels in Kapitel 0 {Unterabs
hnitt 0.3.1{ links- bzw. re
htsh�andige Drehungen wohlde-�niert sind.2.2 Allgemeine VorbereitungenWir wollen zun�a
hst eine einheitli
he und f�ur unsere Zwe
ke sinnvolle Notation f�ur Wilson-Loops einf�uhren und dana
h kurz das prinzipielle Vorgehen bei der Konstruktion einerDarstellung der kubis
hen Gruppe erl�autern. In den sp�ateren Abs
hnitten soll diese Dar-stellung dann f�ur je einen Wilson-Loop der L�ange 4, 6 und 8 in seine irreduziblen Anteilezerlegt werden.2.2.1 Wilson-Loops und ihre Bezei
hnungenEin Wilson-Loop der L�ange L ist dur
h Angabe eines L-Tupels(�1; : : : ; �L) mit LXi=1 �̂i = 0 (2.2)eindeutig festgelegt, wobei �̂i die Einheitsvektoren in Ri
htung der Gittera
hsen � = 1; 2; 3eines r�aumli
hen Gitter bezei
hnen. F�ur die drei Wilson-Loops der L�ange vier2
q qq q�� ��� = O1 q qq q����	 = O2 q qq q� = O3

2Im vorigen Kapitel wurden diese Operatoren als Plaquettenvariablen Up = Ux;�� eingef�uhrt, um dieei
hinvariante (Wilson-)Wirkung auf dem Gitter zu formulieren. Sie wurden dar�uberhinaus im Zusammen-hang mit Gittersimulationen zur Bere
hnung von Glueballmassen genannt (vgl. Unterabbs
hnitt 1.2.3).F�ur den Ort x an dem ein Wilson-Loop de�niert ist, wollen wir uns im folgenden ni
ht interessieren. Wiridenti�zieren daher Operatoren glei
her Gestalt an unters
hiedli
hem Ort, also Ux;�� �= Ux+x0;�� bzw.allgemein (�1; : : : ; �L)x �= (�1; : : : ; �L)x+x0 mit x; x0 2 �.
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hreibt man mit der A
hsenkonvention
-6���	1 23

demna
hO1 = (1; 2;�1;�2) ; O2 = (3; 1;�3;�1) und O3 = (2; 3;�2;�3) : (2.3)Entspre
hend ist z.B. mit (2; 2; 3;�2; 3;�2;�3;�3) der Wilson-Loop
q qq qq q qq�

gemeint. Der Umlaufsinn der Loops wird dabei dur
h kleine Pfeile auf den Links kenntli
hgema
ht.Wir sind bei unseren weiteren �Uberlegungen nur an Lage und Form der Wilson-Loopsinteressiert, diese bleiben aber bei zyklis
her Permutation der L-Tupel invariant. Manerh�alt also auf ganz nat�urli
he Weise eine �Aquivalenzrelation und fa�t �aquivalente Tupelzu �Aquivalenzklassen [�1; : : : ; �L℄ zusammen. Beispielsweise ist damit O3 = (2; 3;�2;�3)�aquivalent zum Tupel (�3; 2; 3;�2), und man s
hreibt f�ur den Operator O3 in eindeutigerWeise [2; 3;�2;�3℄.Es stellt si
h nun die Frage, wieviele sol
her �Aquivalenzklassen es gibt. Im Falle vonWilson-Loops der L�ange 4 ist die Anzahl no
h sehr �ubers
haubar. Es gibt von ihnenunter Verna
hl�assigung des Umlaufsinns genau drei, und man bezei
hnet sie allesamt alsEinfa
h-Plaquetten. Sie unters
heiden si
h ledigli
h dur
h ihre Ebene, in der sie liegen(und ni
ht in ihrer Form) und sind bereits oben als Operatoren O1; O2; O3 eingef�uhrtworden.Geht man zu Wilson-Loops der L�ange 6 �uber, so hat man im folgenden zwis
hen dreiFormen von Loops zu unters
heiden:
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hen Gruppe �uber Wilson-Loops1. Doppel-PlaquettenDie Doppel-Plaquetten liegen wie die Einfa
hplaquetten jeweils in der Koordinaten-ebene, es gibt sie in insgesamt se
hs vers
hieden Lagen:q q q qq�� ��� = O1 q q qq q��������	 = O2 q qqqqq � = O3
q qq q qq������� = O4 q qqq qq���

�	 = O5 q qq qq� = O6
2. Winkel-PlaquettenDie Winkel-Plaquetten haben die Form einer "Bu
hst�utze\, man kann sie auf zw�olfvers
hiedene Weisen auf ein dreidimensionales Gitter bringen:q qq qq q�� ��- � = O1 q qq q q q�� ��	� = O2 qq qq qq����6? = O3

q qq qq q�� ���- = O4 q q qqqq�� ��	� = O5 q qq qqq����6 ?= O6
q qq qq q�� ��- � = O7 q qq q qq����	 � = O8 q qq q qq���� 6? = O9
q q qqqq�� ���- = O10 q qq qq q�� ��	 � = O11 q qq q qq���� ?6 = O12 p



2.2 Allgemeine Vorbereitungen 393. verdrehte LoopsIhre Form ist weniger ans
hauli
h, ihre Lagen seien daher hier einfa
h angegeben:
q qqq qq�� ��	 = O1 qq qq qq�� ��? = O2 q qq q qq�� ��	 = O3 qq q qqq�� ��6 = O4 .Wilson-Loops der L�ange a
ht lassen si
h auf vielf�altige Weise konstruieren. Man unter-s
heidet dabei 18 Formen, die alle in [19℄ na
hges
hlagen werden k�onnen. Wir wollen andieser Stelle ni
ht n�aher auf sie eingehen, werden aber sp�ater auf einen speziellen Loopder L�ange a
ht beispielhaft zur�u
kgreifen und die von ihm erzeugte Darstellung genaueruntersu
hen.2.2.2 Orientierung und C-Parit�atNeben Lage und Form eines Wilson-Loops unters
heidet man zus�atzli
h nun au
h no
hderen Orientierung, d.h. die Ri
htung, in der dieser dur
hlaufen wird. Mit Hilfe des inKapitel 1 bereits eingef�uhrten Ladungskonjugationsoperators C kann man die Orientierungeines Loops �andern. Wir wollen im folgenden den Operator C als C-Parit�atsoperatorsbezei
hnen und de�nieren f�ur beliebige LoopsC [�1; �2; : : : ; �L℄ � [��L; : : : ;��2;��1℄ : (2.4)F�ur die Einfa
hplaquette O3 gilt damit beispielsweiseCO3 = C [2; 3;�2;�3℄ = [3; 2;�3;�2℄ : (2.5)De�niert man nun zwei Linearkombinationen von Wilson-Loops gem�a�[�1; : : : ; �L℄� � [�1; : : : ; �L℄� [��L; : : : ;��1℄ ; (2.6)so haben beide eindeutig festgelegte C-Parit�atseigenwerte �1, dennC [�1; : : : ; �L℄� = C� [�1; : : : ; �L℄� [��L; : : : ;��1℄� = � [�1; : : : ; �L℄� ; (2.7)und f�ur unser Beispiel O3 ist dannC q qq q� �= C  q qq q� � q qq q- ! = q qq q- � q qq q�



40 Darstellungen der kubis
hen Gruppe �uber Wilson-Loops
= (  q qq q� +�  q qq q� � q qq q- ! =

q qq q- ! = q qq q� +� q qq q� �oder k�urzer CO3� = �O3�: (2.8)Der Index � versteht si
h nunmehr von selbst.An dieser Stelle will i
h no
h anmerken, da� wir von nun an nur no
h Wilson-Loops mitwohlde�nierter C-Parit�at betra
hten wollen, also Linearkombinationen der Form (2.6).2.2.3 Konstruktion der DarstellungWir haben nun alle Vorbereitungen getro�en, um eine Darstellung der kubis
hen Grup-pe �uber Wilson-Loops zu konstruieren. Dabei verwenden wir folgende Vorgehensweise:Zun�a
hst wird das Transformationsverhalten von Wilson-Loops unter der kubis
hen Grup-pe untersu
ht, um dann ans
hlie�end daraus eine Darstellung {sie sei mit ~R bezei
hnet{von O zu generieren.TransformationsverhaltenBeginnen wir mit den denkbar einfa
hsten Wilson-Loops, den Einfa
h-Plaquetten
q qq q�� ��� = O1 q qq q����	 = O2 q qq q� = O3 ,bei denen wir eine Orientierung fest vorgeben wollen. Fa�t man sie als Seiten
�a
hen einesdreidimensionalen W�urfels auf und dreht diesen gem�a� der in Abs
hnitt 2.1 festgeleg-ten Rotationsma�e um eine seiner 13 Symmetriea
hsen, so werden alle seine Seiten
�a
henO1; O2; O3 in Seiten
�a
hen des nunmehr gedrehten W�urfels �uberf�uhrt. Wel
he Seiten
�a
hedabei in wel
he �ubergehen, h�angt einzig und allein von der gew�ahlten Drehung, d.h. vondem zugeh�origen Element der kubis
hen Gruppe O ab. Betra
htet seien einige Beispiele.Wenden wir z.B. auf O3 = [2; 3;�2;�3℄ eine linksh�andige 90Æ-Drehung um die y-A
hsean, so erh�alt man den Operator O1 = [1; 2;�1;�2℄ bzw. bildli
h
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q qq q� -C4y q qq q�� ��� .

F�uhren wir die Drehung dagegen re
htsh�andig (bzw. linksh�andig um �') aus, d.h. wendenwir das Element C�14y 2 O auf O3 an, so bekommt man als Ergebnis CO1, also
q qq q� -C�14y q qq q�� ��- .Das letzte Beispiel zeigt, da� si
h die Orientierung der Loops unter Transformationen derkubis
hen Gruppe umkehren kann, also ni
ht invariant ist. Man verwendet daher sinn-vollerweise die in (2.6) eingef�uhrten Linearkombinationen von Wilson-Loops. In unseremletzten Beispiel wird dann O3� mittels C�14y in CO1� = �O1� �uberf�uhrt, ans
hauli
h
q qq q� � -C�14y q qq q�� ��- �bzw. glei
h (!)
q qq q� � -C�14y �q qq q�� ��� � .F�ur das erste Beispiel ergibt si
h dann entspre
hend
q qq q� � -C4y q qq q�� ��� � .
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hen Gruppe �uber Wilson-LoopsAnaloge �Uberlegungen lassen si
h au
h f�ur die beiden verbleibenden Operatoren O1 undO2 und die 22 restli
hen Rotationen von O anstellen. Man hat also insgesamt 3� 24 = 72Drehungen auszuf�uhren und dabei no
h zwis
hen beiden C-Pari�aten �1 zu unters
heiden.Betra
hten wir als n�a
hstes Wilson-Loops der L�ange 6. Au
h sie lassen si
h als Ober-
�a
hensegmente eines W�urfels au�assen und ihr Transformationsverhalten l�a�t si
h v�olliganalog zu den Einfa
hplaquetten untersu
hen. Wi
htig dabei ist, da� eine Rotation ledig-li
h die Lage, ni
ht aber die Form einer Plaquette ver�andern kann, man hat also f�ur diedrei unters
hiedli
hen Formen der Loops jeweils einzeln zu transformieren. Entspre
hendesgilt selbstverst�andli
h au
h f�ur Loops der L�ange 8.DarstellungWir wollen nun aus dem Transformationsverhalten von Wilson-Loops unter der kubis
henGruppe eine Darstellung ableiten. Dazu de�nieren wir eine Darstellung ~R der kubis
henGruppe �uber Wilson-Loops dur
h~R(g) �[�1; : : : ; �L℄�� � [T (g) �̂1; : : : ; T (g) �̂L℄� (2.9)wobei g 2 O und T (g) die darstellende Matrix bzgl. der kanonis
hen Einheitsvektoren derVektordarstellung T1 zu g ist.Au
h hier dienen uns die Einfa
hplaquetten als Beispiel. Betra
hten wir no
h einmal denOperator O3 = [2; 3;�2;�3℄� und das Element C4y 2 O. Mit der zugeh�origen Darstel-lungsmatrix3 der dreidimensionalen irreduziblen Darstellung T1 von OT (C4y) = 0B� �111 1CA (2.10)(vgl. Anhang C.1) ergibt si
h aus (2.9) unter Benutzung der Invarianzeigens
haft der Tupelbez�ugli
h der zyklis
hen Permutiation ihrer Elemente~R (C4y) �[2; 3;�2;�3℄�� = �T (C4y) 2̂; : : : ; T (C4y) ��3̂���= [2;�1;�2; 1℄�= [1; 2;�1;�2℄�= O1 � : (2.11)(2.9) liefert uns also prinzipiell ni
ht Neues, sondern reproduziert gerade unsere intuitiveAns
hauung, da� C4y den Loop O3 gerade um 90Æ linksh�andig um die y-A
hse dreht.Entspre
hend re
hnet man f�ur die beiden anderen Operatoren O1 und O2~R (C4y) (O1�) = ~R (C4y) �[1; 2;�1;�2℄�� (2.12)= CO3� ; (2.13)bzw. ~R (C4y) (O2 �) = O2� (2.14)3Die unbesetzten Felder der Darstellungsmatrix sind mit Nullen zu belegen.
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h.Die Darstellung ~R ist in diesem Fall dreidimensional und kann f�ur jedes g 2 O dur
h ihreDarstellungsmatrix D ~R(g) in der geordneten Basis fO1�; O2 �; O3 �g bes
hrieben werden.Sie ergibt si
h f�ur fest vorgew�ahlte C-Parit�at +1 zu4D ~R�+ (C4y) = 0B� 111 1CA (2.15)bzw. f�ur negative C-Parit�at zuD ~R�� (C4y) = 0B� 11�1 1CA : (2.16)Die Vorgehensweise f�ur beliebige Wilson-Loops fest vorgegebener L�ange und Form istnun analog, ihr Transformationsverhalten ist dur
h (2.9) bestimmt und die Darstellungs-matrizen D ~R(g) lassen si
h dann lei
ht bzgl. einer Basis aus Loop-Operatoren angeben.F�ur Wilson-Loops der L�ange 6 ist ihre Dimension bei �xierter C-Pari�at f�ur die Doppel-Plaquetten gerade d = 6, f�ur die Winkel-Plaquetten ergibt si
h d = 12 und f�ur die verdreh-ten Plaquetten d = 4. Zum S
hlu� no
h zwei Bemerkungen: Wie oben bereits angemerkt,l�a�t si
h das Transformationsverhalten der Loops unter der kubis
hen Gruppe au
h geome-tris
h (d.h. ans
hauli
h) dur
h entspre
hendes Rotieren der Loops ermitteln, die Kenntnisder Drehmatrizen M(g) aus (2.9) ist daf�ur ni
ht explizit erforderli
h, trotzdem ist Formel(2.9) ni
hts anderes als die Ausf�uhrung dieser Drehungen. Desweiteren k�onnen alle Dar-stellungsmatrizenM(g) der dreidimensionalen Vektordarstellung T1 der kubis
hen Gruppeunter Anhang C.1 na
hges
hlagen werden.2.2.4 Weiteres VorgehenDie soeben konstruierte Darstellung ~R wird im allgemeinen ni
ht irreduzibel sein, undihr zugrundeliegender Vektorraum kann somit invariante Unterr�aume besitzen, die si
hwie gewisse irreduzible Darstellungen der kubis
hen Gruppe transformieren. Mit Hilfe derDarstellungsmatrizen D ~R(g) l�a�t si
h die gewonnene Darstellung ~R in ihre irreduziblenAnteile zerlegen und ans
hlie�end eine zugeh�orige Orthonormalbasis aus Loop-Operatorenbestimmen. Dies soll nun exemplaris
h f�ur je einen Wilson-Loop der L�ange 4, 6 und 8dur
hgef�uhrt werden. Dabei werden wir im ersten Fall re
ht ausf�uhrli
h vorgehen und imweiteren Verlauf der �Ubersi
htli
hkeit halber auf einige Zwis
hens
hritte verzi
hten. Mitdem dritten Beispiel (ein Wilson-Loop der L�ange 8) werden wir unseren Bli
k au
h aufdas Transformationsverhalten von Loops unter der vollen kubis
hen Gruppe Oh lenken,was dann die Einf�uhrung des Begri�s der P-Parit�at n�otig ma
hen wird. Zun�a
hst aberbetra
hten wir das denkbar einfa
hste Beispiel, die Einfa
h-Plaquetten.4Man hat die Darstellungsmatrizen D ~R na
h der unters
hiedli
hen Wahl von C zu unters
heiden. Dieswollen wir dur
h ein � oberhalb von ~R kenntli
h ma
hen. Falls keine Verwe
hslungsgefahr besteht, s
hrei-ben wir allerdings na
h wie vor ~R. Der � vor dem � ist dabei f�ur eine weitere diskrete Symmetrietransfor-mation reserviert (vgl. n�a
hster Abs
hnitt).
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hen Gruppe �uber Wilson-Loops2.3 Wilson-Loops der L�ange 4: Erstes Beispiel2.3.1 TransformationsverhaltenDie Wilson-Loops der L�ange 4 dienten uns bereits als Beispiel, insbesondere in Abs
hnitt2.2.3, in dem ihr Transformationsverhalten unter Rotationen der kubis
hen Gruppe an-hand von zwei ausgew�ahlten Beispielen erl�autert wurde. Man unters
hied dabei zwis
henOperatoren mit positiver und negativer C-Pari�at, erhielt somit insgesamt 2� 3 = 6 Ope-ratoren Oi�; i 2 f1; 2; 3g, und hat 2� 3� 24 = 144 Drehungen auszuf�uhren.Der na
hfolgenden Tabelle entnimmt man, in wel
he Loop-Operatoren die Elemente vonO die Operatoren O1�; O2 �; O3 � �uberf�uhren. Die Drehungen sind dabei na
h ihren kon-jugierten Klassen geordnet.� Klasse EId: O1 � 7�! O1�O2 � 7�! O2�O3 � 7�! O3�� Klasse C2C2a: C2b: C2
:O1 � 7�! CO1� O1� 7�! CO1� O1� 7�! O3�O2 � 7�! O3� O2� 7�! CO3� O2� 7�! CO2�O3 � 7�! O2� O3� 7�! CO2� O3� 7�! O1�C2d: C2e: C2f :O1 � 7�! CO3� O1� 7�! O2 � O1� 7�! CO2�O2 � 7�! CO2� O2� 7�! O1 � O2� 7�! CO1�O3 � 7�! CO1� O3� 7�! CO3� O3� 7�! CO3�� Klasse C3C3�: C3�: C3
 :O1 � 7�! CO2� O1� 7�! CO2� O1� 7�! O2�O2 � 7�! O3� O2� 7�! CO3� O2� 7�! CO3�O3 � 7�! CO1� O3� 7�! O1 � O3� 7�! CO1�C3Æ: C�13� : C�13� :O1 � 7�! O2� O1� 7�! CO3� O1� 7�! O3�O2 � 7�! O3� O2� 7�! CO1� O2� 7�! CO1�



2.3 Wilson-Loops der L�ange 4: Erstes Beispiel 45O3 � 7�! O1� O3� 7�! O2 � O3� 7�! CO2�C�13
 : C�13Æ :O1 � 7�! CO3� O1� 7�! O3 �O2 � 7�! O1� O2� 7�! O1 �O3 � 7�! CO2� O3� 7�! O2 �� Klasse C4C4x: C4y: C4z:O1 � 7�! O2� O1� 7�! CO3� O1� 7�! O1�O2 � 7�! CO1� O2� 7�! O2 � O2� 7�! O3�O3 � 7�! O3� O3� 7�! O1 � O3� 7�! CO2�C�14x : C�14y : C�14z :O1 � 7�! CO2� O1� 7�! O3 � O1� 7�! O1�O2 � 7�! O1� O2� 7�! O2 � O2� 7�! CO3�O3 � 7�! O3� O3� 7�! CO1� O3� 7�! O2�� Klasse C24C2x: C2y: C2z:O1 � 7�! CO1� O1� 7�! CO1� O1� 7�! O1�O2 � 7�! CO2� O2� 7�! O2 � O2� 7�! CO2�O3 � 7�! O3� O3� 7�! CO3� O3� 7�! CO3� :Man bea
hte dabei zus�atzli
h die Regel COi� = �Oi�; i 2 f1; 2; 3g.Die Ergebnisse f�ur C4y und C�14y sind uns im �ubrigen bereits aus Abs
hnitt 2.2.3 bekannt.2.3.2 Darstellungsmatrizen und ihre irreduzible ZerlegungDie Konstruktion der Darstellungsmatrizen D ~R erfolgt jetzt wie in 2.2.3 angegeben. IhreEintr�age bestehen aus jeweils einer 1 bzw. �1 in jeder Spalte und Zeile und Nullen sonst.F�ur die Transformationen C4y und C�14y ergibt si
h� C-Parit�at = +1:D ~R�+ (C4y) = 0B� 111 1CA D ~R�+ �C�14y � = 0B� 111 1CA
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hen Gruppe �uber Wilson-Loops� C-Parit�at = �1:D ~R�� (C4y) = 0B� 11�1 1CA D ~R�� �C�14y � = 0B� �111 1CA :Alle 2 � 24 = 48 Darstellungsmatrizen D ~R k�onnen im Anhang C.2 klassenweise na
hge-s
hlagen werden.Die Zerlegung der Darstellung ~R in ihre irreduziblen Anteile gelingt mit der Formel (12)aus Kapitel 0. Sie lautet in geeigneter Formulierunga� = 1nGXi ni �� (Ci)� ~R (Ci) ; (2.17)wobei hier speziell (�� (Ci))� = �� (Ci) 2 R ist, wie ein Bli
k in die Charaktertabelle vonO aus Unterabs
hnitt 0.3.3 zeigt.Die Summe erstre
kt si
h �uber alle f�unf Klassen von O. Da der Charakter einer Darstellungeine Klassenfunktion ist, gen�ugt es, aus jeder Klasse einen (beliebigen) Repr�asentantenD ~R(g) von ~R auszuw�ahlen und seine Spur zu bilden. Diese ergibt si
h f�ur �xierte positiveC-Parit�at f�ur die Klassen E, C2, C3, C4 und C24 zu 3, 1, 0, 1 und 3 (bzw. zu 3, -1, 0, 1und -1 f�ur C-Parit�at = �1). Man �ndet sie aber au
h in Anhang C.2. Die M�a
htigkeit derKlassen und ihre irreduziblen Charaktere �� (Ci) liest man aus der oben bereits erw�ahntenCharaktertabelle ab, nG ist glei
h 24.Die Anwendung von (2.17) auf die Darstellung der Einfa
h-Plaquetten ergibt also:erster Fall: C = +1aA1 = 124 (1 � 1 � 3 + 6 � 1 � 1 + 8 � 1 � 0 + 6 � 1 � 1 + 3 � 1 � 3) = 1aA2 = 124 (1 � 1 � 3 + 6 � (�1) � 1 + 8 � 1 � 0 + 6 � (�1) � 1 + 3 � 1 � 3) = 0aE = 124 (1 � 2 � 3 + 6 � 0 � 1 + 8 � (�1) � 0 + 6 � 0 � 1 + 3 � 2 � 3) = 1aT1 = 124 (1 � 3 � 3 + 6 � (�1) � 1 + 8 � 0 � 0 + 6 � 1 � 1 + 3 � (�1) � 3) = 0aT2 = 124 (1 � 3 � 3 + 6 � 1 � 1 + 8 � 0 � 0 + 6 � (�1) � 1 + 3 � (�1) � 3) = 0 :F�ur die Darstellung ~R s
hreibt man also gem�a� Glei
hung (5) aus Kapitel 0~R = A1 �E (2.18)oder anders ausgedr�u
kt: Der dreidimensionale Darstellungsraum besitzt zwei invarianteUnterr�aume, die si
h na
h den irreduziblen Darstellungen A1 und E der kubis
hen Gruppetransformieren.



2.3 Wilson-Loops der L�ange 4: Erstes Beispiel 47zweiter Fall: C = �1Man erh�alt:aA1 = 124 (1 � 1 � 3 + 6 � 1 � (�1) + 8 � 1 � 0 + 6 � 1 � 1 + 3 � 1 � (�1)) = 0aA2 = 124 (1 � 1 � 3 + 6 � (�1) � (�1) + 8 � 1 � 0 + 6 � (�1) � 1 + 3 � 1 � (�1)) = 0aE = 124 (1 � 2 � 3 + 6 � 0 � (�1) + 8 � (�1) � 0 + 6 � 0 � 1 + 3 � 2 � (�1)) = 0aT1 = 124 (1 � 3 � 3 + 6 � (�1) � (�1) + 8 � 0 � 0 + 6 � 1 � 1 + 3 � (�1) � (�1)) = 1aT2 = 124 (1 � 3 � 3 + 6 � 1 � (�1) + 8 � 0 � 0 + 6 � (�1) � 1 + 3 � (�1) � (�1)) = 0 ;also ~R = T1 ; (2.19)d.h. ~R ist irreduzibel, und der Darstellungsraum transformiert si
h na
h der Vektordar-stellung T1.Das Ergebnis ist no
h einmal in einer Tabelle zusammengefa�t:irred. Darst. von O A1 A2 E T1 T2 A1 A2 E T1 T2Dim. der Darstellung 1 1 2 3 3 1 1 2 3 3Dimension von ~R: C = +1 C = �13 1 0 1 0 0 0 0 0 1 02.3.3 Konstruktion einer OrthonormalbasisAls letzten S
hritt wollen wir nun f�ur jeden invarianten Teilraum des dreidimensiona-len Darstellungsraums eine Orthonormalbasis aus Loop-Operatoren bestimmen. Die Kon-struktion sei in der Terminologie der Darstellungsmatrizen formuliert. Sie beruht auf einerdirektenFolgerung des Lemmas von S
hur: Sei C eine diagonalisierbare Matrix, die mit allenDarstellungsmatrizen D ~R von ~R kommutiert, d.h. CD ~R(g) = D ~R(g)C f�ur alle g 2 O,und A die Matrix, die C diagonalisiert, also ACA�1 � �C . Dann reduziert A die Darstel-lung ~R (ni
ht notwendigerweise vollst�andig) in dem Sinne, da� die DarstellungsmatrizenAD ~R(g)A�1 in Blo
kdiagonalgestalt zerfallen, und man im n�a
hsten S
hritt mit der "re-duzierten\ Darstellung AD ~RA�1 = �AD ~R(g)A�1 j g 2 G	 (2.20)fortfahren kann. Auf diese Weise kann f�ur jeden irreduziblen Teilraum des Darstellungs-raumes von ~R iterativ eine ONB explizit angegeben werden.



48 Darstellungen der kubis
hen Gruppe �uber Wilson-LoopsDie Matrix C ergibt si
h, indem man alle Matrizen einer konjugierten Klasse addiert5.Beweis: Ein Beweis der obigen Aussage �ndet si
h in [22℄ bzw. [23℄.Au
h hier unters
heiden wir wieder die F�alle positiver und negativer C-Parit�at:erster Fall: C = +1Addiert man die Darstellungsmatrizen D ~R der Einfa
h-Plaquetten klassenweise auf, soergibt si
h:C (E) = 0B� 1 1 1 1CA C (C2) = 0B� 2 2 22 2 22 2 2 1CAC (C3) = 0B� 0 4 44 0 44 4 0 1CA C (C4) = 0B� 2 2 22 2 22 2 2 1CAC �C24� = 0B� 3 3 3 1CA :
Man sieht, da� nur C (C2) ; C (C4) bzw. C (C3) diagonalisiert werden m�ussen. F�ur C (C2)und C (C4) liest man einen Eigenvektor direkt ab, n�amli
h (1,1,1). Er spannt einen eindi-mensionalen invarianten Teilraum auf, der zugeh�orige Eigenwert ist o�ensi
htli
h 6. Dasdazu orthogonale Komplement wird von den Vektoren (-2,1,1) und (0,1,-1) erzeugt, undist, wie man s
hnell na
hre
hnet, ebenfalls Eigenraum mit dem Eigenwert 0. Die Zerlegungist demna
h abges
hlossen. Die Matrix A�1 ergibt si
h also zuA�1 = 0B� 1 �2 01 1 11 1 �1 1CA ; (2.21)und damit ist A = 16 0B� 2 2 2�2 1 10 3 �3 1CA : (2.22)5Die Begr�undung liegt in der Eigens
haft der Konjugationsklasse verborgen. Sei fk1; : : : ; kmg die ge-ordnete Menge aller zueinander konjugierten Elemente einer Gruppe G, d.h. kj = gkig�1 (�) f�ur ein g 2 Gund beliebige ki; kj aus der Menge, und bilden diese die Konjugationsklasse �. Betra
htet man nun dieMenge der Elemente fgk1g�1; gk2g�1; : : : ; gkmg�1g mit g 2 G, so bildet diese na
h (�) und modulo Per-mutationen ebenfalls die Klasse �.Soll nun C = D ~R(k1) + � � � + D ~R(km) mit D ~R(gi) vertaus
hen, dann s
hreibe C als Summe vonD ~R(gi)D ~R(k1)D ~R(g�1i ); : : : ; D ~R(gi)D ~R(km)D ~R(g�1i ) und bea
hte D ~R(g�1i ) = D�1~R (gi) : 2



2.3 Wilson-Loops der L�ange 4: Erstes Beispiel 49Selbstverst�andli
h zerf�allt C (C3) in die glei
hen invarianten Teilr�aume. Die Eigenwertesind hier 8 und -4.C l�a�t si
h somit auf folgende Diagonalgestalt bringen:�C(C2) =0B� 6 0 0 1CA bzw. �C(C3) =0B� 8 �4 �4 1CA : (2.23)Das Ergebnis stimmt mit unseren bisherigen �Uberlegungen �uberein, denn wir wu�ten be-reits, da� die Darstellung von ~R in eine eindimensionale und eine zweidimensionale irredu-zible Darstellung zerf�allt, n�amli
h in A1 und E. Wir sind aber jetzt in der Lage, zus�atzli
heine ONB aus Loop-Operatoren anzugeben, wobei die KoeÆzienten der Basisvektoren dieSpalten von A�1 sind (vgl. a. Ende Kapitel 1):Darstellung ~R Linearkombinationenvon O der Einfa
h-PlaquettenA1 O1 + +O2 + +O3 +E �2O1 + +O2 + +O3 + ,O2 + �O3 +Zum S
hlu� sei angemerkt, da� auf Normierungskonstanten der �Ubersi
htli
hkeit halberverzi
htet wurde.zweiter Fall: C = �1F�ur negative C-Parit�at ist ein 3-dimensionaler Eigenraum zu erwarten. Er transformiertsi
h unter T1. Na
h klassenweiser Summation der Darstellungsmatrizen erh�alt man:C (E) = 0B� 1 1 1 1CA C (C2) = 0B� �2 �2 �2 1CAC (C3) = 0B� 0 0 0 1CA C (C4) = 0B� 2 2 2 1CAC �C24� = 0B� �1 �1 �1 1CA :Alle C-Matrizen haben bereits Diagonalgestalt. Die Zerlegung von ~R in invariante Teilr�aumeist somit abges
hlossen. Dieses Ergebnis verwundert ni
ht, da wir ~R bereits als irreduzibelbestimmt haben. Als ONB-Basis bietet si
h demna
h an (vgl. a. Kapitel 1):
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hen Gruppe �uber Wilson-LoopsDarstellung ~R Linearkombinationenvon O der Einfa
h-PlaquettenT1 O1 + ;O2 + ;O3 +2.4 Wilson-Loops der L�ange 6: Zweites BeispielWir wollen nun Wilson-Loops der L�ange 6 betra
hten. Wie bereits oben erw�ahnt, unter-s
heidet man drei vers
hiedene Formen von Loop-Operatoren:� Doppel-Plaquetten,� Winkel-Plaquetten,� verdrehte Loops.Letztere haben die Gestalt:q qqq qq�� ��	 = O1 qq qq qq�� ��? = O2 q qq q qq�� ��	 = O3 qq q qqq�� ��6 = O4 .Ihre Darstellung ~R ist aufgrund der Anzahl der Operatoren 4-dimensional und soll in die-sem Abs
hnitt exemplaris
h f�ur die Wilson-Loops der L�ange 6 explizit untersu
ht werden.Unsere Vorgehensweise wird dabei analog zum vorherigen Abs
hnitt verlaufen.2.4.1 Transformationsverhalten der verdrehten LoopsIm ersten S
hritt m�ussen wir die Darstellungsmatrizen D ~R(g) f�ur die verdrehten Plaquet-ten explizit ausre
hnen. Dazu untersu
hen wir zun�a
hst das Transformationsverhalten derOperatoren O1�; : : : ; O4 � unter der kubis
hen Gruppe. Man de�niertO1� = [2; 3;�1;�2;�3; 1℄� ; O2 � = [2; 3; 1;�2;�3;�1℄�O3� = [1; 2;�3;�1;�2; 3℄� ; O4 � = [3;�1; 2;�3; 1;�2℄� : (2.24)Nun kann man mit Hilfe von (2.9) und den Drehmatrizen aus [C.1℄ jeden Loop-Operatorunter der kubis
hen Gruppe transformieren, indem man die Einheitsvektoren mit derjeweiligen Drehmatrix multipliziert oder indem man die Drehung des gesamten Operators"in Gedanken\ direkt ausf�uhrt. Wir geben hier das vollst�andige Ergebnis an. Die 2 �4 � 24 = 192 Drehungen der verdrehten Loops Oi�; i 2 f1; : : : ; 4g; sind na
h ihrenkonjugierten Klassen geordnet:



2.4 Wilson-Loops der L�ange 6: Zweites Beispiel 51� Klasse E:Id O1 � 7�! O1�O2 � 7�! O2�O3 � 7�! O3�O4 � 7�! O4�� Klasse C2:C2a C2b C2
O1 � 7�! CO1� O1� 7�! CO3� O1� 7�! CO4�O2 � 7�! CO4� O2� 7�! CO2� O2� 7�! CO2�O3 � 7�! CO3� O3� 7�! CO1� O3� 7�! CO3�O4 � 7�! CO2� O4� 7�! CO4� O4� 7�! CO1�C2d C2e C2fO1 � 7�! CO1� O1� 7�! CO1� O1� 7�! CO2�O2 � 7�! CO3� O2� 7�! CO2� O2� 7�! CO1�O3 � 7�! CO2� O3� 7�! CO4� O3� 7�! CO3�O4 � 7�! CO4� O4� 7�! CO3� O4� 7�! CO4�� Klasse C3:C3� C3� C3
O1 � 7�! O4� O1� 7�! O1 � O1� 7�! O2�O2 � 7�! O2� O2� 7�! O3 � O2� 7�! O4�O3 � 7�! O1� O3� 7�! O4 � O3� 7�! O3�O4 � 7�! O3� O4� 7�! O2 � O4� 7�! O1�C3Æ C�13� C�13�O1 � 7�! O3� O1� 7�! O3 � O1� 7�! O1�O2 � 7�! O1� O2� 7�! O2 � O2� 7�! O4�O3 � 7�! O2� O3� 7�! O4 � O3� 7�! O2�O4 � 7�! O4� O4� 7�! O1 � O4� 7�! O3�C�13
 C�13ÆO1 � 7�! O4� O1� 7�! O2 �O2 � 7�! O1� O2� 7�! O3 �O3 � 7�! O3� O3� 7�! O1 �O4 � 7�! O2� O4� 7�! O4 �



52 Darstellungen der kubis
hen Gruppe �uber Wilson-Loops� Klasse C4:C4x C4y C4zO1 � 7�! CO4� O1� 7�! CO2� O1� 7�! CO2�O2 � 7�! CO3� O2� 7�! CO4� O2� 7�! CO3�O3 � 7�! CO1� O3� 7�! CO1� O3� 7�! CO4�O4 � 7�! CO2� O4� 7�! CO3� O4� 7�! CO1�C�14x C�14y C�14zO1 � 7�! CO3� O1� 7�! CO3� O1� 7�! CO4�O2 � 7�! CO4� O2� 7�! CO1� O2� 7�! CO1�O3 � 7�! CO2� O3� 7�! CO4� O3� 7�! CO2�O4 � 7�! CO1� O4� 7�! CO2� O4� 7�! CO3�� Klasse C24 :C2x C2y C2zO1 � 7�! O2� O1� 7�! O4 � O1� 7�! O3�O2 � 7�! O1� O2� 7�! O3 � O2� 7�! O4�O3 � 7�! O4� O3� 7�! O2 � O3� 7�! O1�O4 � 7�! O3� O4� 7�! O1 � O4� 7�! O2� :Man bea
hte wieder COi� = �Oi�; i 2 f1; : : : ; 4g.Die resultierenden Darstellungsmatrizen D ~R(g) werden bez�ugli
h der geordneten BasisfO1 +; : : : ; O4 +g (bzw. fO1 �; : : : ; O4�g) angegeben und sind im Anhang C.3 zu �nden.Ein Repr�asentant pro Klasse sei au
h hier angegeben, man ersetzte das C in den Matrizendur
h �1 je na
h Wahl der C-Parit�at.Klasse: E Klasse: C2M (id) = 0BBB� 1 1 1 1 1CCCA M (C2a) = 0BBB� C CCC 1CCCAKlasse: C3 Klasse: C4M (C3�) = 0BBB� 11 11 1CCCA M (C4x) =0BBB� C CCC 1CCCAKlasse: C24



2.4 Wilson-Loops der L�ange 6: Zweites Beispiel 53M (C2x) = 0BBB� 11 11 1CCCA :
2.4.2 Irreduzible Zerlegung der DarstellungsmatrizenIm n�a
hsten S
hritt ist nun der irreduzible Inhalt der Darstellung ~R zu bestimmen. Hierhilft uns ein weiteres Mal die Formel (2.17). Die M�a
htigkeit der konjugierten Klassen der24-elementigen Gruppe O kann mit 1, 6, 8, 6 und 3 aus 2.3.2 �ubernommen werden. DieSpur der Darstellungsmatrizen ist an den Repr�asentanten einer jeden Klasse abzulesenund hier f�ur C = +1 dur
h 4, 2, 1, 0 und 0 (bzw. 4, -2, 1, 0, 0 f�ur negative C-Parit�at)gegeben. Die Charaktere der irreduziblen Darstellungen der Gruppe O sind bereits ausunserem ersten Beispiel bekannt. Auf die Ausf�uhrung der Re
hnung sei an dieser Stelleverzi
htet. Als Ergebnis �ndet man:irred. Darst. von O A1 A2 E T1 T2 A1 A2 E T1 T2Dim. der Darstellung 1 1 2 3 3 1 1 2 3 3Dimension von ~R: C = +1 C = �14Anzahl der irred. Faktoren 1 0 0 0 1 0 1 0 1 02.4.3 Konstruktion einer OrthonormalbasisDer letzte S
hritt liefert uns nunmehr f�ur jeden irreduziblen Anteil von ~R eine Orthonor-malbasis aus Loop-Operatoren. Addiert man die Matrizen ~R(g) jeder Klasse auf, so ergibtsi
h imersten Fall: C = +1C (E) = 0BBB� 1 1 1 1 1CCCA C (C2) = 0BBB� 3 1 1 11 3 1 11 1 3 11 1 1 3 1CCCAC (C3) = 0BBB� 2 2 2 22 2 2 22 2 2 22 2 2 2 1CCCA C (C4) = 0BBB� 0 2 2 22 0 2 22 2 0 22 2 2 0 1CCCA
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hen Gruppe �uber Wilson-LoopsC �C24� = 0BBB� 0 1 1 11 0 1 11 1 0 11 1 1 0 1CCCA :
An C (C3) liest man sofort einen Eigenvektor ab, es ist (1,1,1,1), der zugeh�orige Eigenwertist 8. Dazu orthogonal ist der Raum, der von den Vektoren (1,-1,1,-1), (-1,1,1,-1) und(1,1,-1,-1) aufgespannt wird. Da ~R = A1 � T2 und T2 dreidimensional sind, mu� dasorthogonale Komplement bereits ein Eigenraum sein. Dies ist in der Tat der Fall. Alledrei Vektoren sind Eigenvektoren zum glei
hen Eigenwert 0, sie spannen also einen ni
htweiter zerlegbaren invarianten Teilraum auf. Wie man lei
ht na
hpr�uft, liefern die MatrizenC (C2), C (C4) und C �C23� selbstverst�andli
h das glei
he Resultat. Die Orthonormalbasender invarianten Teilr�aume von ~R lauten damit f�ur positive C-Parit�atDarstellung ~R Linearkombinationenvon O der verdrehten LoopsA1 O1 + +O2 + +O3 + +O4 +T2 O1 + �O2 + +O3 + �O4 + ,�O1 + +O2 + +O3 + �O4 + ,O1 + +O2 + �O3 + �O4 +zweiter Fall: C = �1C (E) = 0BBB� 1 1 1 1 1CCCA C (C2) = 0BBB� �3 �1 �1 �1�1 �3 �1 �1�1 �1 �3 �1�1 �1 �1 �3 1CCCAC (C3) = 0BBB� 2 2 2 22 2 2 22 2 2 22 2 2 2 1CCCA C (C4) = 0BBB� 0 �2 �2 �2�2 0 �2 �2�2 �2 0 �2�2 �2 �2 0 1CCCAC �C24� = 0BBB� 0 1 1 11 0 1 11 1 0 11 1 1 0 1CCCA :
Die Matrizen sind mit denen aus dem ersten Fall identis
h bzw. unters
heiden si
h ledigli
hdur
h ein Minuszei
hen in allen Eintr�agen. Eigenr�aume und Eigenvektoren �andern si
hdamit ni
ht, und man erh�alt analog



2.5 Spiegelung und P -Parit�at 55Darstellung ~R Linearkombinationenvon O der verdrehten LoopsA2 O1� +O2� +O3� +O4�T1 O1� �O2� +O3� �O4� ,�O1� +O2� +O3� �O4� ,O1� +O2� �O3� �O4�2.5 Spiegelung und P -Parit�atAn dieser Stelle s
heint es mir besonders g�unstig, auf das Transformationsverhalten vonLoops unter der vollen kubis
hen Gruppe Oh einzugehen und dabei einen weiteren Pa-rit�atsbegri� einzuf�uhren. In unseren beiden bisherigen Beispielen haben wir nur Trans-formationen unter der kubis
hen Gruppe O betra
htet, insbesondere erfolgten alle Un-tersu
hungen in 2.3 und 2.4 unter Verwendung dieser im Verglei
h zur Gruppe Oh etwaskleineren Gruppe. Wir wollen ab hier aber au
h Transformationen unter der vollen kubi-s
hen Gruppe zulassen und haben dabei u.a. zu kl�aren, ob si
h f�ur die Darstellungen ~Rder bisher behandelten Beispiele etwas Wesentli
hes �andern wird.Wie in Unterabs
hnitt 0.3.4 bereits erw�ahnt, s
hlie�t die Gruppe Oh zus�atzli
h zu denRotationen der kubis
hen Gruppe no
h eine optionale Punktspiegelung am Koordina-tenursprung mit ein. Eine sol
he Inversion I wird bei beliebigen Wilson-Loops dur
h denParit�atsoperator P vermittelt. Man de�niert ihn dur
hP [�1; �2; : : : ; �L℄ � [��1;��2; : : : ;��L℄ : (2.25)Er �uberf�uhrt gerade den vollst�andigen Loop in sein Spiegelbild (Punktspiegelung!)6, alsoz.B. P q qq qq q qq� = qqq qq q qq�
bzw. gem�a� (2.25)P [2; 2; 3;�2; 3;�2;�3;�3℄ = [�2;�2;�3; 2;�3; 2; 3; 3℄ : (2.26)Man unters
heidet nun zwis
hen Loops, die unter der P -Parit�atsoperation invariant blei-ben und sol
hen, die es ni
ht tun. Ist (2.26) f�ur letztere ein Beispiel, so sind die Operatoren6Man bea
hte, da� wir au
h hier Translationen ni
ht ber�u
ksi
htigen wollen. Eine PlaquettenvariableUp w�urde beispielsweise bei Spiegelung am Gitterpunkt x gem�a� P Ux;�� = Ux;��;�� in eine Plaquette mitglei
her Orientierung �uberf�uhrt, allerdings (drei) neue Gitterpunkte besetzten.
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hen Gruppe �uber Wilson-Loopsaus Abs
hnitt 2.3 dagegen spiegelsymmetris
h, z.B. gilt f�ur den Operator O3 unter Aus-nutzung der zyklis
hen Permutation der L-TupelPO3� = P q qq q� �= P [2; 3;�2;�3℄� = [�2;�3; 2; 3℄� = q qq q� �= O3� :Ebenso verh�alt es si
h bei den Operatoren aus Abs
hnitt 2.4. Beispielsweise ergibt si
hf�ur den Operator O2�PO2� = P qq qq qq�� ��? �= P [2; 3; 1; : : : ;�1℄� = [�2;�3; : : : ; 1℄� = qq qq qq�� ��? � :P -invariante Operatoren haben stets positive P -Parit�atseigenwerte (P = +1) und trans-formieren si
h demna
h unter der vollen kubis
hen Gruppe Oh genauso, wie unter derkubis
hen Gruppe O. Die aus ihnen erzeugten Darstellungen bestehen auss
hlie�li
h ausden f�unf irreduziblen Darstellungen A+1 ; A+2 ; E+; T+1 ; T+2 (vgl. Charaktertabelle von Oh).Irreduzible Anteile mit negativer P -Parit�at (z.B. T�1 ) k�onnen ni
ht vorkommen.Die in Abs
hnitt 2.3 und 2.4 betra
hteten Operatoren sind alle spiegelinvariant. Die dortkonstruierten Darstellungen lassen si
h also lei
ht auf den Fall der vollen kubis
hen Grup-pe �ubertragen, man hat ledigli
h die irreduziblen Anteile mit einem (zus�atzli
hen) + zuindizieren, also ist z.B. in Abs
hnitt 2.3 f�ur den Fall positiver C-Parit�at die erzeugte Dar-stellung ~RP = A+1 � E+ anstatt ~R = A1 � E f�ur die kubis
he Gruppe. Ber�u
ktsi
htigtman zudem no
h die Indizierung f�ur die gew�ahlte C-Parit�at, so s
hreibt man vollst�andig~RPC = A++1 �E++. Das Auslassungszei
hen � ist also nun �uber
�ussig geworden.F�ur Operatoren, die keine P -Invarianz aufweisen, bildet man analog zum Fall des C-Parit�atsoperators die Linearkombinationen[�1; : : : ; �L℄� � [�1; : : : ; �L℄� [��1; � � � ;��L℄ : (2.27)Diese haben je na
h Wahl des Vorzei
hens eindeutig bestimmte P -Parit�atseigenwerte (P =+1 bzw. P = �1).Zur Verdeutli
hung sei der Operator aus (2.26) no
h etwas genauer betra
htet. Dar�uberhinaus werden uns dann im n�a
hsten Abs
hnitt Wilson-Loops dieser Gestalt als Beispiel f�urdas Transformationsverhalten P -varianter Operatoren unter der vollen kubis
hen GruppeOh und der daraus generierten Darstellung dienen. Zuvor aber no
h eine Notationsverein-barung: Der Loop-Operator (2.26) hat die Form eines "gestutzten\ L und soll im folgendendur
h eine Einfa
h-Plaquette mit einem an einer E
ke be�ndli
hen ni
ht-ausgef�ullten Kreiskenntli
h gema
ht werden. Der Kreisring markiert dabei die beiden l�angeren Kanten desLoops. Graphis
h liest si
h die Abk�urzung f�ur (2.26) so:
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q qq qq q qq�:=q qqe � und qqq qq q qq�:=q qeq � .Die Anwendung des Parit�atsoperators P ergibt f�ur (2.26) somitP e qq q� �= P  e qq q� � q qq e� ! = q qq e� � e qq q�

= (  e qq q� +�  e qq q� � q qq e� ! =
q qq e� ! = e qq q� +

� e qq q� � .Das + kennzei
hnet demna
h Operatoren mit positiver P -Parit�at, das � entspre
hendOperatoren negativer P -Parit�at.

2.6 Wilson-Loops der L�ange 8: Drittes BeispielInsgesamt lassen si
h nun unter Ber�u
ksi
htigung der Tatsa
he, da� si
h in allen dreiKoordinatenebenen jeweils insgesamt vier einzelnde E
kpunkte auszei
hnen lassen, 3 �4 = 12 unters
hiedli
he Loops obiger Form konstruieren. Man fa�t sie aufgrund ihrerInversionseigens
haft gem�a� (2.27) zu P -invarianten Operatoren zusammen und erh�alt:
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hen Gruppe �uber Wilson-Loops
e q qq�� ��� � q q eq�� ��� = O�11 q e qq�� ��� � q q qe�� ��� = O�12

e qq q����	 � q qq e����	 = O�21 q eq q����	 � q qe q����	 = O�22
e qq q� � q qq e� = O�31 q eq q� � q qe q� = O�32 .Ber�u
ksi
htigt man zus�atzli
h no
h die C-Parit�atsinvarianz, so erh�alt man insgesamt dieOperatoren OPij C = (O�ij �) (i = 1; 2; 3 ; j = 1; 2), die nun f�ur �xiertes P und C einense
hs-dimensionalen Raum aufspannen.2.6.1 Transformationsverhalten der �Uber-E
k-PlaquettenDie Konstruktion P -invarianter Loop-Operatoren vereinfa
ht uns die Arbeit erhebli
h.Wollte man alle zw�olf �Uber-E
k-Plaquetten {man bea
hte, da� man dabei vorher C s
honfest gew�ahlt haben mu�{ unter der vollen kubis
hen Gruppe Oh transformieren, h�atte man12 � 2 � 24 = 576 Drehungen zu untersu
hen. Kennt man dagegen das Verhalten einesOperators unter Inversion, wie es bei der Verwendung von Linearkombinationen O�ij derFall ist, reduzieren si
h diese bereits auf 6�24 = 144. Das Transformationsverhalten unterO bestimmt also in diesem Fall das Verhalten unter der vollen Gruppe Oh. Grund daf�ur istdie Tatsa
he, da� Operatoren mit P = +1 ihre Lage unter Punktspiegelung unver�andertlassen und im Falle von P = �1 nur ein Minuszei
hen vor den Operator hinzugef�ugt werdenmu�. Es gen�ugt demna
h, die �Uber-E
k-Operatoren O�ij � unter der kubis
hen Gruppe zudrehen. Selbstverst�andli
h hat man dabei zus�atzli
h wiederum zwis
hen positiver undnegativer C-Parit�at zu unters
heiden, insgesamt sind also vier F�alle P = �1 und C = �1zu unters
heiden. Man �ndet:� Klasse E:Id O�11 � 7�! O�11 �O�12 � 7�! O�22 �O�21 � 7�! O�21 �O�22 � 7�! O�22 �



2.6 Wilson-Loops der L�ange 8: Drittes Beispiel 59O�31 � 7�! O�31 �O�32 � 7�! O�32 �� Klasse C2:C2a C2b C2
O�11 � 7�! PCO�11� O�11 � 7�! CO�11� O�11� 7�! PO�31 �O�12 � 7�! CO�12� O�12 � 7�! PCO�12� O�12� 7�! PO�32 �O�21 � 7�! PO�31 � O�21 � 7�! PCO�32� O�21� 7�! PCO�21�O�22 � 7�! PO�32 � O�22 � 7�! PCO�31� O�22� 7�! CO�22�O�31 � 7�! PO�21 � O�31 � 7�! PCO�22� O�31� 7�! PO�11 �O�32 � 7�! PO�22 � O�32 � 7�! PCO�21� O�32� 7�! PO�12 �C2d C2e C2fO�11 � 7�! CO�32� O�11 � 7�! O�22� O�11� 7�! PCO�21�O�12 � 7�! CO�31� O�12 � 7�! PO�21� O�12� 7�! CO�22�O�21 � 7�! CO�21� O�21 � 7�! PO�12� O�21� 7�! PCO�11�O�22 � 7�! PCO�22� O�22 � 7�! O�11� O�22� 7�! CO�12�O�31 � 7�! CO�12� O�31 � 7�! CO�31� O�31� 7�! PCO�31�O�32 � 7�! CO�11� O�32 � 7�! PCO�32� O�32� 7�! CO�32�� Klasse C3:C3� C3� C3
O�11 � 7�! CO�22� O�11 � 7�! PCO�22� O�11� 7�! O�21 �O�12 � 7�! CO�21� O�12 � 7�! PCO�21� O�12� 7�! O22 �O�21 � 7�! O�32 � O�21 � 7�! PCO�31� O�21� 7�! CO�31�O�22 � 7�! CO�31� O�22 � 7�! CO�32� O�22� 7�! PCO�32�O�31 � 7�! PCO�11� O�31 � 7�! O�12� O�31� 7�! CO�11�O�32 � 7�! CO�12� O�32 � 7�! PO�11� O�32� 7�! PCO�12�C3Æ C�13� C�13�O�11 � 7�! PO�21 � O�11 � 7�! PCO�31� O�11� 7�! PO�32 �O�12 � 7�! PO�22 � O�12 � 7�! CO�32� O�12� 7�! O�31 �O�21 � 7�! PO�32 � O�21 � 7�! CO�12� O�21� 7�! PCO�12�O�22 � 7�! O�31 � O�22 � 7�! CO�11� O�22� 7�! PCO�11�O�31 � 7�! PO�12 � O�31 � 7�! PO�22� O�31� 7�! PCO�21�O�32 � 7�! O�11 � O�32 � 7�! O�21� O�32� 7�! CO�22�C�13
 C�13ÆO�11 � 7�! CO�31� O�11 � 7�! O�32�
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hen Gruppe �uber Wilson-LoopsO�12 � 7�! PCO�32� O�12 � 7�! PO�31�O�21 � 7�! O�11 � O�21 � 7�! O�13�O�22 � 7�! O�12 � O�22 � 7�! PO�12�O�31 � 7�! CO�21� O�31 � 7�! O�22�O�32 � 7�! PCO�22� O�32 � 7�! PO�21�� Klasse C4:C4x C4y C4zO�11 � 7�! PO�22 � O�11 � 7�! PCO�32� O�11� 7�! PO�12 �O�12 � 7�! O�21 � O�12 � 7�! PCO�31� O�12� 7�! O�11 �O�21 � 7�! CO�11� O�21 � 7�! PO�22� O�21� 7�! O�31 �O�22 � 7�! PCO�12� O�22 � 7�! O�21� O�22� 7�! O�32 �O�31 � 7�! PO�32 � O�31 � 7�! O�11� O�31� 7�! CO�22�O�32 � 7�! O�31 � O�32 � 7�! O�12� O�32� 7�! CO�21�C�14x C�14y C�14zO�11 � 7�! CO�21� O�11 � 7�! O�31� O�11� 7�! O�12 �O�12 � 7�! PCO�22� O�12 � 7�! O�32� O�12� 7�! PO�11 �O�21 � 7�! CO�12� O�21 � 7�! O�22� O�21� 7�! CO�32�O�22 � 7�! PO�11 � O�22 � 7�! PO�21� O�22� 7�! CO�31�O�31 � 7�! O�32 � O�31 � 7�! PCO�12� O�31� 7�! O�21 �O�32 � 7�! PO�31 � O�32 � 7�! PCO�11� O�32� 7�! O�22 �� Klasse C24 :C2x C2y C2zO�11 � 7�! CO�12� O�11 � 7�! PCO�12� O�11� 7�! PO�11 �O�12 � 7�! CO�11� O�12 � 7�! PCO�11� O�12� 7�! PO�12 �O�21 � 7�! PCO�22� O�21 � 7�! PO�21� O�21� 7�! CO�22�O�22 � 7�! PCO�21� O�22 � 7�! PO�22� O�22� 7�! CO�21�O�31 � 7�! PO�31 � O�31 � 7�! PCO�32� O�31� 7�! CO�32�O�32 � 7�! PO�32 � O�32 � 7�! PCO�31� O�32� 7�! CO�31� :Man bea
hte dabei z.B. PO+ij � = +O+ij � bzw.CO�ij � = �O�ij � und insbesondere au
hPCO�ij � = �(�O�ij �) = +O�ij �; i 2 f1; 2; 3g; j 2 f1; 2g.Die Darstellungsmatrizen D ~R(g) unters
heiden si
h nun f�ur jeden der vier Sektoren (P =C = +1, P = +1; C = �1, et
.) in den Vorzei
hen der Eintr�age und sind bzgl. derzugeh�origen geordneten Basis fO�11 �; O�12 � : : : ; O�32 �g angegeben. Da wir nur an ihrenKlassen
harakteren interessiert sind, gen�ugt es, einen Repr�asentanten pro Klasse anzuge-geben. Man ersetze dazu P und C dur
h �1 je na
h Wahl der P - bzw. C-Parit�at.



2.6 Wilson-Loops der L�ange 8: Drittes Beispiel 61Klasse: E Klasse: C2
M (id) = 0BBBBBBBB�

1 1 1 1 1 1
1CCCCCCCCA M (C2a) = 0BBBBBBBB�

PC C P PP P
1CCCCCCCCAKlasse: C3 Klasse: C4

M (C3�) = 0BBBBBBBB�
PC CCC 11

1CCCCCCCCAM (C4x) = 0BBBBBBBBBB�
C PC1P 1P

1CCCCCCCCCCAKlasse: C24
M (C2x) = 0BBBBBBBBBB�

CC PCPC P P
1CCCCCCCCCCA :

Die Charaktere ergeben si
h zu +6 f�ur die Klasse E in allen 4 Sektoren. F�ur die KlasseC2 erh�alt man +2= � 2 f�ur positive P -Parit�at und positive/negative C-Parit�at bzw. 0 imFall von P = �1, die Klassen C3 und C4 haben immer vers
hwindende Spuren. Im Falleder Klasse C24 hat man +2 f�ur positive P -Parit�at und andernfalls �2.Die Darstellungsmatrizen f�ur die zus�atzli
hen Klassen IE; : : : ; IC24 der vollen kubis
henGruppe Oh sind im Fall P = +1 mit obigen identis
h, f�ur P = �1 ist in allen Eintr�agenein Minuszei
hen zu setzen. Die Spuren �andern si
h dann ebenfalls entspre
hend.2.6.2 Irreduzible Zerlegung der DarstellungDie Zerlegung der Darstellung ~R erfolgt mit Hilfe der Formel (2.17). Man bea
hte, da� si
hdie Summe (bei �xierter C-Parit�at) nun zun�a
hst einmal �uber alle zehn konjugierten Klas-sen von Oh erstre
kt und si
h damit au
h die Anzahl irreduzibler Darstellungen von f�unfauf zehn erh�oht. Wie aber bereits oben erw�ahnt, vereinfa
ht si
h die Situation aufgrund
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hen Gruppe �uber Wilson-Loopsder Verwendung von P -invarianten Operatoren wieder, da si
h das Transformationsverhal-ten unter der vollen kubis
hen Gruppe aus dem unter der Gruppe O ableiten l�a�t. Konkrethat man also do
h nur �uber die f�unf Klassen der kubis
hen Gruppe zu summieren undindiziert die gew�ahlte P -Parit�at dur
h ein + bzw. � an der irreduziblen Darstellung �.Dabei darf ni
ht vergessen werden, da� man ~R zus�atzli
h au
h no
h f�ur beide C-Parit�atengetrennt zu zerlegen hat. Die irreduziblen Anteile werden also mit �PC kenntli
h gema
ht.Die Re
hnungen sind in Anhang C.4.1 zu �nden, woraus man abs
hlie�end erh�alt:erster Fall: P = +1irred. Darst. von Oh A++1 A++2 E++ T++1 T++2 A+�1 A+�2 E+� T+�1 T+�2Dim. der Darstellung 1 1 2 3 3 1 1 2 3 3Dimension von ~R: P = +1 C = +1 P = +1 C = �16 1 0 1 0 1 0 1 1 1 0zweiter Fall: P = �1irred. Darst. von Oh A�+1 A�+2 E�+ T�+1 T�+2 A��1 A��2 E�� T��1 T��2Dim. der Darstellung 1 1 2 3 3 1 1 2 3 3Dimension von ~R: P = �1 C = +1 P = �1 C = �16 0 0 0 1 1 0 0 0 1 12.6.3 Konstruktion einer Orthonormalbasis (Teil I)Die Konstruktion einer Orthonormalbasis aus Loop-Operatoren haben wir bereits an zweiBeispielen vorgenommen. Es stellte si
h dabei heraus, da� es gen�ugt, die Darstellungs-matrizen D ~R einer (geeigneten) Klasse Ci aufzusummieren und zu diagonalisieren. Wirw�ahlen in diesem Fall beispielsweise die Klasse C2. Man erh�alt na
h Summation f�ur denersten Fall: P = C = +1
C (C2) = 0BBBBBBB� 2 0 1 1 1 10 2 1 1 1 11 1 2 0 1 11 1 0 2 1 11 1 1 1 2 01 1 1 1 0 2

1CCCCCCCA : (2.28)
Dur
h Diagonalisierung �ndet man



2.6 Wilson-Loops der L�ange 8: Drittes Beispiel 63� die Eigenwerte: 6, 0, 0, 2, 2, 2� und die zugeh�origen Eigenvektoren:
E1 = 8>>>>>>><>>>>>>>:

0BBBBBBB� 111111
1CCCCCCCA ;0BBBBBBB� �1�10011

1CCCCCCCA ;0BBBBBBB� �1�11100
1CCCCCCCA ;0BBBBBBB� 0000�11

1CCCCCCCA ;0BBBBBBB� 00�1100
1CCCCCCCA ;0BBBBBBB� �110000

1CCCCCCCA
9>>>>>>>=>>>>>>>; : (2.29)

Der Darstellungsraum der DarstellungsmatrizenD ~R zerf�allt in drei invariante Unterr�aumeder Dimensionen 1, 2 und 3. Da f�ur die Darstellung ~R~R = A++1 �E++ � T++2 (2.30)gilt und die Dimensionen der irreduziblen Darstellungen mit denen der invarianten Teil-r�aume �ubereinstimmen, ist die Zerlegung damit abges
hlossen. E1 bildet also eine Basisaus Loop-Operatoren f�ur A++1 , E++ bzw. T++2 .zweiter Fall: P = +1; C = �1Dieser Fall verl�auft v�ollig analog zum ersten, und die Details k�onnen in Anhang C.4.2na
hgelesen werden.dritter Fall: P = �1; C = +1
C (C2) = 0BBBBBBB� 0 0 �1 1 �1 10 0 �1 1 1 �1�1 �1 0 0 �1 �11 1 0 0 �1 �1�1 1 �1 �1 0 01 �1 �1 �1 0 0

1CCCCCCCA : (2.31)
Dur
h Diagonalisierung �ndet man� die Eigenwerte: -2, -2, -2, 2, 2, 2� und die zugeh�origen Eigenvektoren:

E3 = 8>>>>>>><>>>>>>>:
0BBBBBBB� 011001

1CCCCCCCA ;0BBBBBBB� 101010
1CCCCCCCA ;0BBBBBBB� �1�1�1100

1CCCCCCCA ;0BBBBBBB� 10�1001
1CCCCCCCA ;0BBBBBBB� 01�1010

1CCCCCCCA ;0BBBBBBB� 11�1100
1CCCCCCCA
9>>>>>>>=>>>>>>>; : (2.32)



64 Darstellungen der kubis
hen Gruppe �uber Wilson-LoopsDer Darstellungsraum der D ~R zerf�allt in zwei invariante Unterr�aume der Dimension 3.F�ur die Darstellung ~R gilt ~R = T�+1 � T�+2 : (2.33)Da sowohl T�+1 als au
h T�+2 dreidimensionale, irreduzible Darstellungen sind, ist dieZerlegung somit ebenfalls abges
hlossen. Fragli
h dagegen ist aber no
h, wie die beideninvarianten Unterr�aume den Darstellungen zuzuordnen sind. Hierf�ur hat man nun diein (2.20) erkl�arte reduzierte Darstellung A ~RA�1 zu betra
hten. Zun�a
hst f�ugt man diein der geordneten Menge E3 be�ndli
hen Basisvektoren zu einer Matrix E3 zusammen(Spaltenvektor=Matrixspalte) und identi�ziert E3 mit A�1. Betra
htet man nun f�ur dieDarstellungsmatrizen der Klasse C2 ihre "reduzierten\ PartnerAD ~R(g)A�1, so haben diesena
h Konstruktion von (2.20) Blo
kdiagonalgestalt, bestehen also aus zwei 3�3-Matrizen.F�ur g = C2a 2 C2 ergibt si
h beispielsweise
AD ~R (C2a)A�1 = 0BBBBBBB� 0 0 �1�1 �1 1�1 0 0 0 0 �11 1 1�1 0 0

1CCCCCCCA : (2.34)Hierbei haben oberer und unterer Blo
k die Spur �1 bzw. +1.Da wir nun einerseits wissen, da� si
h die zu den beiden Blo
kmatrizen geh�orenden Un-terr�aume unter T�+1 bzw. T�+2 transformieren und andererseits an Hand der Charakter-tabelle �T�1 (C2) = �1 bzw. �T�2 (C2) = +1 �nden, bilden die ersten drei Vektoren aus E3in der Tat eine Basis der Darstellung T�+1 aus Loop-Operatoren und die restli
hen dreientspre
hend eine Basis f�ur T�+2 .vierter Fall: P = �1; C = �1Wiederum verl�auft dieser Fall v�ollig analog zum letzten und ist ebenfalls in Anhang C.4.2na
hzulesen.S
hlu�bemerkung: Eine vollst�andige �Ubersi
ht aller Orthonormalbasen aus �Uber-E
k-Plaquetten f�ur die irreduziblen Faktoren der betra
hteten Darstellungen ~R sei im folgendenAbs
hnitt zusammengestellt.2.7 ZusammenfassungAn dieser Stelle m�o
hte i
h no
h einmal eine �Ubersi
ht �uber die bisher erzielten Resultategeben. Ausgangspunkt war die kubis
he Gruppe, unter der wir das Transformationsverhal-ten von Wilson-Loops untersu
ht haben. Aus diesem konnten wir ans
hlie�end Darstellun-gen �uber Loop-Operatoren ableiten. Dabei zeigte si
h, da� dur
h geeignete Kombination



2.7 Zusammenfassung 65der Loops parit�atsinvariante Operatoren erzeugt werden konnten, die uns Aussagen �uberdas Transformationsverhalten unter der vollen kubis
hen Gruppe erm�ogli
hten. Mit Hilfeder Gruppentheorie wurde daraufhin ein Verfahren vorgestellt, die i.a. reduziblen Darstel-lungen in irreduzible Darstellungen der (vollen) kubis
hen Gruppe zu zerlegen und eineOrthonormalbasis aus Loop-Operatoren f�ur jeden invarianten Teilraum des Darstellungs-raumes anzugeben. Die Dimension der Darstellung ist dabei dur
h die Anzahl m�ogli
herAusri
htungen der Loops im dreidimensionalen Raum festgelegt und w�a
hst in jedem Fallemit deren L�ange.Es wurden drei Beispiele behandelt. Die Einfa
h-Plaquetten und verdrehten Loops wa-ren beide invariant gegen�uber Raumspiegelungen, eine Untersu
hung unter der kubis
henGruppe rei
hte hier aus. Die Ergebnisse werden in Tabelle 2.1 (irred. Inhalt) und Tabelle2.3 bzw. Tabelle 2.6 (ONB) zusammengefa�t. Die �Uber-E
k-Plaquetten waren ni
ht spie-gelinvariant. Die Folge waren irreduzible Anteile mit negativer P -Parit�at (vgl. Tabelle 2.2,Tabelle 2.7).In 2.2.1 wurden dar�uber hinaus zwei weitere Wilson-Loops der L�ange 6 vorgestellt: Doppel-Plaquetten und Winkel-Plaquetten. F�ur beide lassen si
h mit dem glei
hen Verfahrenebenfalls Darstellungen �nden, deren Ergebnisse aus [19℄ entnommen und in Tabelle 2.1(Doppel-Plaquetten) bzw. 2.2 (Winkel-Plaquetten) und Tabelle 2.4 bzw. 2.5 dargestelltwerden.In Tabelle 2.1 und 2.2 ist die Reihenfolge der betra
hteten Loop-Operatoren unterhalbder Tabelle angegeben, die irreduziblen Darstellungen der (vollen) kubis
hen Gruppe sindna
h Wahl der Parit�at geordnet. Die ONB in den Tabellen 2.3 { 2.7 ist zeilenweise in Formvon Koordinatenvektoren bzgl. der Basisoperatoren der entspre
henden Wilson-Loops an-gegeben.



66 Darstellungen der kubis
hen Gruppe �uber Wilson-Loops
Irreduzibler Inhalt der Darstellungen der kubis
hen Gruppe �uberWilson-Loops der L�ange 4 und 6 (I)irred. Darst. von Oh A++1 A++2 E++ T++1 T++2 A+�1 A+�2 E+� T+�1 T+�2Dim. der Darstellung 1 1 2 3 3 1 1 2 3 3P = +1 C = +1 P = +1 C = �1Dimension von ~R:3 1 0 1 0 0 0 0 0 1 0Dimension von ~R:6 1 1 2 0 0 0 0 0 1 1Dimension von ~R:4 1 0 0 0 1 0 1 0 1 0Tabelle 2.1: Operatoren (von oben na
h unten): Einfa
h-Plaquetten; Doppel-Plaquetten,verdrehte Loops
Irreduzibler Inhalt der Darstellungen der kubis
hen Gruppe �uberWilson-Loops der L�ange 6 (II) und �uber die �Uber-E
k-Plaqetten der L�ange 8irred. Darst. von Oh A++1 A++2 E++ T++1 T++2 A+�1 A+�2 E+� T+�1 T+�2Dim. der Darstellung 1 1 2 3 3 1 1 2 3 3P = +1 C = +1 P = +1 C = �1Dimension von ~R:12 1 0 1 0 1 0 0 0 1 1Dimension von ~R:6 1 0 1 0 1 0 1 1 1 0Fortsetzung A�+1 A�+2 E�+ T�+1 T�+2 A��1 A��2 E�� T��1 T��2der Tabelle 1 1 2 3 3 1 1 2 3 3P = �1 C = +1 P = �1 C = �10 0 0 1 1 1 0 1 0 10 0 0 1 1 0 0 0 1 1Tabelle 2.2: Operatoren (von oben na
h unten): Winkel-Plaquetten; �Uber-E
k-Plaquetten



2.7 Zusammenfassung 67
Operatoren der Einfa
h-PlaquettenLoop-Op. O�1� O�2� O�3�~RPC A++1 1 1 1E++ -2 1 11 -1T+�1 1 1 1Tabelle 2.3: ONB aus Loop-Operatoren f�ur die irreduziblen Anteile von ~R(Die freien Pl�atze sind mit Nullen zu belegen.)
Operatoren der Doppel-PlaquettenLoop-Op. O1� O2� O3� O4� O5� O6�~RPC A++1 1 1 1 1 1 1A++2 1 1 1 -1 -1 -1E++ 1 -1 1 -1-2 1 1 -2 1 1E++ -2 1 1 2 -1 -1-1 1 1 -1T+�1 1 11 11 1T+�2 1 -11 -11 -1Tabelle 2.4: ONB aus Loop-Operatoren f�ur die irreduziblen Anteile von ~R



68 Darstellungen der kubis
hen Gruppe �uber Wilson-Loops
Operatoren der Winkel-PlaquettenLoop-Op. O1� O2� O3� O4� O5� O6� O7� O8� O9� O10� O11� O12 �A++1 ; A��1 1 1 1 1 1 1 1 1 1 1 1 1E++; E�� -1 1 -1 1 -1 1 -1 1-1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2T�+1 ; T+�1 -1 1 1 1 -1 -1 1 -1-1 1 1 1 -1 -1 1 -11 -1 1 1 -1 -1 -1 1T�+2 ; T+�2 1 1 -1 1 1 -1 -1 -11 1 -1 1 1 -1 -1 -11 1 1 -1 -1 1 -1 -1T++2 ; T��2 1 -1 -1 11 -1 -1 11 -1 -1 1Tabelle 2.5: ONB aus Loop-Operatoren f�ur die irreduziblen Anteile von ~R
Operatoren der verdrehten LoopsLoop-Op. O�1� O�2� O�3� O�4�~RPC A++1 ; A+�2 1 1 1 1T++2 ; T+�1 1 -1 1 -1-1 1 1 -11 1 -1 -1Tabelle 2.6: ONB aus Loop-Operatoren f�ur die irreduziblen Anteile von ~R



2.7 Zusammenfassung 69
Operatoren der �Uber-E
k-PlaquettenLoop-Op. O�11� O�12 � O�21 � O�22� O�31� O�32 �~RPC A++1 1 1 1 1 1 1A+�2 1 -1 1 -1 -1 1E++ -1 -1 1 1-1 -1 1 1E+� -1 1 -1 11 -1 -1 1T+�1 1 11 11 1T�+1 1 1 11 1 1-1 -1 -1 1T��1 1 -1 11 1 1-1 1 1 1T++2 -1 1-1 1-1 1T�+2 1 -1 11 -1 11 1 -1 1T��2 -1 1 1-1 -1 11 -1 1 1Tabelle 2.7: ONB aus Loop-Operatoren f�ur die irreduziblen Anteile von ~R



Kapitel 3Einf�uhrung in die SupersymmetrieIn diesem Kapitel gebe i
h eine kurze Darstellung der supersymmetris
hen Erweiterungder relativistis
hen Quantenfeldtheorie. Dabei wird in erster Linie auf die zur Theoriehinzukommenden Supermultipletts und die in ihnen enthaltenen neuen Elementarteil-
hen eingegangen. Ausgehend von den irreduziblen Darstellungen der Symmetriegrup-pe der Raum-Zeit, bes
hrieben dur
h die Poin
ar�e-Gruppe, wird zun�a
hst das Prinzipder Z2-Graduierung der Poin
ar�e-Algebra angegeben, wel
hes auf direktem Wege zu ei-ner Verallgemeinerung des Lie-Algebra-Konzeptes f�uhren wird. Mit dieser werden dannirreduzible Darstellungen verkn�upft sein, die mit den Elementarteil
hen der supersymme-tris
hen Theorie identi�ziert werden k�onnen. Ans
hlie�end wird der Superfeldformalismuseingef�uhrt, mit dessen Hilfe si
h supersymmetris
h-invariante Wirkungen konstruieren las-sen. Na
h diesen Vorbereitungen sollen dann s
hlie�li
h zwei supersymmetris
he Modellebehandelt werden. Als Referenzen zu dem Inhalt dieses Kapitels seien stellvertretend f�urdie umfangrei
he Literatur [24{28℄ genannt.3.1 Graduierung und Poin
ar�e-SuperalgebraAuf der Su
he na
h einer endg�ultigen Theorie der Elementarteil
hen sind viele Versu
heunternommen worden, das Standardmodell zu erweitern und es als niederenergetis
henGrenzfall in eine weitrei
hendere Theorie einzubetten. Einen vielverspre
henden Weg da-hin, bietet das Konzept der Supersymmetrie. Bevor wir darauf genauer eingehen, wollenwir uns dem Elementarteil
henspektrum des Standardmodells �uber sein Transformations-verhalten unter der vollen Lorentzgruppe n�ahern.3.1.1 Poin
ar�e-Gruppe und ihre irreduziblen DarstellungenElementarteil
hen sind in der Spra
he des theoretis
hen Teil
henphysikers irreduzibleDarstellungen der Poin
ar�e-Gruppe P, die als Symmetriegruppe der vierdimensionalenRaum-Zeit grundlegend f�ur jede relativistis
he Quantenfeldtheorie ist. Sie beinhaltet Lor-entztransformationen und Vers
hiebungen im Minkowski-Raum und bes
hreibt damit dieStruktur unserer Raum-Zeit. Ihre Lie-Algebra wird von den 6 Generatoren der Lorentz-



3.1 Graduierung und Poin
ar�e-Superalgebra 71gruppe M�� = �M�� und den 4 Generatoren der Translationsgruppe P � erzeugt undwird dur
h die Vertaus
hungsrelationen[P �; P � ℄ = 0[P �;M�� ℄ = i (g��P � � g��P �)[M�� ;M�� ℄ = �i (g��M�� � g��M�� � g��M�� + g��M��) (3.1)festgelegt, wobei g�� = diag(1;�1;�1;�1) = g�� die Metrik im Minkowski-Raum ist.In der Quantenfeldtheorie spielen sog. Casimir-Operatoren eine wesentli
he Rolle, da na
hihren Eigenwerten alle physikalis
hen Zust�ande (Felder,Teil
hen) klassi�ziert werden k�on-nen. Sie sind dabei �uber die Eigens
haft de�niert, mit allen Generatoren zu vertaus
hen.Als Casimir-Operatoren der Poin
ar�e-Gruppe erh�alt manP 2 = P�P �W 2 = W�W � ; (3.2)wobei W� = 12�����P �M�� als Pauli-Lubanski-Vektor bezei
hnet wird. Weiter ist �����der total antisymmetris
he Tensor vierter Stufe mit der Normierung �1234 = 1. Aus diesenCasimir-Operatoren geben wir nun die irreduziblen Darstellungen der Poin
ar�e-Gruppean. Man unters
heidet hierbei vers
hiedene Klassen:1. Massive Darstellung: P 2 = m2
2 > 0Im Ruhesystem �ndet man f�ur die Generatoren W� im Minkowski-Raum und dieGeneratoren Sk der inneren Drehung die Proportionalit�atW 2 = �m2
2S2 : (3.3)Da W 2 ein Lorentzskalar ist, stimmen seine Eigenwerte im Ruhesystem mit denenin einem glei
hf�ormig bewegten System �uberein, und man erh�altP 2 = m2
2;W 2 = �m2
2s(s+ 1) mit m 2 R und s = 0; 12 ; 1; 32 ; : : : : (3.4)O�ensi
htli
h wird die Darstellung dur
h die Masse m und den Spin s 
harakteri-siert. Dies ma
ht die Identi�kation mit Eigens
haften von Elementarteil
hen sug-gestiv. Man bea
hte, da� si
h Teil
hen innerhalb einer Darstellung in ihren konti-nuierli
hen Impulseigenwerten und der z-Komponente s3 ihres Spins unters
heidenk�onnen. Massive Teil
hen mit Impuls ~p haben demna
h 2s+ 1 Freiheitsgrade.2. Massenlose Darstellung: P 2 = 0 und W 2 = 0Hier gilt W � = hP � mit h = �s und s = 0; 12 ; 1; 32 ; : : : ; (3.5)wobei h =W0=P0 ebenfalls ein Casimir-Operator ist. Die Poin
ar�e-Invariante h wirdals Helizit�at bezei
hnet. Sie "ersetzt\ bei massenlosen Teil
hen den Spinbegri�, da



72 Einf�uhrung in die Supersymmetriediese eine vers
hwindende Ruhemasse besitzen und somit eine Spin
harakterisierung(verstanden als innerer Drehimpuls im Ruhesystem) f�ur sie keinen Sinn ergibt. F�urdie Anzahl ihrer Freiheitsgrade bei �xierten Impulseigenwerten erh�alt man mit s 6= 0genau zwei.3. Neben den beiden oben genannten irreduziblen Darstellungen existieren no
h zweiweitere: zum einen Darstellungen P�P � = 0 mit s 2 R und zum anderen Darstellun-gen der Form P�P � < 0, die Teil
hen bes
hreiben, die si
h mit �Uberli
htges
hwindig-keit bewegen (Ta
hyonen). Beide Teil
henklassen sind allerdings in der Natur no
hni
ht gemessen worden und sind daher physikalis
h irrelevant.3.1.2 Z2-Graduierung der Poin
ar�e-AlgebraAuf der Su
he na
h M�ogli
hkeiten, das Standardmodell in eine umfassendere Theorie zuintegrieren, bieten si
h in erster Linie zwei Ansatzpunkte:Das Standardmodell ist eine Ei
htheorie, die zugeh�orige Ei
hgruppe besteht dabei auseinem Produkt von 3 Symmetriegruppen (s. Einleitung). Dies mag etwas konstruiert wir-ken. Daher liegt zum einen der Gedanke nahe, na
h einer einzigen (weitrei
henderen)Symmetriegruppe zu su
hen (z.B. SU(5)), in der die Produktgruppe des Standardmodellsdann aufzugehen h�atte. Dabei w�are es sinnvoll, an das zu der Gruppe geh�orende erwei-terte Modell die zus�atzli
he Forderung zu stellen, den energetis
hen G�ultigkeitsberei
hdes Standardmodells zu erweitern. Eine andere �Uberlegung ist die folgende: O�ensi
htli
hsind die Eigens
haften der Elementarteil
hen eng mit der Poin
ar�e-Invarianz der Theo-rie des Standardmodells verbunden. Daher w�urde eine Ver�anderung (z.B. Erweiterung)der Poin
ar�e-Gruppe direkte Folgen f�ur das Spektrum der Elementarteil
hen haben. Hierst�o�t man aber s
hnell an mathematis
he Grenzen. So konnten S. Coleman und J. Man-dula im Jahre 1967 zeigen, da� si
h die Lie-Algebra der Poin
ar�e-Gruppe P ni
ht miteiner weiteren Lie-Algebra Q sinnvoll vereinigen l�a�t [29℄. Dabei stellten sie fest, da� ei-ne Erweiterung der Poin
ar�e-Gruppe P um eine ni
ht-trivialen Lie-Gruppe Q entwederzu einer trivialen Streumatrix (Einheitsmatrix) f�uhren w�urde, oder da� alle Kommuta-toren zwis
hen den Generatoren von P und Q vers
hwinden w�urden. Erst 1971 fandenY. Golfand und E. Likhtman eine M�ogli
hkeit, den engen Rahmen des Lie-Algebra-Konzepts zu sprengen [30℄, indem sie neben den bekannten Kommutatorrelationen nunau
h Antivertaus
hungsrelationen zwis
hen den Generatoren zulie�en, was auf den Begri�der Z2-graduierten Algebra f�uhrte. Hierzu eine kurze Erl�auterung.Eine Z2-graduierten Algebra besteht aus einer Algebra G, die in eine direkte Summe zweierUnterr�aume G(0) und G(1) zerf�allt, d.h.G = G(0) � G(1) ; (3.6)und einer Verkn�upfung Æ mit folgender Eigens
haftxi Æ yj 2 G(i+j mod 2) mit i; j 2 f0; 1g und xi 2 G(i); yi 2 G(j): (3.7)Auf �ahnli
he Weise lassen si
h au
h Zn-graduierte Algebren aufbauen. Im Jahr 1975 zeigtesi
h allerdings dur
h eine Arbeit von R. Haag, J.T. Lopuszanski undM. Sohnius [31℄,



3.1 Graduierung und Poin
ar�e-Superalgebra 73da� der Z2-Graduierung eine exponierte Stellung zukommt, da sie die einzige Graduierungist, die si
h mit der relativistis
hen Quantenfeldtheorie vereinbaren l�a�t. Es ist somitsinnvoll und ausrei
hend, si
h auf diese einfa
he Graduierung zu bes
hr�anken.Im n�a
hsten S
hritt konstruiert man nun eine graduierte Z2-Lie-Algebra, indem manzus�atzli
h zu (3.7) no
h zwei weitere Eigens
haften fordert:Supersymmetrie : xi Æ yj = �(�1)i�jyj Æ xi (3.8)Ja
obi-Identit�at : xk Æ (yl Æ zm) (�1)k�m+yl Æ (zm Æ xk) (�1)k�l + zm Æ (xk Æ yl) (�1)l�m: (3.9)Man bea
hte, da� wegen (3.8) nur der Unterraum G(0) wirkli
h eine Lie-Algebra de�niert;G(1) ist ni
ht einmal eine Algebra, da sie bez�ugli
h Æ ni
ht abges
hlossen ist. Wir wollendaher ab sofort korrekter von der Lie-Superalgebra (kurz: SUSY-Algebra) spre
hen. Da-mit verbirgt si
h hinter dem physikalis
h gepr�agten Begri� der Supersymmetrie im Prinzipdas mathematis
he Konzept der Graduierung. Desweiteren beinhaltet die Supersymmetrie-forderung (3.8) gerade die bereits oben erw�ahnte Erweiterung des Lie-Algebra-Konzeptsdur
h Einf�uhrung von Antivertaus
hungsrelationen. Je na
h Wahl von xi und yj ist dasProdukt xi Æ yj symmetris
h oder antisymmetris
h, und die Generatoren aus G lassen si
hna
h gerade und ungerade Generatoren klassi�zieren, die die {in den ersten beiden F�allensogar de�nierenden{ Eigens
haften besitzen[gerade,gerade℄ = geradefungerade,ungeradeg = gerade[gerade, ungerade℄ = ungerade : (3.10)Die neu hinzugekommenen, antikommutierenden Generatoren werden nun mit fermioni-s
hen Freiheitsgraden identi�ziert und haben demna
h Spinor
harakter. Die geraden Gene-ratoren repr�asentieren bosonis
he Freiheitsgrade. Da man an einer Erweiterung der Poin-
ar�e-Symmetrie interessiert ist, identi�ziert man den G(0)-Sektor als die von den zehn Ge-neratoren P � und M�� erzeugte Poin
ar�e-Algebra und f�ugt der Theorie im fermionis
henSektor na
h Belieben sog. SUSY-Generatoren Qa, a = 1; : : : ; 4N , hinzu. Wir bes
hr�ankenuns im folgenden auf den Fall mit N = 1 und interpretieren die vier SUSY-GeneratorenQa als Majorana-Spinor (vgl. Anhang F). Man hat s
hlie�li
h f�ur die insgesamt 14 Gene-ratoren P � ; M�� und Qa (3.11)neben den bekannten Kommutatorrelationen (3.1) der Poin
ar�e-Algebra die zus�atzli
henVertaus
hungsrelationen [P �; Qa℄ = 0 (3.12)[M�� ; Qa℄ = �(12���)abQb (3.13)fQa; Qbg = �2(
�C)abP� ; (3.14)wobei ��� = i2 [
�; 
� ℄ mit den Dira
-Matrizen 
� und C der Ladungskonjugationsopera-tor sind.



74 Einf�uhrung in die SupersymmetrieAm Ende dieses Abs
hnitts ist no
h kurz auf zwei wi
htige Folgerungen einzugehen, diesi
h direkt aus der Erweiterung der Poin
ar�e-Gruppe ergeben. Zum einen stellt man mitHilfe von (3.14) fest, da� die Anzahl bosonis
her und fermionis
her Freiheitsgrade bzw.Komponenten der Felder in supersymmetris
hen Theorien stets identis
h sein mu� [28℄.Physikalis
h sinnvolle, supersymmetris
he Modelle haben demna
h der Boson-Fermion-Regel zu gen�ugen. Zum anderen ist zu erwarten, da� die Erweiterung der Symmetriegruppedirekte Auswirkung auf das in der Theorie erfa�te Elementarteil
henspektrum haben wird.Auf diesen Zusammenhang soll im n�a
hsten Abs
hnitt n�aher eingegangen werden.3.2 SUSY-Teil
hen und Supermultipletts3.2.1 Irreduzible Darstellungen der SUSY-AlgebraUm das Teil
henspektrum der SUSY-Algebra zu klassi�zieren, lassen wir uns von den�Uberlegungen im Falle der Poin
ar�e-Gruppe in Abs
hnitt 3.1.1 leiten. Wie wir uns erin-nern, war dort die Kenntnis der beiden Casimir-Operatoren wesentli
h. Ihre Eigenwer-te lieferten uns die irreduziblen Darstellungen der zugeh�origen Lie-Algebra. Im Fall derSUSY-Algebra bleibt P 2 ein Casimir-Operator, das Quadrat des Pauli-Lubanski-VektorsW� dagegen ni
ht mehr, da wegen (3.13)�W 2; Qa� 6= 0 (3.15)gilt. Dies hat weitrei
hende Konsequenzen, da die irreduziblen Darstellungen der SUSY-Algebra nunmehr Teil
hen mit unters
hiedli
hem Spin enthalten k�onnen.Als zweiten Casimir-Operator �ndet man den LorentzskalarC2 = C��C�� ; (3.16)der �uber die Beziehungen C�� = Y�P� � Y�P� (3.17)Y� = W� + 14X� (3.18)X� = 12 �Q
�
5Q (3.19)gegeben ist. Dabei sind die Q's in (3.19) als sog. Weyl-Spinoren zu lesen.Es l�a�t si
h zeigen, da� der Vierervektor Y� aus (3.19) die relativistis
he Drehimpuls-algebra [Y�; Y� ℄ = i�����P �Y � (3.20)erf�ullt, die si
h im Ruhesystem auf die Form[Yi; Yj℄ = im�ijkYk (3.21)reduziert, wobei m2 den Eigenwert des Casimir-Operators P 2 bezei
hnet. 1m ~Y stellt somiteine Verallgemeinerung des Drehimpulses dar (Superspin), und seine Eigenwerte ergebensi
h zu (~Y =m)2 = y(y + 1) mit y = 0; 12 ; 1; 32 ; : : : : (3.22)



3.2 SUSY-Teil
hen und Supermultipletts 75Der Casimir-Operator C2 ist im Ruhesystem mit dem Superspin �uber C2 = �2m2Y 2verkn�upft, und sein Eigenwertspektrum ergibt si
h demna
h zuC2 = �2m4y(y + 1) mit 0; 12 ; 1; 32 ; : : : : (3.23)Im massiven Fall wird somit jede irreduzible Darstellung der SUSY-Algebra dur
h dasPaar (m; y) 
harakterisiert, wobei man die Zust�ande innerhalb eines sol
hen Supermulti-pletts zum einen na
h� den Eigenwerten y3 der z-Komponente des Superspins 1m ~Y mit �y � y3 � y ;und zum anderen wegen [W3; C��C�� ℄ = [W3; Y3℄ = 0 na
h� den Eigenwerten s3 der z-Komponente des Spins 1m ~W mit s3 2 �y3; y3 + 12 ; y3 � 12	und no
hmals zweifa
h entartetem s3 = y3,klassi�ziert.Graphis
h stellt si
h das wie folgt dar:
(m; y)

y3 = yy3 = y � 1y3 = y � 2-----y3 = �y
s3 = y3s3 = y3 + 12s3 = y3 � 12s3 = y3%%%%%%%######������HHHHHH

""""    ```̀QQQQ
Eine weitere Klassi�zierung erfolgt {genau wie bei der Poin
ar�e-Algebra au
h{ dur
h� den kontinuierli
hen Dreierimpuls ~p.Wie bei der Poin
ar�e-Algebra ist die Darstellung also unendli
h-dimensional.Im massenlosen Fall, P 2 = 0 und W 2 = 0, tritt die Helizit�at h wieder an die Stelleder z-Komponente des Spins s, und man erh�alt zwei Zust�ande, die mit h und h = h + 12bezei
hnet sind. F�ur CPT -invariante Theorien hat man den obigen Zust�anden zwei weiterehinzuzuf�ugen. F�ur ihre Helizit�aten ergibt si
h dann hCPT = �h und hCPT = �h = �h� 12 .3.2.2 Chirales und Vektor-SupermultiplettIn diesem Unterabs
hnitt sei kurz auf die zwei einfa
hsten Darstellungen der SUSY-Algebra eingegangen.



76 Einf�uhrung in die SupersymmetrieChirales SupermultiplettF�ur y = 0 erh�alt man das 
hirale Supermultiplett. Im massiven Sektor besteht es aus dreiTeil
hen:� einem Spin-12-Teil
hen (Dublett mit s3 = �12)� einem skalaren Teil
hen (Boson mit Spin 0)� einem pseudoskalaren Teil
hen (Boson mit Spin 0) :Mit Hilfe des (massiven) 
hiralen Supermultipletts lassen si
h beispielsweise Quarks undLeptonen sowie ihre Superpartner Squarks und Sleptonen bes
hreiben. Dar�uber hinausordnet man die Higgs-Teil
hen und ihre SUSY-Partner dieser Darstellung zu. Das 
hiraleSupermultiplett ist im Wess-Zumino-Modell realisiert, auf das sp�ater no
h eingegangenwird.Das massenlose 
hirale Supermultiplett glei
ht seinem massiven Analogon. Es beinhaltetein skalares Teil
hen (h = 0) und einen Weyl-Spinor (h = 1=2). F�ur eine Lorentz-invarianteTheorie hat man jetzt no
h die beiden dur
h CPT -Transformation zu bestimmendenPartner zu ber�u
ksi
htigen. Man erh�alt somit insgesamt� ein Majorana-Spinor-Teil
hen (h = �1=2)und� ein komplexwertiges, skalares Teil
hen (h = 0) :Vektor-SupermultiplettSollen au
h Ei
hbosonen (z.B. die Gluonen der QCD, oder die Vektorbosonen des elek-tros
hwa
hen Sektors) in die Theorie eingebaut werden, so hat man Darstellungen mit y =12 zu betra
hten. Das si
h daraus ableitendeVektor-Supermultiplett enth�alt im massiven Fall:� 2 Spin-12 -Teil
hen (jeweils ein Dublett)� ein Vektorteil
hen (Boson Spin 1 / Triplett)� ein pseudoskalares Teil
hen (Boson Spin 0) :Das massenlose Vektor-Supermultiplett mit h = 1=2 beinhaltet zuz�ugli
h der CPT -Partner� ein (massenloses) vektorielles Teil
hen (h = �1)und als fermionis
hen Partner der Ei
hbosonen� ein Majorana-Spinor-Teil
hen (h = �12) :



3.3 Superfeldformalismus 773.3 Superfeldformalismus3.3.1 Superraum, Superfelder und Poin
ar�e-SupergruppeIn der vierdimensionalen Formulierung der Raum-Zeit wirken Poin
ar�e-Transformationenauf Felder des vierdimensionalen Minkowski-Raumes, wobei ein allgemeines Element derPoin
ar�e-Gruppe aus Drehungen und Boosts besteht und die dur
h die GeneratorenM��; P �parametrisierte Form (�(w); a) = exp�i��12w��M�� � a�P ��� (3.24)hat. Im Falle der supersymmetris
hen Algebra hat man ausgehend von ihren 14 Generato-ren fP �;M�� ; Q; �Qg sowohl die Gruppe ihrer Symmetrietransformationen als au
h einenDarstellungsraum, auf den diese Elemente ans
hlie�end wirken sollen, zu konstruieren.Dabei liefern die SUSY-Generatoren Q und �Q analog zu den Generatoren P �, wel
he viaexp f�ia�P �g Vers
hiebungen um einen konstanten Vierervektor a� im Minkowskiraumerzeugen, eine Vers
hiebung um die Weyl-spinoriellen, Grassmann-wertigen Parameter �und �� gem�a� exp�i ��Q+ �� �Q�	 (SUSY-Translation) : (3.25)Man erh�alt letztendli
h als supersymmetris
he Erweiterung der Poin
ar�e-Gruppe die Poin-
ar�e-Supergruppe. Ein allgemeines Gruppenelement (ohne Ber�u
ksi
htigung von Lorentz-Boosts) hat dann die Form1G �x�; �; ��� = exp�i ��a�P� + �Q+ �� �Q�	 : (3.29)Der zugeh�orige Darstellungsraum wird Superraum genannt und ist um zwei Grassmann-wertige, fermionis
he Koordinaten � und �� erweitert, wobei � und �� als Weyl-Spinorenaufzufassen sind. Er beinhaltet ni
ht nur die im Minkowski-Raum de�nierten Felder �(x),sondern au
h sol
he, die zus�atzli
h von den neuen Koordinaten abh�angen k�onnen. Diesehei�en Superfelder und sind somit im allgemeinen von der Form � �x; �; ���. Entwi
kelt manein Superfeld in eine Potenzreihe, so bri
ht die Reihe wegen der Grassmann-Eigens
haftf�i; �jg = 0 der � und �� na
h endli
h vielen Termen ab:�(x; �; ��) = f(x) + ��(x) + ����(x) + (��)M(x)1Da ��Q+ �� �Q� hermites
h ist, de�niert die SUSY-Translation eine unit�are Transformation. Man erh�alteine unit�are Darstellung im Superraum �x�; �; ��� dur
h Anwenden eines Gruppenelements G �x�; �; ��� aufein Superfeld � �x�; �; ���. Unter Ausnutzung der Baker-Campell-Hausdor�-Formel kann man dann diegesu
hten Operatoren f�ur die SUSY-AlgebraP� = �i�� (3.26)iQ = ��� � i������ (3.27)i �Q = ���� � i~����� (3.28)dur
h KoeÆzientenverglei
h identi�zieren, wobei �� = (11; �1; �2; �3) und ~�� = (11;��1;��2;��3) mitden Paulimatrizen �i bezei
hnen.



78 Einf�uhrung in die Supersymmetrie+ (����)N(x) + �����A�(x) + (��)����(x)+ (����)��(x) + (��)(����)d(x): (3.30)(3.31)Die Felder �; ��;M;N; : : : auf der re
hten Seite werden Komponentenfelder genannt. Dabeienthalten die Superfelder die im vorherigen Abs
hnitt angespro
henen Supermultipletts inForm eben dieser Komponentenfelder. Ihr Verhalten unter Lorentztransformationen ergibtsi
h aus der Forderung, da� das Superfeld � ein Lorentzskalar ist. Da Linearkombinatio-nen von Superfeldern wieder Superfelder sind, ist der dur
h sie gegebene Darstellungsraumlinear. Er ist allerdings ho
hgradig reduzibel. Um zu irreduziblen Darstellungen der Su-perfeldern zu gelangen, fordert man deren Invarianz gegen�uber SUSY-Transformationen.Die beiden wi
htigsten Typen von Feldern sind in diesem Zusammenhang� das skalare Superfeld� das Vektor-Superfeld.Mit Hilfe des Erstgenannten werden Materiefelder dargestellt, Vektor-Superfelder dienendagegen zur Bes
hreibung von Ei
hfeldern.3.3.2 Skalare SuperfelderMit Hilfe der Einf�uhrung von kovarianten Ableitungen der FormDA � �A + i ������A �� (3.32)�D _A � ��� _A + i (~���) _A �� (3.33)wird� ein 
hirales Superfeld �(x; �; ��) dur
h die Forderung �D _A� = 0 und� ein anti
hirales Superfeld �y(x; �; ��) dur
h die Bedingung DA�y = 0de�niert [28℄. Man bezei
hnet beide Feldtypen als skalare Superfelder. Dur
h Einf�uhrungder komplexen Raumkoordinate y� = x�+ i����� erh�alt ein allgemeines 
hirales Superfeld�(x; �; ��) = �(y; �) eine besonders einfa
he Form, da si
h die Taylorreihe (3.30) auf�(y; �) = �(y) +p2� (y) + (��)F (y) (3.34)mit dem Skalarprodukt �� = �A�A = �1�1 + �2�2 reduziert [28℄. Das 
hirale Superfeldbeinhaltet damit:� 1 komplexes Skalarfeld �� 1 (linksh�andiges) Weyl-Spinorfeld  � 1 komplexes Skalarfeld F als Hilfsfeld.



3.3 Superfeldformalismus 79Da das Hilfsfeld dur
h Wahl einer geeigneten Darstellung (on-shell-Darstellung) redundantwird, kann das 
hirale Superfeld dem 
hiralen Multiplett zugeordnet werden. Fa�t manden Weyl-Spinor  als 4-komponentigen Majorana-Spinor auf, so ergibt si
h insbesonderedas weiter unten no
h zu erw�ahnende 
hirale Supermultiplett des Wess-Zumino-Modells.Analoge �Uberlegungen lassen si
h au
h f�ur das anti
hirale Superfeld anstellen. Man f�uhrt�ahnli
h wie im 
hiralen Fall die komplexe Raumkoordinate�y� � x� � i����� = (y�)� (3.35)ein und erh�alt f�ur das allgemeinste anti
hirale Superfeld den Term�y(�y; ��) = �� (�y) +p2�� � (�y) + (����)F �(�y): (3.36)An dieser Stelle sei kurz angemerkt, da� die Formeln (3.34) und (3.36) in analoger Weiseau
h f�ur einen reell gew�ahlten Superraum (x; �; ��) angegeben werden k�onnen (vgl. [28℄).Die Anzahl der Terme erh�oht si
h dabei um 3 auf 6, die Anzahl der Komponentenfelder(';	; F ) bleibt aber glei
h.Abs
hlie�end sei no
h hinzugef�ugt, da� man aus Produkten von (anti-)
hiralen Super-feldern � wieder (anti-)
hirale Superfelder erh�alt. Erst das Produkt aus einem 
hiralenund anti
hiralen Superfeld liefert eine qualitativ neue Form von Superfeldern, die Vektor-Superfelder. Hierauf gehe i
h im folgenden Unterabs
hnitt ein.3.3.3 Vektor-SuperfelderDie SUSY-kovariante Bedingung f�ur ein Vektor-Superfeld lautetV (x; �; ��) = V y(x; �; ��) : (3.37)Wie oben bereits angemerkt, lassen si
h Vektor-Superfelder aus 
hiralen und anti
hiralenSuperfelder konstruieren. Als m�ogli
he Beispiele seien hier�y� ; ��+�y� sowie i��� �y� : (3.38)genannt.Eine m�ogli
he Zerlegung in Komponentenfelder ist dabei [28℄V (x; �; ��) = f + i��� i�� ��+ i2(��)M � i2(���)M�+ �������A� + i(��)�����+ i2 ~������� i(����)���+ i2���� ���+ 12(��)(����)�d� 122f� : (3.39)Das Vektor-Superfeld besitzt als fermionis
he Freiheitsgrade zwei Weyl-Spinorfelder � und�, sowie als bosonis
hen Anteil zwei reelle Felder f und d, ein komplexes Feld M unds
hlie�li
h ein reelles Vektorfeld A�.



80 Einf�uhrung in die SupersymmetrieSupersymmetris
he Ei
htransformationBetra
htet sei analog zur ni
ht-supersymmetris
hen Ei
htheorie eine abels
he Ei
htrans-formation folgender Art V �! V 0 = V + ��+�y� ; (3.40)wobei � = ('; ; F ) als 
hirales Superfeld zu lesen ist. Es zeigt si
h, da� die Felder � undd invariant unter obiger Transformation bleiben und si
h das reelle Vektorfeld A� wie inder lokalen Ei
htheorie gem�a�A� �! A0� � 2��� mit � = Im' (3.41)verh�alt. Dur
h ges
hi
kte Wahl des 
hiralen Superfeldes � lassen si
h die Komponenten-felder f; � und M in (3.39) wegei
hen. Die Ei
h�xierung hat dabei die Gestalt2 Re� = �+ �� = �f ; (3.42) = � ip2� und (3.43)F = � i2M (3.44)und wird au
h als Wess-Zumino-Ei
hung bezei
hnet. Das Vektor-Superfeld ergibt si
hinklusive der konventionellen Ei
hung A0 = 0 zuVWZ(x; �; ��) = �������A� + i(��)(����)� i(����)(��) + (��)(����)d : (3.45)Sein Teil
heninhalt ist:� 1 reelles (bosonis
hes) Vektorfeld A�� 1 komplexes Weyl-Spinorfeld �� 1 reelles Skalarfeld d als Hilfsfeld.Der Verglei
h mit dem in Unterabs
hnitt 3.2.2 bes
hriebenen Vektor-Supermultiplett zeigt,da� die Komponentenfelder des Vektor-Superfeldes VWZ gerade einem sol
hen Supermul-tiplett zugeordnet werden k�onnen. Das komplexe Weyl-Spinorfeld � ist hierbei der SUSY-Partner des Ei
hfeldes A�.3.4 Supersymmetris
he Theorien3.4.1 Konstruktion supersymmetris
her Lagrangedi
htenJetzt sind gen�ugend Voraussetzungen ges
ha�en, um supersymmetris
he Lagrangedi
htenkonstruieren zu k�onnen. Die Grundidee dazu ist bereits aus der gew�ohnli
hen Feldtheoriebekannt. Man su
ht demna
h Lagrangedi
hten, so da� si
h das WirkungsfunktionalS = Z d4x L(x) (3.46)



3.4 Supersymmetris
he Theorien 81unter den physikalis
h sinnvollen Transformationen (hier SUSY-Transformationen) ni
ht�andert, d.h. ÆS = 0 ist. Dabei lassen wir uns von folgender �Uberlegung leiten:Betra
htet man im Falle des skalaren Superfeldes nur die F - bzw. F �-Komponente bzw.im Falle von Vektor-Superfeldern in der Wess-Zumino-Ei
hung auss
hlie�li
h die d-Feld-komponente, so stellt man fest, da� diese si
h wie Viererdivergenzen transformieren. In-tegriert man nun �uber die gesamte Raum-Zeit, so liefert das Integral �uber die Viererdi-vergenz na
h dessen Transformation in Ober
�a
henterme mittels des Gau�s
hen Satzesgerade Null. Supersymmetris
he Lagrangedi
hten k�onnen daher in der FormL = (Superfelder) ���������Komponente + (
hirale Superfelder) j���Komponente (3.47)angegeben werden. Um zu einer reellen Lagrangedi
hte zu gelangen, addiert man zu (3.47)stets alle hermites
h konjugierten Terme hinzu. Diese seien im folgenden mit h:
: ab-gek�urzt. Dar�uberhinaus ist darauf zu a
hten, da� im Falle von 
hiralen Superfeldern no
hvon der �uber Glei
hung (3.34) eingef�uhrten komplexen Koordinaten y zur reellen Koordi-naten x �uberzugehen ist.3.4.2 SUSY-Lagrangedi
hten aus 
hiralen SuperfeldernIm allgemeinen setzt si
h eine Lagrangedi
hte L aus drei Termen zusammen� einem kinetis
hen Term Lkin� einem Masseterm Lm� einem We
hselwirkungsterm LWW .Will man jetzt eine Lagrangedi
hte aus 
hiralen Superfeldern �(�;  ; F ) zusammenbauen,so bekommt sie die Gestalt L = �y �x; �; ���� �x; �; ��� j�������m2 �2(y; �) j�� + h:
:�g3�3(y; �) j�� + h:
: ; (3.48)wobeim die Masse, g die Kopplungskonstante und h:
: den korrespondierenden hermites
hkonjugierten Term meint. Multipliziert man die Produkte der 
hiralen Superfelder aus, soergibt si
h f�ur die Lagrangedi
hte ausgedr�u
kt dur
h die KomponentenfelderL = (��'�) (��')� i2 � � ~���� +  ���� � �+m2 �  + � � �+ g �'  + '� � � �+F �F � �m'+ g'2�F � �m'� + g'�2�F � : (3.49)Diese wird au
h als o�-shell-Lagrangedi
hte bezei
hnet. Zu einer weiteren Darstellung derLagrangedi
hte gelangt man, indem man das Hilfsfeld F aus der Lagrangedi
hte eliminiert.Dazu bestimmt man mit Hilfe der Euler-Lagrange-Glei
hung die Bewegungsglei
hung f�ur



82 Einf�uhrung in die SupersymmetrieF zu F = m'� + g'�2 . Sie ist demna
h rein algebrais
h, d.h. sie ent�alt keine Ableitung,und man kann in der untersten Zeile von (3.49) das Hilfsfeld F vollst�andig ersetzen. Soergibt si
h die on-shell-Lagrangedi
hte zuL = (��'�) (��')�m2 j'j2� i2 � � ~���� +  ���� � �+ m2 �  + � � �+g �'  + '� � � ��mg j'j2 ('+ '�)� g2 j'j4 : (3.50)Dur
h ' und  werden die Superpartner aus dem 
hiralen Supermultiplett bes
hrieben.Die ersten beiden Zeilen von (3.50) beinhalten die freie Bewegung des bosonis
hen bzw.fermionis
hen Feldes ' bzw.  mit glei
her Masse m. In der unteren Zeile steht der We
h-selwirkungsanteil.3.4.3 Wess-Zumino-ModellDas erste in si
h ges
hlossene supersymmetris
he Modell wurde Mitte der siebziger Jahrevon J. Wess und B. Zumino entwi
kelt und ist unter dem Namen Wess-Zumino-Modellin der Literatur bekannt [32℄. Seine Lagrangedi
hte ist von der Gestalt (3.50). Man �ndetsie allerdings oftmals au
h in einer anderen Formulierung. Die Umformung ges
hieht indrei S
hritten: Zun�a
hst spaltet man das komplexe Feld '(x) in zwei reelle Felder A(x)und B(x) gem�a� ' = 1p2(A� iB) (3.51)auf und geht glei
hzeitig zu Majoranaspinoren	 =   � ! und �	 = � ; � � (3.52)�uber und w�ahlt als neue Kopplungskonstante G = gp2 . Man erh�alt so die Lagrangedi
htedes Wess-Zumino-Modells zuL = 12 �[��A) (��A)�m2A2�+ 12 �[��B) (��B)�m2B2��12 �	 (i
��� �m)	 +G�	 (A+ i
5B)	�mGA �A2 +B2�� G22 �A2 +B2�2 : (3.53)Sie beinhaltet:� ein reelles skalares Feld A(x) mit A = A�� ein reelles pseudoskalares Feld B(x) mit B = B�� ein Majorana-Spinorfeld 	(x) mit 	 = C �	T .Die bosonis
hen Felder A und B bes
hreiben Teil
hen mit Spin 0, das fermionis
he Ma-joranaspinorfeld 	 bes
hreibt Spin-12-Teil
hen. Dabei ist zu bea
hten, da� im Unters
hiedzur kanonis
hen Feldtheorie alle Felder die glei
he Masse besitzen. Eine graphis
he Dar-stellung des zugeh�origen 
hiralen Supermultipletts ergibt
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(m; y = 0) (y3 = 0) s3 = 0 skalares Teil
hens3 = +12s3 = �12 ���� Spin-12 -Teil
hens3 = 0 pseudoskalares Teil
hen :""""    ```̀QQQQ3.4.4 Supersymmetris
he Ei
htheorieEs soll hier das supersymmetris
he Analogon zur konventionellen, ni
ht-abels
hen Ei
h-theorie konstruiert werden. Ausgangspunkt sind hierbei die ni
ht-abels
hen Ei
htransfor-mationen f�ur die Superfelder. Sie sind gew�ohnli
h dur
h�(x; �; ��) �! e�i�(x;�;��) �(x; �; ��) (3.54)�y(x; �; ��) �! �y(x; �; ��) ei�y(x;�;��) (3.55)dargestellt. Man f�uhrt nun ein Ei
hfeld in Form eines Vektor-Superfeldes V = V (x; �; ��)in die Theorie ein. Dazu verallgemeinert man zun�a
hst die abels
he Ei
htransformation(3.40) zu eV �! e�i�yeV ei� ; (3.56)wobei V = T aVa zur adjungierten Darstellung der Ei
hgruppe geh�ort, und kann dannei
hinvariante Terme der Form L = ��yeV �� j������ (3.57)zur Lagrangedi
hte hinzuf�ugen. Um dem Ei
hfeld wie im Yang-Mills Fall eine Dynamik zuverleihen, de�niert man die supersymmetris
he Feldst�arke im ni
ht-abels
hen Fall gem�a�WA = �14( �D �D)e�VDAeV : (3.58)Diese verh�alt si
h unter Ei
htransformation wieWA �! e�i�WAei� : (3.59)Da WA ein 
hirales Superfeld ist, l�a�t si
h aus ihm eine ei
h- und SUSY-invariante, su-persymmetris
he Lagrangedi
hte der GestaltL = Tr��WAWA� j��	+ h:
: (3.60)hins
hreiben. Die allgemeinste Form der Lagrangedi
hte (inkl. der Materiefelder) ergibtsi
h somit zu [25℄ L = 14g2Trn�WAWA� j�� + � �W _A �W _A� j��o+ ��yeV �� j������+ ��12mij�i�j + 13gijk�i�j�k� j�� + h:
:� ; (3.61)da aufgrund von Renormierbarkeitsargumenten keine zus�atzli
hen Kopplungen der Form�i � : : : � �l vorkommen d�urfen.



84 Einf�uhrung in die Supersymmetrie3.4.5 N = 1Super-Yang-Mills-TheorieDie N = 1 Super-Yang-Mills-Theorie ist die einfa
hste, ni
ht-abels
he, supersymmetris
heEi
htheorie. Wir ben�otigen f�ur sie keine Materiefelder, so da� si
h (3.61) aufL = Tr��WAWA� j��	+ h:
: (3.62)reduziert. Dr�u
kt man diese Lagrangedi
hte dur
h ihre Komponentenfelder aus, so ergibtsi
h na
h �Ubergang zu einer euklidis
hen Formulierung inklusive Wess-Zumino-Ei
hungmit dem gew�ohnli
hen ni
ht-abels
hen Feldst�arketensorF�� = ��A� � ��A� + [A�; A� ℄ (3.63)und der kovarianten Ableitung in der adjungierten DarstellungD��� = ����+ �A�; ��� (3.64)die obige Lagrangedi
hte zu [33℄L = � 12g2Tr (F��F��) + 1g2Tr ���
�D����Tr(dd) ; (3.65)wobei � und �� Spinoren und d ein Hilfsfeld sind. Da dieses keine kinetis
hen Anteile besitzt,l�a�t es si
h dur
h Gau�-Integration aus der Lagrangedi
hte entfernen. Man geht dabei vonder o�-shell- zur on-shell-Darstellung �uber. Mit der Zerlegung� = �aT aA� = �igAa�T aF�� = �igF a��T a (3.66)und der Normierung TrT aT b = 12Æab (3.67)erh�alt man als Lagrangedi
hte der N = 1 Super-Yang-Mills-Theorie im euklidis
hen, vier-dimensionalen KontinuumL(x) = �14F a��(x)F a��(x) + 12 ��a(x)
�D��a(x) : (3.68)Formal �ahnelt diese Lagrangedi
hte, bis auf einen Faktor 12 vor dem Fermionenteil, der-jenigen der QCD. Man bea
hte aber, da� die Fermionen � und �� ni
ht Dira
-Spinoren,sondern Majorana-Spinoren in der adjungierten Darstellung sind.Zum Abs
hlu� dieses Unterabs
hnitts sei no
h kurz auf die Anzahl der Freiheitsgradein der SUSY-Yang-Mills Wirkung eingegangen. In der o�-shell-Formulierung besitzt dasSpinorfeld vier fermionis
he Freiheitsgrade und das Ei
hfeld nur drei bosonis
he Freiheits-grade. Das skalare (bosonis
he) Hilfsfeld d si
hert also gerade die Einhaltung der Boson-Fermion-Regel. Im on-shell-Darstellung haben Spinor- und Ei
hfeld je 2 Freiheitsgrade.Das Hilfsfeld wird daher ni
ht weiter ben�otigt.



Kapitel 4Grundlagen der Gruppentheorie IIBevor i
h unter Einbringen der Ergebnisse aus Kapitel 2 Darstellungen der kubis
henGruppe �uber Gitter-Operatoren der SUSY-Yang-Mills-Theorie konstruieren und unter-su
hen werde, sind no
h einige gruppentheoretis
he Vorbereitungen bereitzustellen. Eswird si
h n�amli
h zeigen, da� einige der betra
hteten Operatoren einen halbzahligen Spinaufweisen, so da� die zugrunde liegende diskrete Symmetriegruppe nunmehr ni
ht die ku-bis
he Gruppe sein kann, sondern deren sog. doppelte �Uberlagerung, d.h. die Gruppe 2O.Sie wird daher hier eingebra
ht. Desweiteren soll das Konzept der direkten (endli
hen)Produktgruppe vorgestellt und insbesondere deren Darstellungstheorie studiert werden.Inhalt, Form und Numerierung wi
htiger Aussagen folgen dabei dem Einf�uhrungskapitel.F�ur eine eingehendere Darstellung der Inhalte dieses Kapitels sei no
h einmal auf die imvorher genannten Kapitel angegebene umfangrei
he Literatur �uber Gruppen- und Darstel-lungstheorie verwiesen.4.1 Produktgruppen und ihre Darstellungen4.1.1 Direkte, endli
he ProduktgruppenEs ist sinnvoll, mit folgendem Theorem zu beginnen:Theorem und De�nition 26 Seien G1 und G2 zwei beliebige, endli
he Gruppen und e1und e2 ihre neutralen Elemente. Betra
htet man Paare (g1; g2) mit g1 2 G1 und g2 2 G2und de�niert die Verkn�upfung zweier Paare (g1; g2) und (g01; g02) dur
h die Vors
hrift(g1; g2) �g01; g02� = �g1g01; g2g02� (4.1)f�ur alle g1; g01 2 G1 und g2; g02 2 G2, so bildet dieMenge aller Paare (g1; g2) eine Gruppebzgl. der obigen Verkn�upfung.Diese Gruppe bezei
hnet man mit G1
G2 und nennt sie das direkte Produkt der GruppenG1 und G2.Beweis: Es sind ledigli
h die Gruppenaxiome na
hzupr�ufen.Bemerkung 27 Sind G1 und G2 (endli
he) Gruppen der Ordnung nG1 bzw. nG2 , so istdie Produktgruppe G1 
G2 eine endli
he Gruppe der Ordnung nG1 � nG2 .



86 Grundlagen der Gruppentheorie IIF�ur die Produktgruppe G1 
G2 ergeben si
h folgende Eigens
haften:(i) Sie besitzt zwei Untergruppen H1 und H2, bestehend aus den Elementen (g1; e2) mitg1 2 G1 bzw. (e1; g2) mit g2 2 G2, die beide isomorph1 zu den Gruppen G1 bzw. G2sind.(ii) Beide Untergruppen haben nur das Element (e1; e2) gemeinsam, d.h. H1 \ H2 =f(e1; e2)g, und(iii) jedes Element der einen Untergruppe kommutiert mit jedem Element der anderen(g1; e2) (e1; g2) = (e1; g2) (g1; e2) (4.2)f�ur alle g1; e1 2 G1 und g2; e2 2 G2.Andererseits gilt na
h (4.1) und Gruppenaxiom E2 aus De�nition 1(g1; e2) (e1; g2) = (g1; g2) ; (4.3)so da�(iv) jedes Element von G1
G2 als Produkt von je einem Element der beiden Untergrup-pen H1 und H2 ges
hrieben werden kann.Diese vier Eigens
haften, auf deren Na
hweise hier verzi
htet wird, geben Anla� zu einerUmformulierung der De�nition 26.De�nition 28 Eine (endli
he) Gruppe G0 hei�t direkte (endli
he) Produktgruppe , fallsGruppen G1 und G2 existieren, so da� G0 isomorph zur Gruppe G1 
G2 ist.Na
h De�nition 28 m�ussen die Elemente von direkten Produktgruppen ni
ht mehr zwangs-l�au�g in Form von Paaren auftreten. Das folgende Theorem gibt ein Kriterium an dieHand, mit der direkte Produktgruppen identi�ziert werden k�onnen. Genauer ist es dieUmkehrung der obigen Aussage.Theorem 29 Sei G0 eine (endli
he) Gruppe, die zwei Untergruppen H 01 und H 02 mit denfolgenden Eiges
haften besitze:(i) Alle Elemente von H 01 vertaus
hen mit allen Elementen von H 02,(ii) H 01 und H 02 haben nur das neutrale Element gemeinsam, und(iii) jedes Element von G0 kann als Produkt von je einem Element aus H 01 und H 02 ge-s
hrieben werden.1Man sagt zwei Gruppen G und G0 sind isomorph zueinander (G �= G0), wenn ein bijektiver Gruppen-homomorphismus � im Sinne von De�nition 8 existiert. Die Isomorphismen lauten hier � ((g1; e2)) = g1bzw. � ((e1; g2)) = g2.



4.1 Produktgruppen und ihre Darstellungen 87Dann ist G0 eine direkte Produktgruppe und isomorph zu H1 
H2.Beweis: Der Beweis �ndet si
h z.B. in [1℄.Beispiel: In Kapitel 0 haben wir die volle kubis
he Gruppe Oh kennengelernt. Sie bestehtaus 48 Elementen, 24 von ihnen k�onnen als eindeutig de�nierte Rotationen eines drei-dimensionalen W�urfel aufgefa�t werden, diese bilden eine eigene Gruppe, die kubis
henGruppe O. Die 24 restli
hen Elemente der Gruppe Oh sind Produkte aus Elementen vonO mit dem Inversionsoperator I. Da dieser mit allen Drehungen der kubis
hen Gruppevertaus
ht, ist die Gruppe Oh isomorph zur direkten Produktgruppe O
 fe; I g, wie dortbereits in einer Fu�note steht.Am Ende dieses Abs
hnitts sei darauf verwiesen, da� wir in Hinbli
k auf das na
hfolgendeKapitel insbesondere an dem Fall G1 � G2 =: G (bzw. besser G1 �= G2 �= G) interessiertsind. Dabei bea
hte man, da� die resultierende direkte Produktgruppe G 
G neben denbeiden Untergruppen H1 = f(g; e)g und H2 = f(e; g)g eine weitere sog. diagonale Unter-gruppe besitzt, die aus den Paaren (g; g) mit g 2 G besteht und ebenfalls (wie H1 und H2)isomorph zur Gruppe G ist.4.1.2 Direkte ProduktdarstellungEs ist zun�a
hst hilfrei
h, kurz auf das direkte Produkt A
B einer m�m Matrix mit einern � n-Matrix einzugehen. Die Produkt-Matrix A 
 B ist eine mn � mn Matrix, derenElemente Doppelindizes f�ur Zeilen und Spalten tragen. Sie sind dur
h(A
B)ik;jl = AijBkl (4.4)mit 1 � i; j � m; 1 � k; l � n de�niert.Dur
h Verglei
h der einzelnen Matrixelemente zeigt man, da� f�ur zwei m�m Matrizen Aund A0 und zwei n� n Matrizen B und B0 gilt(A
B) �A0 
B0� = �AA0�
 �BB0� : (4.5)Als Folgerung notieren wir, da� A
B unit�ar ist, falls A und B es sind.Beweis: Wegen Glei
hung (4.4) ist (A
B)y = Ay 
By, so da� zusammen mit (4.5) letzt-endli
h (A
B) (A
B)y = �AAy�
 �BBy� = 11m 
 11n = 11mn gilt.Erinnern wir uns no
h zus�atzli
h daran, da� eine endli
h-dimensionale Darstellung R be-reits dur
h die Angabe ihrer Darstellungsmatrizen DR(g); g 2 G, eindeutig bestimmtist, so haben wir nun alle Vorbereitungen getro�en, um die direkte Produktdarstellungzweier Darstellungen anzugeben. Dabei wollen wir uns auf unit�are, irreduzible Darstellun-gen bes
hr�anken, wobei darauf hingewiesen wird, da� auf die Irreduzibilit�atsforderung imn�a
hsten Theorem au
h verzi
htet werden kann.Theorem und De�nition 30 Seien zwei unit�are, irreduzible Darstellungen R� und R�der Dimension d� und d� einer Gruppe G dur
h ihre Darstellungsmatrizen D�(g) undD�(g) gegeben. Dann legen die MatrizenD�
�(g) := D�(g)
D�(g) (4.6)



88 Grundlagen der Gruppentheorie IIf�ur alle g 2 G in eindeutiger Weise eine unit�are Darstellung R�
R� der Dimension d� �d�fest. F�ur den Charakter �R�
R� (g) der Darstellung gilt dabei�R�
R� (g) = �R� (g) �R� (g) : (4.7)Man bezei
hnet die Darstellung R� 
R� als direktes Produkt der Darstellungen R� undR� der Gruppe G.Beweis: Ein Beweis �ndet si
h in Anhang B.Man bea
hte, da� die Darstellung R� 
R� i.a. ni
ht irreduzibel sein wird, au
h wenn R�und R� es sind. Als Beispiel nehme man die kubis
hen Gruppe O und die Produktdar-stellung E 
 T1. Einzeln betra
htet sind beide Darstellungen irreduzibel, die Dimensionvon E 
 T1 ist 2� 3 = 6. Die kubis
he Gruppe besitzt aber keine irreduzible Darstellungder Dimension 6. E 
 T1 ist demna
h reduzibel, und der zugeh�orige Darstellungsraumbesitzt invariante Unterr�aume, die si
h unter gewissen irreduziblen Darstellungen von Otransformieren.4.1.3 Darstellungstheorie direkter, endli
her ProduktgruppenNa
hdem im ersten Abs
hnitt das direkte Produkt zweier (endli
her) Gruppen erkl�art wur-de, wollen wir in diesem Abs
hnitt kurz auf ihre Darstellungen eingehen. Dabei werden wirauf die im vorigen Abs
hnitt eingef�uhrten direkten Produktdarstellungen zur�u
kgreifen.Dies zeigt si
h s
hon im folgendenTheorem 31 Seien die Darstellungen R1 der Gruppe G1 und R2 der Gruppe G2 dur
hihre Darstellungsmatrizen DR1(g1) ; g1 2 G1 und DR2(g2) ; g2 2 G2 gegeben. Dann bildendie Matrizen DR1
R2 ((g1; g2)) mitDR1
R2 ((g1; g2)) = DR1(g1)
DR2(g2) (4.8)f�ur alle g1 2 G1 und g2 2 G2 eine Darstellung der ProduktgruppeG1
G2. Die Darstellungvon G1 
G2 ist unit�ar, falls G1 und G2 unit�ar sind und treu, falls G1 und G2 treu sind.Beweis: Der Beweis �ndet si
h in Anhang B.Jetzt wird der wi
htige Fall untersu
ht, bei dem G1 � G2 =: G ist. Wie im ersten Ab-s
hnitt 4.1.1 bereits erw�ahnt, besitzt die Produktgruppe G
G eine diagonale Untergruppebestehend aus den Paaren (g; g) mit g 2 G, die isomorph zur Gruppe G ist. Falls R� undR� zwei beliebige irreduzible Darstellungen von G sind, liest si
h Formel (4.8) wie folgt2 :DR�
R� ((g1; g2)) = D�(g1)
D�(g2) : (4.9)Man bea
hte, da� die Darstellungsmatrizen zu irreduziblen DarstellungenR� na
h unsererKonvention mit D�(g) bezei
hnet werden. In Analogie zu (4.8) k�onnte man in diesem Fallau
h DR� (g) s
hreiben.2Man kann zeigen, da� die Darstellung (4.8) irreduzibel ist, falls R1 und R2 es sind, insbesondereist dann au
h die Darstellung (4.9) irreduzibel. Umgekehrt ist jede irreduzible Darstellung von G1 
 G2�aquivalent zu einer Darstellung der Form (4.8).



4.2 �Uberlagerungsgruppe 2O 89F�ur die diagonale Untergruppe ergibt si
h dann entspre
hendDR�
R� ((g; g)) = D�(g)
D�(g) : (4.10)Diese Darstellung ist aber identis
h zu der direkten ProduktdarstellungR�
R� der beidenirreduziblen Darstellungen R� und R� aus dem vorangegangenen Abs
hnitt. Im allgemei-nen ist die Darstellung (4.10) von G also ni
ht irreduzibel. Eine Plausibilit�atsbegr�undunganhand eines Beispiels wurde bereits im vorherigen Abs
hnitt angef�uhrt.4.2 �Uberlagerungsgruppe 2OAn dieser Stelle werden zum einen die doppelte �Uberlagerungsgruppe der kubis
hen Grup-pe eingef�uhrt und ans
hlie�end ihre irreduziblen Darstellungen vorgestellt. Somit werdenwir mit Hilfe ihrer �ubergeordneten Symmetriegruppe, der SU(2), ihre Charaktertabellebere
hnen k�onnen.4.2.1 Elemente der �Uberlagerungsgruppe 2OIn Kapitel 1 haben wir gesehen, da� die kubis
he Gruppe O eine endli
he Untergruppe der2�-periodis
hen, kontinuierli
hen Drehgruppe SO(3) ist, die man erh�alt, wenn man si
hauf die unterliegende Symmetriegruppe eines kubis
hen Gitters bes
hr�ankt. Deren doppel-te �Uberlagerungsgruppe ist die SU(2), die im Gegensatz zur SO(3) eine 4�-Periodizit�ataufweist (vgl. Anhang D). Dur
h �Uberlagerung der kubis
hen Gruppe erh�alt man demna
heine 4�-periodis
he endli
he Untergruppe der SU(2) und bezei
hnet sie mit 2O. Ihre Ele-mente lassen si
h analog zur kubis
hen Gruppe den Symmetrieoperationen eines W�urfelszuordnen mit dem Unters
hied, da� die 2�-Drehungen in eine negative Identit�at f�uhrenund erst Rotationen um 4� die W�urfelkon�guration invariant lassen. Die Rotationsa
hsendes W�urfels verdoppeln also ihre Ordnung, und die Gruppe 2O besitzt damit 48 Elemente.Anhand einer Verkn�upfungstabelle zeigt man, da� die Klassenkon�gurationen der kubi-s
hen Gruppe in ihrer Struktur erhalten bleiben. Die Identit�at bildet weiterhin eine eigeneKlasse, in den Klassen 6C2 und 3C24 verdoppelt si
h die Anzahl der Elemente, da manaufgrund der 4�-Periodizit�at von 2O nun zwis
hen Rotationen um +� und �� unters
hei-den mu�. Die Klassen werden daher mit 12C4 und 6C28 bezei
hnet. Die beiden restli
henKlassen 8C3 und 6C4 bleiben unter dem Namen 8C6 und 6C8 erhalten, werden allerdingsdur
h zwei glei
hm�a
htige Klassen 8C26 und 6C 08 erg�anzt, die die nun m�ogli
h gewordenenRotationen um �4�3 bzw. �3�2 als Elemente beinhalten. Eine weiter Klasse entsteht dur
hBer�u
ksi
htigung der negativen Identit�at. Insgesamt �ndet man somit a
ht konjugierteKlassen, wobei die Zahl vor der Klassenbezei
hnung ihrer M�a
htigkeit entspri
ht, und dieIndizierung der Klassenelemente die Drehri
htung, die Rotationsa
hse und deren Ordnunghinsi
htli
h der Klasse angibt:� E = fidg� J = f�idg



90 Grundlagen der Gruppentheorie II� 12C4 = fC4a;C4b;C4
;C4d;C4e;C4f ;C�14a ;C�14b ;C�14
 ;C�14d ;C�14e ;C�14f g��-Rotationen um die A
hsen Oa, Ob, O
, Od, Oe, Of , insgesamtzw�olf Elemente;� 8C26 = fC3�;C3�;C3
 ;C3Æ;C�13� ;C�13� ;C�13
 ;C�13Æ g�4�3 -Rotationen um die vier Raumdiagonalen O�, O�, O
, OÆ, insgesamt a
htElemente;� 8C6 = fC6�;C6� ;C6
 ;C6Æ;C�16� ;C�16� ;C�16
 ;C�16Æ g�2�3 -Rotationen um die vier Raumdiagonalen O�, O�, O
, OÆ, insgesamt a
htElemente;� 6C8 = fC8=3x;C8=3 y;C8=3 z;C�18=3x;C�18=3 y;C�18=3 zg�3�2 -Rotationen um die drei Koordinatena
hsen x, y, z, insgesamtse
hs Elemente;� 6C 08 = fC8x;C8y;C8z;C�18x ;C�18y ;C�18z g��2 -Rotationen um die drei Koordinatena
hsen x, y, z, insgesamtse
hs Elemente;� 6C28 = fC4x;C4y;C4z;C�14x ;C�14y ;C�14z g��-Rotationen um die drei Koordinatena
hsen x, y, z, insgesamtse
hs Elemente.4.2.2 Irreduzible Darstellungen und CharaktertabelleAls endli
he Gruppe besitzt 2O entspre
hend der Anzahl ihrer konjugierten Klassen genaua
ht irreduzible Darstellungen. F�unf von ihnen stimmen aufgrund der �Uberlagerungsei-gens
haft von 2O mit denen der kubis
hen Gruppe �uberein. Die drei restli
hen bezei
hnetman mit G1, G2 und H (vgl. [34℄). Ihre Dimensionen lassen si
h aus Formel (8), Kapitel 0eindeutig zu (dG1 ; dG2 ; dH) = (2; 2; 4) bestimmen, da die Dimensionen der DarstellungenA1; A2; : : : ; T2 bereits aus Unterabs
hnitt 0.3.2 bekannt sind.Hierf�ur greift jedo
h no
h zus�atzli
h das folgende Argument: Die irreduziblen Darstel-lungen Rj der Lie-Gruppe SU(2) zerfallen in eindeutiger Weise in Tensordarstellungen(j = 0; 1; 2; : : :) und Spinordarstellungen (j = 1=2; 3=2; 5=2; : : :)3. Da die Gruppe 2O ei-ne Untergruppe der SU(2) ist, k�onnen deren Elemente ebenfalls dur
h Darstellungen Rjrepr�asentiert werden (vgl. dazu Kapitel 1, Unterabs
hnitt 1.2.2). Fa�t man nunRj als Dar-stellung Rj2O von 2O auf, so ist diese i.a. reduzibel und kann in irreduzible Darstellungen3Die Unters
heidung von Tensor- und Spinordarstellungen erfolgt na
h dem Verhalten bez�ugli
h ihrerAnwendung auf das Element der negativen Identit�at. Falls DRj (�id) = 11 gilt, geh�ort Rj zur Tensordar-stellung der SU(2), falls dagegen DRj (�id) = �11 ist, z�ahlt sie zur Spinordarstellung.



4.2 �Uberlagerungsgruppe 2O 91der 2O zerlegt werden. Da die Tensordarstellungen der SU(2) mit denen der SO(3) �uber-einstimmen, zerf�allt die Darstellung Rj2O f�ur j 2 f0; 1; 2; : : :g in irreduzible Darstellungender kubis
hen Gruppe O (vgl. Tabelle in 1.2.2) und f�ur j 2 f1=2; 3=2; 5=2; : : :g in spino-rielle irreduzible Darstellungen der 2O. Letztere sind in na
hfolgender Tabelle angegeben[34℄: Spin Zerlegung in irreduziblej Darstellungen von 2O1=2 G13=2 H5=2 G2 �H7=2 G1 �G2 �H9=2 G1 � 2H11=2 G1 �G2 � 2HWir brau
hen demna
h nur no
h die Charaktere f�ur die Darstellungen G1, G2 und Hanzugeben. F�ur die Spuren der irreduziblen SU(2)-Darstellungsmatrizen mit Spin j undRotationsma� � gilt die Formel [12℄�j� = sin ��j + 12� ��sin �2 ; (4.11)wobei unbestimmte Ausdr�u
ke als Grenzwerte unter Anwendung der Regel von de l`Hôspitalgegeben sind. Mit Hilfe der Tabelle lassen si
h die Charaktere f�ur G1 (j = 1=2) und H(j = 3=2) direkt aus (4.11) bestimmen4. Die Charaktere der Darstellung G2 ergeben si
hebenfalls aus obiger Tabelle, wenn man von den Ergebnissen, die man aus (4.11) f�ur j = 5=2erh�alt, die entspre
henden Klassen
haraktere von H subtrahiert5. Insgesamt �ndet mandie folgende Tabelle [34℄:konj. Klassen E J C4 C26 C6 C8 C 08 C28j konj. Klassen j 1 1 12 8 8 6 6 6Darstellung G1 2 -2 0 -1 1 -p2 p2 0G2 2 -2 0 -1 1 p2 -p2 0H 4 -4 0 1 -1 0 0 0Rotationsma�e � dera
ht Klassen von 2O � 4� 2� � 4�=3 2�=3 3�=2 �=2 �4Die Charaktere f�ur die Darstellung G1 erh�alt man au
h unter Benutzung der Pauli-Matrizen,da f�ur Drehungen von Spinoren mit dem Winkelma� � um einen beliebigen Einheitsvektor n gilt:U(n; �) = 11 
os � 12 ��� i� � n sin � 12��(vgl. Anhang D).5Zerf�allt eine reduzible Darstellung R in zwei irreduzible Anteile R� und R� , so besitzt der Darstel-lungsraum V von R genau zwei invariante R�aume V1 und V ?1 =: V2, und die Darstellungsmatrizen haben(evtl. na
h �Ahnli
hkeitstransformation) Blo
kdiagonalgestalt. F�ur ihre Charaktere gilt dann o�ensi
htli
h�R = �� + �� .



92 Grundlagen der Gruppentheorie II4.3 �Uberlagerungsgruppe 2Ound SpinorenDieser Abs
hnitt ist dem Transformationsverhalten von Majorana-Spinoren unter der end-li
hen �Uberlagerungsgruppe 2O von O gewidmet. Da Majorana-Spinoren spezielle Dira
-Spinoren sind (vgl. Anhang F), nutzen wir die Kenntnisse aus der Dira
-Theorie underinnern an die folgenden Zusammenh�ange: Betra
htet man endli
he Lorentz-Drehungeneines Dira
-Spinors mit dem Winkelma� � um einen beliebigen Einheitsvektor n 2 R3 , soerh�alt man f�ur die Rotationsmatrix des Spinors [35℄SRot:(n; �) = exp ( i2�� � n) (4.12)= 114 
os �12��+ i� � n sin �12�� (4.13)= 114 
os �12��+ i�k � nk sin �12�� ; (4.14)wobei �k mit den Pauli-Matrizen �uber die Relation�ij = �ijk �k 00 �k ! � �ijk�k (4.15)mit i; j; k = 1; 2; 3 und ��� = i2 [
�; 
� ℄ de�niert ist. Dabei ergibt si
h (4.13) dur
h Reihen-entwi
klung der Exponentialfunktion und ans
hlie�ender Einzelbetra
htung der geradenund ungeraden Potenzen in �i unter Ausnutzung der Beziehungen n2 = 1 und (�i)2 = 11bzw. f�i; �jg = 0 f�ur i 6= j.Um das Transformationsverhalten des Spinors unter der Gruppe 2O zu untersu
hen, habenwir uns auf die in Unterabs
hnitt 4.2.1 bes
hriebenen Drehungen zu bes
hr�anken. Diezugeh�origen Rotationsmatrizen SRot:(n; �) lassen si
h dann als Darstellungsmatrizen D ~Reiner Darstellung ~R der �Uberlagerungsgruppe 2O au�assen. Da wir an den irreduziblenAnteilen der Darstellung ~R interessiert sind, ben�otigen wir dabei ledigli
h die Spuren(d.h. Charaktere) der Matrizen SRot:(n; �) und ni
ht ihre explizite Form. Aufgrund derSpurfreiheit der Pauli-Matrizen ergibt si
h f�ur den zweiten Summanden der re
hten Seitevon (4.14) Tr�i�k � nk sin�12��� = 0 ; (4.16)so da� insgesamt TrfSRot:(n; �)g = Tr�114 
os �12��� (4.17)!= � ~R (SRot:(�)) (4.18)gilt. Im Einzelnen erh�alt man unter Benutzung der in Unterabs
hnitt 4.2.2 angegebenWinkelma�e f�ur die konjugierten Klassen von 2O:



4.3 �Uberlagerungsgruppe 2O und Spinoren 93Klassen Rotationswinkel Spur der Rotations-von 2O � matrix SRot:(�)E 4� 4J 2� -4C4 � 0C26 4�=3 -2C6 2�=3 2C8 3�=2 -2p2C 08 �=2 2p2C28 � 0Die Zerlegung der Darstellung ~R in ihre irreduziblen Anteile erfolgt unter Verwendungder Formel (12) aus Kapitel 0, die in passender Formulierung die folgende Gestalt hat:a� = 148Xi ni �� (Ci)� ~R (Ci) : (4.19)Dabei hat man �uber alle konjugierten Klassen Ci der �Uberlagerungsgruppe 2O zu summie-ren, wobei die Charaktere ��(Ci) der irreduziblen Darstellungen von 2O ihrer Charakter-tabelle aus Unterabs
hnitt 4.2.2 zu entnehmen sind. Man erh�alt die folgenden Resultate:aG1 = 148(1 � 2 � 4 + 1 � (�2) � (�4) + 12 � 0 � 0 + 8 � (�1) � (�2)+8 � 1 � 2 + 6 � (�p2) � (�2p2) + 6 � p2 � 2p2 + 6 � 0 � 0) = 2aG2 = 148(1 � 2 � 4 + 1 � (�2) � (�4) + 12 � 0 � 0 + 8 � (�1) � (�2)+8 � 1 � 2 + 6 � p2 � (�2p2) + 6 � (�p2) � 2p2 + 6 � 0 � 0) = 0aH = 148(1 � 4 � 4 + 1 � (�4) � (�4) + 12 � 0 � 0 + 8 � 1 � (�2)+8 � (�1) � 2 + 6 � 0 � (�2p2) + 6 � 0 � 2p2 + 6 � 0 � 0) = 0 :Der Darstellungsraum von ~R zerf�allt in zwei invariante, zweidimensionale Unterr�aume, diesi
h beide na
h der Darstellung G1 transformieren. Gem�a� der Bezei
hnungsweise (5) ausKapitel 0 s
hreibt si
h ~R somit als~R = 2G1 = G1 �G1 : (4.20)Die Darstellung ~R der �Uberlagerungsgruppe 2O ist demna
h reduzibel.Bemerkung: Ein Dira
-Spinor ist aus einem links- und einem re
htsh�andigen, zweikom-ponentigen Weyl-Spinor zusammengesetzt, die si
h jeweils unter der �UberlagerungsgruppeSL(2; C ) der eigentli
hen ortho
hronen Lorentzgruppe L"+ transformieren. Da si
h mit Hil-fe der SL(2; C ) {glei
hes gilt damit au
h f�ur die SU(2), da SU(2) � SL(2; C ) gilt{ keine



94 Grundlagen der Gruppentheorie IIRaumspiegelungen bes
hreiben lassen, kann sie keine links- und re
htsh�andigen Syste-me ineinander �uberf�uhren. In der relativistis
hen Feldtheorie ist man an Zust�anden miteindeutig de�nierten P -Parit�atseigenzust�anden interessiert, so da� man diesen Umstanddur
h Bildung von vierkomponentigen Dira
-Spinoren umgeht. Diese transformieren si
haber dann unter SL(2; C ) na
h einer reduziblen Darstellung. Erst na
h �Ubergang zur or-tho
hronen Lorentz-Gruppe L" � L"+ [ PL"+, genauer zu deren �Uberlagerung, die dieRaumspiegelungen I eins
hlie�t, ist die Darstellung irreduzibel. Einzelheiten �ndet manin [20℄. Dieser Sa
hverhalt �ubertr�agt si
h auf die entspre
henden untergeordneten Gitter-symmetriegruppen, so da� si
h ein Dira
-Spinor, wie in (4.20) angegeben, unter der 2O alsGittersymmetriegruppe der SU(2) na
h einer reduziblen Darstellung transformiert. Unterder vollen �Uberlagerungsgruppe 2Oh, die analog zur vollen kubis
hen Gruppe Oh Raum-spiegelungen ber�u
ksi
htigt und dur
h 2Oh = 2O 
 fe; Ig de�niert ist, stellt (4.20) abereine irreduzible Darstellung dar.Es sei der Deutli
hkeit halber hier no
h einmal darauf hingewiesen, da� die volle �Uberla-gerungsgruppe 2Oh die �Uberlagerungsgruppe der vollen kubis
hen Gruppe Oh ist.C-Parit�at und Majorana-SpinorenUnsere bisherigen �Uberlegungen haben wir f�ur Dira
-Spinoren dur
hgef�uhrt und die spezi-elle Eigens
haft von Majorana-Spinoren verna
hl�assigt. Unter Einbeziehung der diskretenSymmetrietransformation der C-Parit�atsoperation s
hreibt si
h die Darstellung (4.20) ex-akter in der Form ~R�+ = 2G�+1 = G�+1 �G�+1 ; (4.21)wobei � ein Platzhalter f�ur die im n�a
hsten Kapitel zu behandelnde P -Parit�at ist. Daaufgrund der Majorana-Bedingung �C = � (vgl. Anhang F) ein Majorana-Spinor beiLadungskonjugation in si
h selbst �ubergeht, gilt f�ur die Darstellung ~R mit vorgew�ahlternegativen C-Parit�at analog zum Fall C = +1~R�� = 2G��1 = G��1 �G��1 : (4.22)



Kapitel 5Darstellungen der�Uberlagerungsgruppe 2O �uberOperatoren derN = 1SUSY-Yang-Mills-TheorieDie in Kapitel 2 gruppentheoretis
h untersu
hten Gitter-Operatoren k�onnen im Rah-men von numeris
hen Bere
hnungen von (massiven) Glueballzust�anden der QCD mit-tels Monte-Carlo-Simulationen verwendet werden. Dabei bes
hr�ankte man si
h aufgrundder Ei
hinvarianz-Forderung auf geeignete Kombinationen von Wilson-Loops, die si
hna
h irreduziblen Darstellungen der unterliegenden Gitter-Symmetriegruppe zu transfor-mieren haben. In diesem abs
hlie�enden Kapitel werde i
h nun supersymmetris
he Gitter-Operatoren betra
hten. In j�ungsten Gitter-Simulations-Re
hnungen dienen derartige Ope-ratoren zur Bestimmung des Massenspektrums der in einer N = 1 SUSY-Yang-Mills-Theorie auftretenden Zust�ande [36℄.Ziel meiner Untersu
hungen soll es sein, das im zweiten Kapitel bes
hriebene Verfahrenzum AuÆnden von Darstellungen �uber Gitter-Operatoren auf den supersymmetris
henFall auszuweiten und f�ur einige der zu konstruierenden Darstellungen eine Orthonormal-basis bestehend aus den betra
hteten supersymmetris
hen Gitter-Operatoren anzugege-ben. Bei der Wahl ei
hinvarianter Operatoren f�ur die Simulation hat man in supersymme-tris
hen Theorien sowohl bosonis
he als au
h fermionis
he Freiheitsgrade zu ber�u
ksi
hti-gen, so da� neben Wilson-Loops nun au
h Majorana-Fermionen f�ur die Zusammensetzungeines geeigneten Operators zur Verf�ugung stehen. Unter Verwendung der Ergebnisse ausdem vorherigen Kapitel (
harakteristis
hes Transformationsverhalten von Spinoren) isteinzusehen, da� dieser Sa
hverhalt direkte Auswirkungen auf die zugrunde liegende Sym-metriegruppe haben wird, die je na
h Auswahl der Operatorkomponenten anstatt derim Falle von Wilson-Loops betra
hteten kubis
hen Gruppe nunmehr au
h deren �Uber-lagerungsgruppe sein kann. Des weiteren wird si
h zeigen, da� f�ur die Diskussion desTransformationsverhaltens der Operatoren vereinzelt auf das ebenfalls im vorangehendenKapitel bereitgestellte Konzept der direkten Produktdarstellung der diagonalen Unter-



96 Darstellungen der �Uberlagerungsgruppe 2O �uber SUSY-Operatorengruppe einer direkten Produktgruppe zur�u
kgegri�en werden mu�. Insgesamt gehe i
h aufdrei unters
hiedli
he supersymmetris
he Gitter-Operatoren ein. Zuvor aber ein knapper�Uberbli
k �uber die in der N = 1 SUSY-Yang-Mills-Theorie erwarteten massiven, 
hiralenSupermultipletts.5.1 MotivationDie N = 1 SUSY-Yang-Mills-Theorie ist die einfa
hste, supersymmetris
he Ei
htheorieund enth�alt im Falle der Ei
hruppe SU(N
) insgesamt (N2
 � 1) Ei
hfelder (Gluonen) undeine glei
he Anzahl an Majorana-Fermionen (Gauginos) in der adjungierten Darstellung.Ihre Dynamik weist in Berei
hen starker Kopplung (d.h. niedriger Energien) Analogienzur QCD auf; beispielsweise erwartet man au
h in supersymmetris
hen Ei
htheorien dieaus der QCD bekannten Ph�anomene der spontanen Symmetriebre
hung und des 
on�ne-ment. Zudem sollte ihr Massespektrum au
h einen stabilen Teil
henzustand oberhalb desVakuums aufweisen. Diese Folgerungen der ni
ht-perturbativen Dynamik k�onnen mit Hilfeeiner e�ektiven Wirkung bes
hrieben werden, wie sie Anfang der a
htziger Jahre von G.Veneziano und Yankielowi
z im Rahmen einer N = 1 Yang-Mills-Theorie aufgestelltwurde [33℄. Sie f�uhrt auf ein Wess-Zumino-Supermultiplett, wel
hes die folgenden massivenZust�ande enth�alt:� einen 0� Gluinoball (pseudoskalares Boson), als Analogon zum � 0-Meson in der QCD� einen 0+ Gluinoball (skalares Boson), wel
hes nahezu dem f0-Meson der QCD ent-spri
ht� einen Spin-12 -Gluino-Glueball als fermionis
hen Freiheitsgrad (Majorana-Fermion).Hier gibt es aufgrund der fundamentalen Darstellung kein Analogon in der QCD.Ende der neunziger Jahre wiesen G. R. Farrar,G. Gabadaze und M. S
hwetz aller-dings darauf hin, da� es a priori keine Gr�unde daf�ur gibt, da� in diesem Energieberei
hkeine Glueballzust�ande auftreten sollten und diese daher in Form eines zus�atzli
hen Super-multipletts in die Formulierung der Theorie einbezogen werden sollten. Sie s
hlugen dahervor, die e�ektive Veneziano-Yankielowi
z-Wirkung um einen Zusatzterm zu erg�anzen, soda� mit Hilfe der erweiterten Wirkung nun au
h Glueballzust�ande bes
hrieben werdenk�onnen [37,38℄. Das hinzugef�ugte, lei
htere, 
hirale Supermultiplett enth�alt dabei� einen 0+ Glueball als skalares Meson� einen pseudoskalaren 0� Glueballzustand� einen weiteren fermionis
hen Gluino-Glueball in Analogie zum Veneziano-Yankielowi
z-Supermultiplett.Das Massenspektrum der lei
htesten Zust�ande kann in analoger Weise zur QCD mit Hilfevon Monte-Carlo-Simulationen untersu
ht werden, wobei aufgrund der Struktur der e�ek-tiven Wirkung Mis
hungen zwis
hen den einzelnen Zust�anden zu erwarten sind. Sol
he
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hen Analysen werden derzeit in der Tat dur
hgef�uhrt (vgl. beispielsweise [36℄)und ben�otigen f�ur die Simulation je na
h Auswahl des zu untersu
henden Teilberei
hesdes Massenspektrums u a. supersymmetris
he Gitter-Operatoren. Dies ges
hieht unterEinbeziehung fermionis
her Freiheitsgrade, die gerade so aufgebaut sind, da� deren Ma-trixelemente einen guten �Uberlapp mit den in Frage stehenden Zust�anden haben.5.2 Majorana-Majorana-OperatorZun�a
hst wollen wir einen Operator betra
hten, der aus zwei auf einem Gitterpunkt �-xierten Majorana-Feldern besteht und ein m�ogli
hst einfa
hes Transformationsverhaltenunter der �Uberlagerungsgruppe 2O aufweisen soll. Wir s
hreiben ihn in der Form��� = ��(x)�(x) mit x 2 � : (5.1)Aus der Theorie der Dira
-Glei
hung im Kontinuum ist bekannt, da� si
h der aus zweiDira
-Spinoren gebildete Ausdru
k �  im Minkowski-Raum unter Lorentztransformatio-nen aufgrund der Relationen 0(x0) = S (x) und � 0(x0) = � (x)S�1 ; (5.2)wegen � 0(x0) 0(x0) = � (x)S�1S (x) = � (x) (x) (5.3)wie ein Lorentzskalar transformiert.Beim �Ubergang zu euklidis
hen Majorana-Spinoren {die in unserem Fall zudem nur aufGitterpl�atzen erkl�art sind{ hat man zu bea
hten, da� die De�nition f�ur die konjugiertenSpinoren � �  y
0 dur
h den Ausdru
k �� = �tC (5.4)zu ersetzen ist. Es zeigt si
h allerdings, da� trotzdem weiterhin��0(x0) = ��(x)S�1 (5.5)gilt (vgl. dazu Anhang G). Der Majorana-Majorana-Operator transformiert si
h daheranalog zur minkowskis
hen Formulierung unter Lorentztransformationen wie ein Lorentz-skalar ��0�0 = ��S�1S� = ��� : (5.6)Da die Elemente der �Uberlagerungsgruppe 2O als Lorentzdrehungen um gewisse A
hsenund Winkelma�e spezielle Lorentztransformationen sind, �ubertr�agt si
h das Transformati-onsverhalten des betra
hteten Operators unter der Lorentzgruppe auf ihre diskrete Unter-gruppe 2O. Ein Lorentzskalar ist jedo
h invariant unter Raumspiegelungen. Somit besitzter den P -Parit�atseigenwert +1 und verh�alt si
h unter der vollen �Uberlagerungsgruppe 2Ohidentis
h wie unter 2O.



98 Darstellungen der �Uberlagerungsgruppe 2O �uber SUSY-OperatorenAnaloge Untersu
hungen lie�en si
h nun au
h f�ur den Operator��
5� (5.7)dur
hf�uhren. Man erh�alt dabei als Ergebnis, da� si
h obiger Operator analog zum Falleder Dira
-Spinoren in der relativistis
hen Quantenfeldtheorie wie ein Pseudoskalar trans-formiert, d.h. er we
hselt unter Raumspiegelungen sein Vorzei
hen.5.3 Majorana-Link-Majorana-OperatorAls weiterer supersymmetris
her, ei
hinvarianter Gitter-Operator wird jetzt derMajorana-Link-Majorana-Operator betra
htet, der aus zwei auf bena
hbarten Gitterpunkten be�nd-li
hen Majorana-Spinoren �� und � besteht, die �uber die beiden Gitter-Links Ux;� undU�1x;� = U yx;� miteinander verbunden sind. In analytis
her Form s
hreibt er si
h alsTrf��(x)U yx;��(x+ a�̂)Ux;�g ; (5.8)wobei x; x+ a�̂ in �̂-Ri
htung bena
hbarte Gitterpunkte mit Gitterabstand a sind. Gra-phis
h l�a�t er si
h dur
h �- �(x+ a�̂)��(x) U yx;�Ux;�verans
hauli
hen, wobei die Gitter-Links ledigli
h zur Visualisierung gekr�ummt gezei
hnetsind. Man kann ihn aufgrund der drei unabh�angigen Raumri
htungen eines dreidimensio-nalen Gitternetzes in drei unters
hiedli
hen Ausri
htungen auf ein Gitter bringen. DieOperatoren seien dabei mit
q q���� � = O1 qq��� = O2 q q�� � = O3bezei
hnet.I
h m�o
hte zun�a
hst auf sein Verhalten unter der P - bzw. C-Parit�atsoperation eingehen,um gegebenenfalls wie im Falle von Wilson-Loops Parit�at-invariante Operatoren zu kon-struieren. Dabei hat man u.a. auf das unters
hiedli
he Wirken des P -Parit�atsoperators aufMajorana-Spinoren und Link-Variablen zu a
hten.



5.3 Majorana-Link-Majorana-Operator 995.3.1 Verhalten unter P -Parit�atIm Minkowskiraum ist die P -Parit�atsoperation bei Anwendung auf einen Bispinor dur
hP = 
0 �  P (5.9)de�niert [28℄. F�ur den konjugierten Spinor ergibt si
h damit� P � P ( � ) = P ( y
0) = (
0 )y
0 =  y 
y0|{z}
0 
0 = � 
0 : (5.10)Im Falle von euklidis
henMajorana-Spinoren hat man die De�nition (5.9) zu modi�zieren1,indem man P� = i 
0� (5.11)setzt [39℄. Damit gilt unter Verwendung der ver�anderten De�nition des konjugierten Spi-nors (vgl. Glei
hung (5.4)) im Unters
hied zu Glei
hung (5.10)P (��) = P (�tC) = (i 
0�)tC
0 = i �t 
t0C|{z}�C
0 
0 = �i �tC
o
0 = �i��
0 : (5.12)Spiegelt man den Majorana-Link-Majorana-Operator beispielsweise am Gitterpunkt x, soerh�alt man zun�a
hstPxf��(x)U yx;��(x+ a�̂)Ux;�g = �i ��(x)
0U yx;��i 
0�(x� a�̂)Ux;��= ��(x)
20U yx;���(x� a�̂)Ux;��= ��(x)U yx;���(x� a�̂)Ux;�� ; (5.13)also bildli
h �- �(x+ a�̂)��(x) U yx;�Ux;� Px�! -� ��(x) :�(x� a�̂) U yx;��Ux;��F�uhrt man jetzt eine Translation in +�̂-Ri
htung um einen Gitterplatz dur
h, so geht die�uber Glei
hung (5.13) gebildete Spur in den Ausdru
kTrf��(x+ a�̂)Ux;��(x)U yx;�g (5.14)1Da der Parit�atsoperator P Raumsspiegelungen bes
hreibt, hat er die Glei
hungen P�1
jP = �
j undP�1
0P = 
0 zu erf�ullen, und man �ndet P = ei'
0 mit einem Phasenfaktor ei'. Im Euklidis
hen gilt mit
mink:0 = 
eukl:4 dann P� = (ei'
4�)tC = ei'��C�1
t4C = �ei'��
4. F�ur den Lorentzskalar ��� fordert manP�P� = �ei'��
4
4� = �e2i'��� != ��� und w�ahlt f�ur den Phasenfaktor ei' = i. Im Minkowskis
hen istdie Wahl des Phasenfaktors beliebig, da er dur
h die komplexe Konjugation in (5.4) herausf�allt. Man setztdaher ei' = 1.



100 Darstellungen der �Uberlagerungsgruppe 2O �uber SUSY-Operatoren�uber, an deren Stelle wir wegen der Zwis
henre
hnung (�) au
h den TermTrfUx;���(x)U yx;��(x+ a�̂)g bzw. Trf��(x)U yx;��(x+ a�̂)Ux;�g (5.15)verwenden k�onnen (f�ur (�) s. unten).Damit haben wir gezeigt, da� unter Verna
hl�assigung von Translationen der Majorana-Link-Majorana-Operator unter der P -Parit�atsoperation in si
h selbst �uberf�uhrt wird.Daher k�onnen wir uns �ahnli
h wie im Falle der Einfa
h-Plaquetten aus Kapitel 2 bei derUntersu
hung des Transformationsverhaltens der Operatoren auf Transformationen un-ter der �Uberlagerungsgruppe 2O bes
hr�anken, anstatt die volle �Uberlagerungsgruppe 2Ohheranzuziehen. Der Grund hierf�ur liegt darin, da� die Operatoren wegen ihrer P -Parit�at-Invarianzeigens
haft die hinzukommenden Raumspiegelungen der vollen �Uberlagerungs-gruppe 2Oh ignorieren, d.h. darunter invariant sind.(�) Zwis
henre
hnung:Trn��(x+ a�̂)Ux;��(x)U yx;�o = Trn��a(x+ a�̂)T aUx;��(x)bT bU yx;�o= ��a(x+ a�̂)�(x)bTrnT aUx;�T bU yx;�o= ��(x)b�a(x+ a�̂)TrnT bU yx;�T aUx;�o= Trn��(x)bT bU yx;��a(x+ a�̂)T aUx;�o= Trn��(x)U yx;��(x+ a�̂)Ux;�o (5.16)Hierbei haben wir die Zerlegung � = �aT a ; T a 2 su(2) und die Re
henregel� � = �� f�ur Majorana-Spinoren benutzt (vgl. Kapitel 3 Glei
hung (3.66) bzw.Anhang F).5.3.2 Verhalten unter C-Parit�atDie Majorana-Spinoren verhalten si
h gegen�uber C-Parit�atsoperationen per De�nitioninvariant � C�! �C = � bzw. �� C�! ��C = �� : (5.17)Die Gitter-Links �andern jeweils ihre OrientierungUx;� C�! U yx;� bzw. U yx;� C�! Ux;� ; (5.18)so da� der Majorana-Link-Majorana-Operator insgesamt den C-Parit�atseigenwert +1 be-sitzt.5.3.3 Transformationsverhalten und DarstellungBei der Untersu
hung des Transformationsverhaltens der Majorana-Link-Majorana-Operatorenunter der �Uberlagerungsgruppe 2Oh hat man zu bea
hten, da� sowohl die Links als au
hder Majorana-Spinor unabh�angig voneinander zu transformieren sind.



5.3 Majorana-Link-Majorana-Operator 101Im Majorana-Sektor k�onnen wir dabei auf die Ergebnisse aus Abs
hnitt (5.2) zur�u
kgrei-fen. Es gilt �(x+ a�̂) �! �0((x+ a�̂)0) = S�(x+ a�̂) (5.19)��(x) �! ��0(x0) = ��(x)S�1 (5.20)und wegen der Ortsunabh�angigkeit der Lorentztransformationsmatrix S damit analog zu(5.6)��(x)�(x+ a�̂) �! ��0(x0)�0((x+ a�̂)0) = ��(x)S�1S�(x+ a�̂) = ���(x+ a�̂) : (5.21)Die Majoranas transformieren si
h demna
h wie Lorentzskalare, wobei sie si
h im Gegen-satz zum Majorana-Majorana-Operator ni
ht auf dem glei
hen Gitterplatz be�nden.Die Links der drei Operatoren O1; O2; O3 k�onnen unter Verwendung der �Uberlegungenaus Kapitel 2 mit den in den drei unters
hiedli
hen Koordinatenebenen liegenden W�urfel-kanten eines dreidimensionalen W�urfels identi�ziert werden. Wie bereits an fr�uherer Stelleausf�uhrli
h diskutiert, bestimmt dabei ihr Transformationsverhalten unter der kubis
henGruppe O in eindeutiger Weise ihr Transformationsverhalten unter der �Uberlagerungs-gruppe 2O von O. Die Konstruktion einer Darstellung der kubis
hen Gruppe �uber eben-sol
he Links bzw. W�urfelkanten kann nun gem�a� der Ausf�uhrungen in Kapitel 2 erfolgen.Dabei sollte man bea
hten, da� das Transformationsverhalten und die daraus generierteDarstellung im Falle von W�urfelkanten im Prinzip bereits bekannt sind, da die betra
hte-ten Wilson-Loops gerade "kantenweise\ mittels Glei
hung (2.9) aus Unterabs
hnitt 2.2.3dur
h die Drehmatrizen der T1-Vektordarstellung der kubis
hen Gruppe transformiertwurden. Die gesu
hten Darstellungsmatrizen der Majorana-Link-Majorana-Operatoren imLink-Sektor sind demna
h oben genannte Drehmatrizen, die gem�a� ihrer Bezei
hnung dieirreduzible Vektordarstellung T1 von O repr�asentieren (vgl. Anhang C.1).Aufgrund der Lorentzskalar-Eigens
haft des Majorana-Link-Majorana-Operators imMajo-rana-Sektor transformieren si
h die drei Operatoren O1; O2; O3 unter der �Uberlagerungs-gruppe 2O na
h deren irreduziblen Vektordarstellung T1. Ber�u
ksi
htigt man zus�atzli
hno
h Raumspiegelungen, oder in anderen Worten, geht man zur vollen �Uberlagerungs-gruppe 2Oh �uber, so erh�alt man wegen des positiven P -(bzw. C-) Parit�atseigenwertes derOperatoren als irreduzible Darstellung ~RPC der vollen �Uberlagerungsgruppe 2Oh �uberMajorana-Link-Majorana-Operatoren ~RPC = T++1 : (5.22)Als eineOrthonormalbasislassen si
h analog zu den Ergebnissen aus Kapitel 2, die drei Operatoren O1; O2 und O3w�ahlen. Als Tabelle erh�alt man:



102 Darstellungen der �Uberlagerungsgruppe 2O �uber SUSY-OperatorenOperatoren der Majorana-Link-Majorana-OperatorenLoop-Op. O1 O2 O3~RPC T++1 1 1 1Die Einf�uhrung einer sol
hen Tabelle erfolgte ebenfalls bereits in Kapitel 2.5.3.4 Betra
htungen im KontinuumZum Ende dieses Abs
hnitts sei kurz ein Zusammenhang zwis
hen dem Ausdru
k (5.8) undder Vorw�arts-Gitter-Version der kovarianten Ableitung in der adjungierten Darstellunghergestellt, der uns zu einer n�utzli
hen Betra
htung eines zum Majorana-Link-Majorana-Operartors analogen Objektes im Kontinuum f�uhren wird.Wir beginnen mit dem Term (5.8), von dem wir den Beitrag ��(x)�(x) subtrahieren. Zus�atz-li
h multiplizieren wir mit dem Faktor 1a und erhalten1a ���(x)Ux;�y�(x+ a�̂)Ux;� � ��(x)�(x)� (5.23)bzw. graphis
h �- �(x+ a�̂) � ��(x)�(x) :��(x) U yx;�Ux;�Da ��(x)�(x) ein Lorentzskalar ist, transformiert si
h dieser Operator in glei
her Weiseunter Lorentztransformationen, wie der Majorana-Link-Majorana-Operator.Wegen Ux;� = e�aA�(x) und U yx;� = eaA�(x) ergibt si
h f�ur Glei
hung (5.23)1a ���(x)Ux;�y�(x+ a�̂)Ux;� � ��(x)�(x)�= 1a ���(x)(1 + aA�(x))(�(x) + a���(x))(1 � aA�(x))� ��(x)�(x) +O(a2)�= 1a �a��(x)���(x) + a��(x)A�(x)�(x) � a��(x)�(x)A�(x) +O(a2)�= ��(x) (���(x) + [A�(x); �(x)℄) +O(a) : (5.24)Dieser Ausdru
k l�a�t si
h mit Hilfe der dur
hDlat;f� f(x) � 1a �U yx;�f(x+ a�̂)Ux;� � f(x)�= 1a �f(x) + a��f(x) + aA�(x)f(x)� af(x)A�(x)� f(x) +O(a2)�= ��f(x) + [A�(x); f(x)℄ +O(a); (5.25)



5.3 Majorana-Link-Majorana-Operator 103de�nierten Vorw�arts-Gitter-Version der kovarianten Ableitung in der adjungierten Dar-stellung in die Form ��(x)Dlat;f� �(x) +O(a) (5.26)bringen, so da� im naiven Kontinuumslimes f�ur a! 0��(x)Dlat;f� �(x) +O(a) �! ��(x)D��(x) (5.27)gilt, wobei D�� = ���+ [A�; �℄ (5.28)die kovariante Ableitung in der adjungierten Darstellung bezei
hnet. Untersu
ht man nundas Transformationsverhalten des Operators ��(x)D��(x) unter Lorentztransformationen,so erh�alt man in minkowskis
her Formulierung wegen��D�� = �� f���+ [A�; �℄g (5.29)= �����| {z }(i) + ��A��| {z }(ii) � ���A�| {z }(iii) (5.30)f�ur die drei Summanden die Transformationseigens
haften(i) ����� �! ��0(x0)�0��(x0) = ��(x)S�1a����S�(x)= a����(x)S�1S���(x)= a����(x)���(x) (5.31)(ii) ��A�� �! ��0(x0)A0��(x0) = ��(x)S�1a��A�S�(x)= a����(x)S�1SA��(x)= a����(x)A��(x) (5.32)(iii) ���A� �! ��0(x0)�(x0)A0� = ��(x)S�1S�(x)a��A�= a����(x)�(x)A� ; (5.33)wobei a�� die in Anhang G erkl�arten Komponenten der Lorentztransformationsmatrixsind. Das Ergebnis zeigt, da� si
h alle drei Summanden { und somit au
h der gesam-ten Kontinuum-Operator ��D��{ als Vektoren transformieren, oder anders ausgedr�u
kt,si
h wie ein Spin-1-Teil
hen verhalten. Dieses Resultat stimmt mit den �Uberlegungen ausKapitel 1 bzw. 4 �uberein, wona
h ein Zustand, der si
h unter der untergeordneten Gitter-Symmetriegruppe O bzw. 2O na
h der Vektordarstellung T1 transformiert, im Kontinu-umslimes einem Spin-1-Zustand zugeordnet werden kann.



104 Darstellungen der �Uberlagerungsgruppe 2O �uber SUSY-Operatoren5.4 Majorana-Plaquetten-OperatorAn dieser Stelle wollen wir Majorana-Plaquetten-Operatoren der Forms� qq qmit dem algebrais
hen Ausdru
kTr fUx;���g = U rsx;���a(T a)sr (5.34)untersu
hen, die aus einer Plaquettenvariablen Up und einem an einer beliebigen E
kebe�ndli
hem Majorana-Spinor gebildet werden. Die Spur wird dabei �uber die Ei
hgruppe(z.B. SU(2)) gebildet, wobei T a ihre Generatoren bezei
hnet.Da dem Majorana-Teil
hen in allen drei Koordinatenebenen jeweils vier E
kpunkte zurVerf�ugung stehen, lassen si
h unter Verna
hl�assigung des Umlaufsinns der Einfa
h-Plaqu-ette insgesamt 3 � 4 = 12 Operatoren diesen Typs bilden. Somit weisen sie eine geome-tris
he �Ubereinstimmung mit den �Uber-E
k-Plaquetten aus Kapitel 2, Abs
hnitt 2.6 auf.Bildet man in analoger Weise P -Parit�at-invariante Operatoren OPij = (O�ij) mit i = 1; 2; 3und j = 1; 2, so erh�alt mans� q qq�� ��� � q q s�Pq�� ��� = O�11 q s� qq�� ��� � q q qs�P�� ��� = O�12
s� qq q����	 � q qq s�P����	 = O�21 q s�q q����	 � q qs�P q����	 = O�22

s� qq q� � q qq s�P� = O�31 q s�q q� � q qs�P q� = O�32 ;
wobei �P dur
h �P � P� = 
0� de�niert ist (s. n�a
hster Unterabs
hnitt).Aus ihnen lassen si
h nun wie im Falle der Wilson-Loops dur
h geeignete Kombinationender Form OPij � � OPij � COPij (5.35)Operatoren OPij C mit eindeutig bestimmter C- (und P -) Parit�at konstruieren. Der C-Parit�atsoperator �andert dabei den Umlaufsinn der Plaquette und l�a�t die Bispinoren �aufgrund ihrer Majorana-Eigens
haft (� = �C) invariant, also z.B.
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C s� qq q� = s�C qq q- = s� qq q- .F�ur �xiertes P und C ist der Darstellungsraum der Majorana-Plaquetten-Operatoren so-mit wegen der vier reellen Freiheitsgrade des Majorana-Teil
hens 6� 4 = 24-dimensional.Hierbei ist zu bea
hten, da� die �Uberlagerungsgruppe 2O als Untergruppe der SU(2) kei-ne Raumspiegelungen enth�alt. Somit haben wir aufgrund der P -Invarianz der Majorana-Plaquetten-Operatoren wie im Falle der �Uber-E
k-Plaquetten zur vollen �Uberlagerungs-gruppe 2Oh = 2O
fe; I g �uberzugehen, um aus dem Transformationsverhalten der Opera-toren OPij C unter 2Oh ans
hlie�end eine Darstellung �uber die OPij C konstruieren zu k�onnen.Zuvor wollen wir aber, wie bereits am Ende des vorherigen Abs
hnitt am Beispiel desMajorana-Link-Majorana-Operators ges
hehen, einen �aquivalenten Ausdru
k im Konti-nuum betra
hten und seinen Spingehalt bestimmen. Ziel dabei ist es, aus seinem Trans-formationsverhalten unter Lorentztransformationen erste R�u
ks
hl�usse auf die m�ogli
heninvarianten Unterr�aume des Darstellungsraumes bzw. auf die irreduziblen Anteile der zu-geh�origen Darstellung �uber die Gitter-Operatoren zu erhalten. Dabei werden wir die Kon-tinuumsbetra
htungen wieder im Minkowski-Raum ausf�uhren.5.4.1 Betra
htungen im KontinuumIm Kontinuum ist der Majorana-Plaquetten-Operator dur
h den Ausdru
kOKont:11 = F��(x)11�(x) (5.36)gegeben, wobei F�� der Feldst�arketensor ist. Wir wollen stattdessen den OperatorOKont:� = F��(x)����(x) � �(x) (5.37)betra
hten, der si
h aus obigem ergibt, indemman die Einheitsmatrix dur
h den Spintensor��� = i2 [
�; 
� ℄ ersetzt. Sowohl F�� als au
h ��� sind antisymmetris
he Tensoren 2. Stufe.Unter Lorentztransformationen �ndet man f�ur den Feldst�arketensor [40℄F��(x) �! F 0��(x0) = a��a��F��(x) ; (5.38)und f�ur den Spintensor unter Verwendung der in Anhang G angegebenen Relationen undeiner Eins-Erg�anzung��(x)����(x) �! ��0(x0)����0(x0) = ��(x)S�1� i2[
�; 
� ℄�S�(x)= i2���(x)S�1
�
�S�(x)� ��(x)S�1
�
�S�(x)�
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�S| {z }a��
� S�1
�S| {z }a��
� �(x)���(x)S�1
�S| {z }a��
� S�1
�S| {z }a��
� �(x)�= a��a����(x)����(x) : (5.39)Betra
htet man nun den Ausdru
k��(x)�(x) = ��(x)F��(x)����(x) ; (5.40)so ergibt si
h aufgrund seines Transformationsverhaltens unter Lorentztransformationen��F������ �! ��0(x0)F 0��(x0)����0(x0) = F 0��(x0) ��0(x0)����0(x0)| {z }a��a����(x)����(x)(5:38)= a��a��| {z }Æ�� a��a��| {z }Æ�� ��(x)F��(x)����(x)= ��(x)F��(x)����(x) ; (5.41)da� dieser si
h wie ein Lorentzskalar transformiert. Damit l�a�t si
h �(x) als ein fermio-nis
her Operator interpretieren, der si
h wie ein Majorana-Spinor (Spin 1/2-Teil
hen)transformiert. Eine entspre
hende Analyse f�ur den Operator OKont:11 ist aufwendiger, undwir wollen daher nur das Ergebnis angeben. Er transformiert si
h na
h einer Spin{32 � 12{Darstellung. Man sollte daher f�ur den Majorana-Plaquetten-Operator erwarten, da� derim n�a
hsten Unterabs
hnitt zu konstruierende Darstellungsraum der vollen �Uberlagerungs-gruppe 2Oh in invariante Unterr�aume zerf�allt, die si
h auss
hlie�li
h na
h deren spinori-ellen, irreduziblen Darstellungen G1; G2;H tranformiert. F�ur den Operator �(x) w�urdeman gem�a� der Resultate aus Kapitel 4 die Zerlegung G1 �G1 erwarten.5.4.2 Transformationsverhalten und Darstellung�Ahnli
h wie im Falle des Majorana-Link-Majorana-Operators l�a�t si
h das Transforma-tionsverhalten der Majorana-Plaquetten-Operatoren unter der �Uberlagerungsgruppe 2Ohim Majorana- und Plaquetten-Sektor unabh�angig voneinander untersu
hen. Da im hierbetra
hteten Fall aufgrund des einzelnen Majorana-Faktors kein { im Sinne von seinemTransformationsverhalten{ trivialer Lorentzskalar im Majorana-Sektor auftritt, transfor-miert si
h der Majorana-Spinor wie bereits in Kapitel 4, Abs
hnitt 4.3 bes
hrieben. Auf-grund der Unabh�anggigkeit von Majorana- und Plaquetten-Sektor konstruiert man eineDarstellung des Majorana-Link-Majorana-Operators dur
h Bildung des direkten Produktsder in den beiden Sektoren zu bestimmenden Darstellungen, wobei die zugrunde liegendeSymmetriegruppe 2Oh als die in Unterabs
hnitt 4.1.3 de�nierte diagonale Untergruppeder Produktgruppe 2Oh � 2Oh aufzufassen ist.



5.4 Majorana-Plaquetten-Operator 107Konstruktion einer Darstellung im Plaquetten-SektorDer Plaquetten-Sektor transformiert si
h in der glei
hen Weise wie die in Abs
hnitt 2.6 be-handelten �Uber-E
k-Plaquetten, da sowohl die �Uber-E
k-Plaquetten als au
h der Plaquet-ten-Sektor der Majorana-Plaquetten-Operatoren geometris
h als Einfa
h-Plaquetten miteinem ausgezei
hneten E
kpunkt aufgefa�t werden k�onnen, so da� ihr Transformations-verhalten unter der vollen kubis
hen Gruppe als au
h unter der �Uberlagerungsgruppe 2Ohidentis
h ist. Aufgrund der �Uberlagerungseigens
haft der Gruppe 2Oh bez�ugli
h der vollenkubis
hen Gruppe Oh, stellt die in Abs
hnitt 2.6 konstruierte Darstellung von Oh mittels�Uber-E
k-Plaquetten au
h eine Darstellung ihrer �Uberlagerungsgruppe 2Oh dar. Wegender zus�atzli
hen, oben erw�ahnten, geometris
hen �Ubereinstimmung der Plaquettenkon�gu-ration der �Uber-E
k- und Majorana-Plaquetten-Operatoren k�onnen die dort bere
hnetenErgebnisse f�ur den Plaquetten-Sektor g�anzli
h �ubernommen werden. Man erh�alt somitunter Ber�u
ksi
htigung vorher eindeutig festgelegter P - und C-Parit�at f�ur die Darstellung~RPS von 2O �uber die Majorana-Plaquetten-Operatoren im Plaquetten-Sektor im Einzelnengem�a� Kapitel 2 ~R++PS = A++1 �E++ � T++2 ; (5.42)~R+�PS = A+�2 �E+� � T+�1 ; (5.43)~R�+PS = T�+1 � T�+2 ; (5.44)~R��PS = T��1 � T��2 : (5.45)Konstruktion einer Darstellung im Majorana-SektorDas Transformationsverhalten eines Majorana-Spinors � unter der �Uberlagerungsgruppe2O und die Konstruktion einer Darstellung ~R wurde im vorherigen Kapitel in Abs
hnitt4.3 behandelt. Daher haben wir im wesentli
hen die dortigen Resultate auf raumgespiegel-te Majorana-Teil
hen und die Gruppe 2Oh zu erweitern. Die P -Parit�atsoperation, ange-wandt auf einen euklidis
hen Majorana-Spinor, ist na
h den Ausf�uhrungen des vorherigenAbs
hnitts 5.3 dur
h P� = i 
0� = i 
4� � �P (5.46)de�niert, so da� man in der Weyl-DarstellungP� = i 
0 �L�R ! = i  0 1111 0 ! �L�R ! = i  �R�L ! = �P (5.47)�ndet. Eine Raumspiegelung vertaus
ht also im wesentli
hen gerade die beiden zweikom-ponentigen Weyl-Spinoren des Majorana-Spinors. Da wir nur an den Rotationen der Lor-entzgruppe interessiert sind und deren Darstellungsmatrizen gem�a� (4.14) Blo
kdiagonal-gestalt haben, vertaus
hen die Lorentzrotationen mit der P -Parit�atsoperation (vgl. dazuau
h [20℄), d.h. SRot�P = SRot(P�) = P (SRot�) = P (�Rot) = (�Rot)P (5.48)



108 Darstellungen der �Uberlagerungsgruppe 2O �uber SUSY-Operatorenmit SRot� � �Rot. Daher sind die Operatoren �� �P wegenP �SRot(�� �P )	 = P ��Rot � (�Rot)P	= �PRot � (�Rot)= �(�Rot � (�Rot)P )= ��SRot(�� �P )	 (5.49)in der Tat P -invariant unter Lorentzrotationen. Mit Hilfe der Ergebnisse aus Abs
hnitt4.3 des vorherigen Kapitels erh�alt man f�ur die irreduzible Darstellung ~RMS der �Uberlage-rungsgruppe 2Oh �uber Majorana-Plaquetten-Operatoren im Majorana-Sektor~R�MS = G�1 �G�1 : (5.50)Bemerkung: Im Falle der �Uber-E
k-Plaquetten war es das Ziel, ihr Transformationsver-halten unter der vollen kubis
he Gruppe Oh zu untersu
hen, wobei man si
h dur
h dieKonstruktion P -invarianter Operatoren auf Transformationen unter der kubis
hen GruppeO bes
hr�anken konnte, da diese das Verhalten unter der vollen kubis
hen Gruppe s
honeindeutig bestimmten (vgl. Abs
hnitt 2.6). In glei
her Weise legen die Transformationender P -invarianten Majorana-Operatoren unter der �Uberlagerungsgruppe 2O die Transfor-mationen unter der vollen �Uberlagerungsgruppe 2Oh eindeutig fest: F�ur Operatoren mitpositiver P -Parit�at �andert si
h dur
h die optional ausgef�uhrte Raumspiegelung per De-�nition ni
hts. Im Falle negativer P -Parit�at unters
heiden si
h aufgrund von (5.49) dieRotationsmatrizen {oder besser Darstellungsmatrizen{ SRot der Klassen E; : : : ; C28 vonihren raumgespiegelten Partnerklassen IE; : : : ; IC28 dur
h ein Minuszei
hen, so da� si
hf�ur ihre Charaktere � ~R (Ci) = �� ~R (ICi) ergibt. Eine analoge Beziehung gilt aber au
hf�ur die Charaktere �� (Ci) der irreduziblen Darstellungen der vollen �Uberlagerungsgruppe2Oh (f�ur P = �1), so da� Formel (12) aus Kapitel 0 bei Summation �uber alle konjugiertenKlassen von 2Oh das glei
he Resultat liefert, wie Formel (4.19) aus 4.3. Die Charaktertabel-le der Gruppe 2Oh erh�alt man dabei aus 2O in glei
her Weise, wie si
h die Charaktertabellevon Oh aus O ergibt (vgl. Kapitel 0).Darstellung �uber Majorana-Plaquetten-OperatorenDie Darstellung ~R der �Uberlagerungsgruppe 2Oh �uber Majorana-Plaquetten-Operatorenerhalten wir, wie oben bereits erw�ahnt, mit Hilfe des in Kapitel 4 bereitgestellten Konzep-tes der Darstellungstheorie direkter endli
her Produktgruppen. Dabei bildet man bei festvorgew�ahlter P - und C-Parit�at aus den irreduziblen Anteilen ~R�PS der Darstellungen ~RPSund aus der irreduziblen Darstellung ~RMS von 2Oh gem�a� (4.10) Produktdarstellungen~R = ~R�PS 
 ~RMS ; (5.51)der diagonalen Untergruppe 2Oh von 2Oh � 2Oh. Die Darstellung ~R wird i.a. reduzibelsein.F�ur die gesu
hten Darstellungen ~R(� ~RPCk mit k 2 f1; 2; 3g) erh�alt man also~R++1 = A++1 
 fG++1 �G++1 g ; (5.52)
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 fG++1 �G++1 g ; (5.53)~R++3 = T++2 
 fG++1 �G++1 g ; (5.54)~R+�1 = A+�2 
 fG+�1 �G+�1 g ; (5.55)~R+�2 = E+� 
 fG+�1 �G+�1 g ; (5.56)~R+�3 = T+�1 
 fG+�1 �G+�1 g ; (5.57)~R�+1 = T�+1 
 fG�+1 �G�+1 g ; (5.58)~R�+2 = T�+2 
 fG�+1 �G�+1 g ; (5.59)~R��1 = T��1 
 fG��1 �G��1 g ; (5.60)~R��2 = T��2 
 fG��1 �G��1 g : (5.61)5.4.3 Irreduzible Zerlegung der DarstellungF�ur die Zerlegung der Darstellungen ~RPCk in ihre irreduziblen Anteile bedient man si
hein weiteres Mal Formel (12) aus Kapitel 0, wobei zus�atzli
h die beiden Relationen�R0
R00 (g) = �R0 (g) �R00 (g) (vgl. Theorem 30) (5.62)und �R0�R00 (g) = �R0 (g) + �R00 (g) (vgl. Fu�note 5, Kap.4) (5.63)Verwendung �nden. Unter Verna
hl�assigung der Parit�atsindizes P;C und des Numerie-rungsindex k gilta� = 148Xi ni �� (Ci)� ~R (Ci)(5:62)= 148Xi ni �� (Ci) h� ~R�PS (Ci)� ~RMS (Ci)i(5:63)= 148Xi ni �� (Ci) h� ~R�PS (Ci) � ��G1 (Ci) + �G1 (Ci)�i : (5.64)Die Summe erstre
kt si
h �uber alle a
ht Klassen Ci der 48-elementigen Gruppe 2O (undni
ht 2Oh, vgl. Bemerkung unter Glei
hung (5.50)). Die Klassenst�arken ni ihrer KlassenE; J;C4; : : : ; C28 und die zugeh�origen Charaktere �� (Ci) ihrer irreduziblen Darstellungenentnimmt man den Charaktertabellen aus Unterabs
hnitt 4.2.2 bzw. 0.3.3. F�ur letzterehat man aufgrund der Ausf�uhrungen in Abs
hnitt 4.2 die folgenden Entspre
hungen zubea
hten2:2Beim �Ubergang von der kubis
hen Gruppe O zu deren �Uberlagerungsgruppe 2O bleibt die Klassen-struktur der kubis
hen Gruppe im Prinzip erhalten. Einige Klassen verdoppeln ledigli
h die Anzahl ihrerElemente, zwei Klassen spalten dur
h Hinzunahme der neuen Elemente in jeweils zwei Klassen auf. Hin-si
htli
h der gemeinsamen irreduziblen Darstellungen A1; : : : ; T2 der Gruppen O und 2O kann die Charak-tertabelle der kubis
hen Gruppe �ubernommen werden, wobei si
h in geeigneter Weise die Klassen von Omit denen von 2O identi�zieren lassen (vgl. Tabelle).



110 Darstellungen der �Uberlagerungsgruppe 2O �uber SUSY-Operatorenkonj. Klassen konj. Klassenin 2O in OEJ ) E12C4 6C28C268C6 ) 8C36C86C 08 ) 6C46C28 3C24Beispielsweise gilt somit �� �8C26� = �� (8C6) = �� (8C3) mit � = A1; : : : ; T2.Die Charaktere � ~R�PS (Ci) sind je na
h Wahl von ~R�PS mit geeignetem � 2 fA1; : : : ; T2gebenfalls aus der Charaktertabelle von O zu bestimmen. �G1 (Ci) �ndet si
h in 4.2.2.Man erh�alt aus (5.64) f�ur denersten Fall: P = C = +1mit den Vorgaben~R�PS = A++1 ; � = A++1 ; : : : ; T++2
a8>>>>>>>>><>>>>>>>>>: A1A2ET1T2

9>>>>>>>>>=>>>>>>>>>;
= 148�1 �8>>>>><>>>>>: 11233

9>>>>>=>>>>>; � [1 � (2 + 2)℄ + 1 �8>>>>><>>>>>: 11233
9>>>>>=>>>>>; � [1 � (�2� 2)℄ +

+12 �8>>>>><>>>>>: 1�10�11
9>>>>>=>>>>>; � [1 � (0 + 0)℄ + 8 �8>>>>><>>>>>: 11�100

9>>>>>=>>>>>; � [1 � (�1� 1)℄ +
+8 �8>>>>><>>>>>: 11�100

9>>>>>=>>>>>; � [1 � (1 + 1)℄ + 6 �8>>>>><>>>>>: 1�101�1
9>>>>>=>>>>>; � [1 � (�p2�p2)℄ +
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+6 �8>>>>><>>>>>: 1�101�1

9>>>>>=>>>>>; � [1 � (p2 +p2)℄ + 6 �8>>>>><>>>>>: 112�1�1
9>>>>>=>>>>>; � [1 � (0 + 0)℄� = 8>>>>><>>>>>: 00000bzw. mit~R�PS = A++1 ; � = G++1 ; G++2 ;H++a8>>><>>>: G1G2H 9>>>=>>>; = 148�1 �8><>: 224 9>=>; � [1 � (2 + 2)℄ + 1 �8><>: �2�2�4 9>=>; � [1 � (�2� 2)℄ +

+12 �8><>: 000 9>=>; � [1 � (0 + 0)℄ + 8 �8><>: �1�11 9>=>; � [1 � (�1� 1)℄ ++8 �8><>: 11�1 9>=>; � [1 � (1 + 1)℄ + 6 �8><>: �p2p20 9>=>; � [1 � (�p2�p2)℄ ++6 �8><>: p2�p20 9>=>; � [1 � (p2 +p2)℄ + 6 �8><>: 000 9>=>; � [1 � (0 + 0)℄� = 8><>: 200insgesamt ~R++1 = A++1 
 fG++1 �G++1 g = G++1 �G++1 = 2G++1 : (5.65)Der Darstellungsraum der Darstellung ~R++1 zerf�allt in zwei invariante Unterr�aume derDimension zwei, die si
h beide na
h der spinoriellen, irreduziblen Darstellung G++1 derGruppe 2Oh transformieren. Das Ergebnis stimmt mit unseren Kontinuumsbetra
htungenaus Unterabs
hnitt 5.4.1 �uberein, wona
h si
h die Majorana-Plaquetten-Operatoren unterder Gruppe 2Oh wie Spinoren transformieren sollten.F�ur die Darstellungen ~R++2 und ~R++3 erh�alt man in analoger Weise~R++2 = E++ 
 fG++1 �G++1 g = 2H++ und (5.66)~R++3 = T++2 
 fG++1 �G++1 g = 2G++2 � 2H++ : (5.67)



112 Darstellungen der �Uberlagerungsgruppe 2O �uber SUSY-OperatorenDie invarianten Unterr�aume ihrer Darstellungsr�aume transformieren si
h damit ebenfallsna
h irreduziblen Darstellungen mit Spinor
harakter. Die explizite Ausf�uhrung der Re
h-nungen �nden si
h in Anhang C.5.zweiter Fall: P = +1; C = �1F�ur diesen Fall ergibt si
h~R+�1 = A+�2 
 fG+�1 �G+�1 g = 2G+�2 (5.68)~R+�2 = E+� 
 fG+�1 �G+�1 g = 2H+� (5.69)~R+�3 = T+�1 
 fG+�1 �G+�1 g = 2G+�1 � 2H+� ; (5.70)und f�ur dendritten und vierten Fall: P = �1; C = �1�ndet man ~R��1 = T��1 
 fG��1 �G��1 g = 2G��1 � 2H�� (5.71)~R��2 = T��2 
 fG��1 �G��1 g = 2G��2 � 2H�� : (5.72)Die Zerlegung der reduziblen Darstellungen ~RPCk h�angt somit nur von der Vorgabe von~R�PS ab und ist unabh�angig von der Wahl der P - bzw. C-Parit�at. Man bea
hte aber,da� si
h die jeweils als Basis der Darstellung ~RPCk fungierenden Majorana-Plaquetten-Operatoren in ihren P - und C-Parit�atseigenwerten unters
heiden. Wir bes
hlie�en diesenUnterabs
hnitt mit einerZusammenfassung der Ergebnisse:F�ur die Zerlegung der Darstellungen ~RPC �uber die se
hs Majorana-Plaquetten-OperatorenOPij C = (O�ij �) {mit dem Index i = 1; 2; 3 f�ur die drei unters
hiedli
hen Koordinatenebe-nen und dem Index j = 1; 2 f�ur die Position des Majorana-Faktors{ in ihre irreduziblenAnteile erh�alt man im Einzelnen die folgenden Resultate:A++1 
 fG++1 �G++1 g = 2G++1 (5.73)A+�2 
 fG+�1 �G+�1 g = 2G+�2 (5.74)E+� 
 fG+�1 �G+�1 g = 2H+� (5.75)T+�1 
 fG+�1 �G+�1 g = 2G+�1 � 2H+� (5.76)T��1 
 fG��1 �G��1 g = 2G��1 � 2H�� (5.77)T++2 
 fG++1 �G++1 g = 2G++2 � 2H++ (5.78)T��2 
 fG��1 �G��1 g = 2G��2 � 2H�� : (5.79)Die hier ni
ht ausgef�uhrten Re
hnungen �nden si
h in Anhang C.5.



5.4 Majorana-Plaquetten-Operator 1135.4.4 Konstruktion einer OrthonormalbasisBei der Konstruktion von Orthonormalbasen werden wir uns auf Darstellung ~RPC be-s
hr�anken, die im Kontinuumslimes zu Spin-1/2-Zust�anden f�uhren, d.h. deren invariantenUnterr�aume si
h na
h der Darstellung G1 unter 2Oh transformieren. Diese Eigens
haftbesitzt die vierdimensionale Darstellung~R++1 = A++1 
 fG++1 �G++1 g = 2G++1 : (5.80)Eine Orthonormalbasis l�a�t si
h in diesem Fall in Analogie zu den Ergebnissen aus Kapitel2 lei
ht angeben. Man erh�alt sie, indem man alle se
hs Operatoren O+ij + mit i = 1; 2; 3und j = 1; 2 aufsummiert:Darstellung ~R Linearkombinationenvon 2Oh der Majorana-Plaquetten-Majorana-Operatoren2G++1 O+11 + +O+12 + +O+21 + +O+22 + +O+31 + +O+32 +



Zusammenfassung und Ausbli
k
Zusammenfassung der ErgebnisseDiese Arbeit bes
h�aftigt si
h mit der gruppentheoretis
hen Untersu
hung von supersym-metris
hen Gitter-Operatoren, die zur Massenbestimmung von Zust�anden der N = 1SUSY-Yang-Mills-Theorie im Rahmen von Monte-Carlo-Simulationen herangezogen wer-den k�onnen, was insbesondere in ni
ht-perturbativen Energieberei
hen von Interesse ist.Meine Untersu
hung basiert dabei auf einem anfangs der a
htziger Jahre ers
hienenen Ar-tikel von B. Berg und A. Billoire, in dem die Autoren Wilson-Loops als ei
hinvarianteOperatoren der Gitterei
htheorie na
h ihrem Transformationsverhalten unter der ihnenzugrunde liegenden Gitter-Symmetrie-Gruppe, d.h. der kubis
hen Gruppe O, klassi�zie-ren und geeignete S�atze an Operatoren f�ur eine Monte-Carlo-Simulation zur Bestimmungvon Glueballmassen in der QCD vors
hlagen [19℄.Zu diesem Zwe
k habe i
h na
h Bereitstellung gruppentheoretis
her Hilfsmittel und ei-nem kurzen Abri� �uber die physikalis
hen Hinterg�unde zur Bestimmung von massivenZust�anden in stark-gekoppelten Gitter-Ei
htheorien zun�a
hst die in [19℄ vorges
hlageneKonstruktion von Darstellungen der kubis
hen Gruppe �uber Loop-Operatoren ausf�uhrli
hdiskutiert. Weiterhin habe i
h die dort angegebenen Resultate anhand ausgew�ahlter Bei-spiele in eigenen Re
hnungen reproduzieren k�onnen. Dabei legte i
h gro�en Wert auf einedetaillierte und in si
h konsistente Ausarbeitung der in [19℄ an einigen Stellen nur skiz-zierten Vorgehensweise bei der Bestimmung der Darstellungen und insbesondere bei demAuÆnden geeigneter Orthonormalbasen bestehend aus Linearkombinationen der Loop-Operatoren.Wesentli
hes Ziel der Arbeit ist, die in [19℄ dargestellte gruppentheoretis
he Behandlungvon Operatoren der Gitterei
htheorie auf vorgegebene, supersymmetris
he Gitter-Opera-toren auszuweiten und unter Ber�u
ksi
htigung analoger �Uberlegungen, Darstellungen derzugeh�origen Gitter-Symmetriegruppe �uber diese Operatoren aufzu�nden, und eine Ortho-normalbasis aus ihnen anzugeben. Hierbei ist zu bea
hten, da� aufgrund des Konzeptes derSupersymmetrie die m�ogli
hen Operatoren nun au
h fermionis
he Freiheitsgrade in Formvon Majorana-Spinoren aufweisen d�urfen. Dieser Sa
hverhalt ma
hte den �Ubergang vonder kubis
hen Gruppe zu ihrer doppelten �Uberlagerungsgruppe als der nunmehr zugrundeliegenden Symmetriegruppe der Gitter-Operatoren n�otig. Dies wurde im vierten Kapitelvollzogen. Ans
hlie�end habe i
h das Transformationsverhalten von Majorana-Spinorenunter der neu eingef�uhrten �Uberlagerungsgruppe diskutiert und unter Verwendung der



Zusammenfassung und Ausbli
k 115Kenntnisse aus der relativistis
hen Dira
-Theorie eine Darstellung dieser Gruppe �ubero.g. Spinoren bestimmt.Das letzte Kapitel enth�alt eine gruppentheoretis
he Untersu
hung von drei supersymme-tris
hen Operatoren der N = 1 SUSY-Yang-Mills-Theorie. Zun�a
hst wurde der aus zweiMajorana-Spinoren gebildete Lorentzskalar ��� betra
htet, der bereits in Monte-Carlo Si-mulationen einer SU(2) Yang-Mills-Theory mit lei
hten Gluinos zur Bestimmung der im
hiralen Veneziano-Yankielowi
z-Supermultiplett vorkommenden Gluinoball-Massen ver-wendet wurde [36℄. Dana
h modi�zierte i
h den Lorentzskalar ���, indem i
h die Majorana-Spinoren auf bena
hbarte Gitterpl�atze setzte und sie dur
h zwei Ei
hlinks miteinander ver-band. Es stellte si
h heraus, da� si
h der betra
htete Operator Trf��(x)U yx;��(x+a�̂)Ux;�gunter der �Uberlagerungsgruppe der kubis
hen Gruppe na
h ihrer irreduziblen Vektor-Darstellung T1 transformiert, so da� eine ONB lei
ht bestimmt werden konnte. Zus�atzli
hf�uhrte i
h Konsistenz�uberlegung im Kontinuum dur
h und best�atigte dort das Ergebnis derGitter-Re
hnung. Zuletzt diskutierte i
h einen aus einer Plaquette und einem Majorana-Spinor bestehenden Operator Tr fUx;���(x)g, wobei si
h das Majorana-Teil
hen an einerbeliebigen Plaquetten-E
ke be�nden darf. Eine entspre
hende Betra
htung im Kontinuumforderte auss
hlie�li
h spinorielle, irreduzible Darstellungen der �Uberlagerungsgruppe f�urden Gitter-Operator, die si
h na
h den ans
hlie�enden Gitter-Re
hnungen explizit ange-ben lie�en. Abs
hlie�end wurde f�ur die Darstellung, die im Kontinuumslimes auf einenSpin-12 -Zustand f�uhren sollte, eine Linearkombination aus geeigneten Gitter-Operatorenbestimmt, die der Darstellung als ONB dienen kann.Insgesamt l�a�t si
h festhalten, da� die in [19℄ vollzogenen, gruppentheoretis
hen Klas-si�kationmethoden f�ur ei
hinvariante Loop-Operatoren auf die im Rahmen der vorlie-genden Arbeit untersu
hten, supersymmetris
hen Gitter-Operatoren der N = 1 SUSY-Yang-Mills-Theorie ausgeweitet werden k�onnen. Somit stellt inbesondere die gruppen-theoretis
he Analyse des zuletzt untersu
hten Gitter-Operators Tr fUx;���(x)g, der be-reits im Rahmen von Monte-Carlo-Re
hnungen auf dem Gitter zur Bestimmung vonGluino-Glueball-Massen, also Spin-12-Zust�anden, im Veneziano-Yankielowi
z- bzw. Farrar-Gabadadze-S
hwetz-Supermultiplett benutzt wird, seine Verwendung (in numeris
hen Si-mulationen auf dem Gitter) auf eine solide Grundlage.Ausbli
kAn dieser Stelle soll nun die Frage diskutiert werden, in wie weit die Ergebnisse dieserArbeit Ansatzpunkte f�ur weiterf�uhrenden Untersu
hungen im Rahmen der N = 1 super-symmetris
hen Yang-Mills-Theorie bieten:Als S
hwerpunkt liegt si
herli
h nahe, die bisherigen gruppentheoretis
hen Untersu
hun-gen auf weitere supersymmetris
he Gitter-Operatoren auszuweiten, wobei man insbesonde-re an Operatoren mit fermionis
hen Komponenten interessiert sein wird, da mit deren HilfeSpin-12 -Zust�ande gemessen werden k�onnen. Als m�ogli
he Operatoren sei hier zun�a
hst derGitter-Operator Tr fUx;������(x)g genannt, dessen Pendant im Kontinuum in der FormF��(x)����(x) bereits im Zuge dieser Arbeit unter Lorentztransformationen betra
htetwurde. Dabei zeigte si
h das Verhalten eines Spin-12-Teil
hens, so da� eine entspre
hende



116 Zusammenfassung und Ausbli
kgruppentheoretis
he Analyse unter Ber�u
ksi
htigung der bisherigen Ergebnisse ein Trans-formationsverhalten unter der zugrundeliegenden Gitter-Symmetriegruppe 2O bzw. 2Ohna
h ihrer spinoriellen, irreduziblen Darstellung G1 vermuten l�a�t. Weiterhin sind Opera-toren mit drei fermionis
hen Freiheitsgraden von Interesse, etwa eine Konstellation beste-hend aus zwei auf einem Gitterpunkt be�ndli
hen Majorana-Spinoren, die �uber Ei
hlinksmit einem weiteren Majorana-Faktor verbunden sind. Dieser hier angegebene Operatorweist Spin-32 - und Spin-12 -Anteile auf. Man sollte aufgrund des Transformationsverhaltensim Kontinuum erwarten, da� na
h Diskretisierung Darstellungen �uber derartige Opera-toren ebenfalls eine spinorielle Charakteristik in Form von invarianten Unterr�aumen deszugeh�origen Darstellungsraumes aufweisen, die si
h na
h den Darstellungen G1 und Htransformieren. Na
h einer detaillierteren, gruppentheoretis
hen Untersu
hung unter Ver-wendung der in dieser Arbeit bereitgestellten Hilfsmittel, k�onnten geeignete Kombinatio-nen sol
her Operatoren sp�ater zur numeris
hen Simulation f�ur die Bere
hnung von fermio-nis
hem Gluino-Glueball-Zust�anden im Veneziano-Yankielowi
z bzw. Farrar-Gabadadze-S
hwetz-Supermultiplett dienen.



Anhang ARegul�are DarstellungAus der Kenntnis der Verkn�upfungstabelle l�a�t si
h f�ur jede beliebige, endli
he Gruppe Gder Ordnung nG eine reduzible Darstellung konstruieren, die sogenannte regul�are Darstel-lung. Zuvor aber eine Anmerkung zur Verkn�upfungstabelle:Multipliziert man die erste Zeile einer Verkn�upfungstabelle na
heinander mit allen Ele-menten gi der Gruppe G, so erh�alt man Zeilen, die aus allen m�ogli
hen Permutationen derurspr�ungli
hen Zeile bestehen. Glei
hes gilt f�ur die Spalten.Nun sei o.B.d.A. g1 = e. Man ordnet die Zeilen der Verkn�upfungstabelle derart um, da�auf der Hauptdiagonalen der Tabelle stets das neutrale Element steht. Dabei ergibt si
hautomatis
h, da� die Zeilen mit den zu den Spalten geh�origen Inversen dur
hnumeriertwerden. e g2 g3 : : : gnG�1 gnGe�1 e : : :g�12 : : : e : : :g�13 : : : e : : :... : : : . . . : : :g�1nG�1 : : : e : : :g�1nG : : : eMan de�niert nun f�ur jedes gi; i 2 f1; : : : ; ngg die regul�aren Darstellungsmatrizen dur
h[6℄ Dregkl (gi) = Æ �gkgig�1l � mit 1 � k; l � nG ; (A.1)wobei Æ (gi) = ( 1 falls gi = e0 sonst (A.2)ist. Anders ausgedr�u
kt, fa�t man f�ur jedes einzelne Gruppenelement gi die umgeordne-te Verkn�upfungstabelle als ein nG � nG-Matrixger�ust auf und tr�agt in ihr die Zahl 1 anden Pl�atzen ein, an denen gi auftritt. Alle anderen Gruppenelemente werden dur
h eine0 ersetzt. Die Anzahl der nG-dimensionale Darstellungsmatrizen betr�agt somit genau nG.Insbesondere gilt dann, da� �reg(e) = nG und �reg(gi) = 0 f�ur gi 6= e ist. F�ur den Beweis,



118 Regul�are Darstellungda� diese Matrizen �uberhaupt eine Darstellung de�nieren, sei auf [3℄ verwiesen. Ohne andieser Stelle auf Einzelheiten einzugehen, kann mit Hilfe von Cayleys Theorem1 gezeigtwerden, da� die so entstandene Darstellung treu ist [4℄.Theorem Die regul�are Darstellung enth�alt jede ni
ht-�aquivalente, irreduzible Darstel-lung der Gruppe G genau sooft, wie ihre Dimension ist.Beweis: Na
h Formel (12) aus Theorem 24 gilta� = 1nGXg ��y (g)�reg (g) = 1nG��y (e)�reg(e)| {z }nG = d� (A.3)und damit das Theorem. 2Da die Dimension der regul�aren Darstellung einerseits na
h Konstruktion nG ist, ande-rerseits aber au
h glei
h der Summe der Dimensionen der in der regul�aren Darstellungenthaltenen irreduziblen Darstellungen sein mu�, gilt zusammen mit obigem Theorem inder Tat X� (d� � a�) =X� (d� � d�) =X� d�2 = nG ; (A.4)und (8) aus Theorem 21 ist bewiesen.

1Theorem (Cayley): Jede Gruppe der Ordnung n ist isomorph zu einer Untergruppe der Sn.



Anhang BBeweisskizzen zu ausgew�ahltenTheoremen aus Kapitel 0 und 4
B.1 Beweisskizzen zu den Theoremen 20, 22, 24 und 25 ausAbs
hnitt 0.2In Beweisidee und Beweisf�uhrung bin i
h in erster Linie [4℄ gefolgt. Alle Beweise sind so-weit ausgef�uhrt, da� ausgelassene Zwis
hens
hritte lei
ht selbst zu vervollst�andigen sind.Theorem 20 F�ur zwei beliebige, ni
ht-�aquivalente, irreduzible, unit�are Darstellungsma-trizen gilt: d�nGXg D�y(g)kiD�(g)jl = Æ��ÆijÆkl (B.1)mit der Konvention D�y(g)ki = D��(g)ik .Beweisskizze1. Fall � = �: Sei X eine beliebige Matrix und man de�niereM (1)= Xg D �g�1�XD(g) =Xg D�1 (g)XD(g) (2)= Xg Dy (g)XD(g) : (B.2)[ (1): Die Indizes f�ur die � = � -Darstellung sind hier weggelassen; (2): D(g) unit�ar℄Man zeigt lei
ht, da� M mit allen D(g) kommutiert, und S
hurs erstes Lemma erzwingtalso M = �11. W�ahlt man die d� � d�-Matrix X = Xkl(k; l = 1; : : : ; d�) gem�a� (Xkl)ij =ÆkjÆli, gilt mit � = �kl = 
onst.Xg Dy(g)mi (Xkl)ij D(g)jn (3)= Xg Dy(g)mlD(g)kn (4)= �klÆmn : (B.3)[ (3): Wahl von Xkl; (4) 1. Lemma von S
hur.℄Summiert man nun f�ur n = m beide Seiten �uber n (Spurbildung), so ergibt der mittlere



120 Beweisskizzen zu Theoremen aus Kapitel 0 und 4Term unter Ausnutzung von Dy(g)D(g) = D �g�1g� letztli
h nGÆkl und der re
hte f�ugtsi
h zu d��kl. Also ist insgesamt �kl = (d�=nGÆkl).2. Fall � 6= �: Man startet wie im ersten Fall und zeigt, da� D�(g)M = MD�(g) f�uralle g 2 G ist. S
hurs zweites Lemma fordert nun M � 0. Na
h einem analogen Vorgehenwie oben erh�alt man das allgemeine Resultat. 2Theorem 22 Die Charaktere der ni
ht-�aquivalenten, irreduziblen Darstellungen gen�ugenfolgenden Relationen:(i) Xi ninG��y (Ci)�� (Ci) = Æ�� (Orthonormalit�at) (B.4)(ii) X� ninG�� (Ci)��y (Cj) = Æij (Vollst�andigkeit) ; (B.5)wobei gem�a� Konvention ��y (Ci) = (�� (Ci))� ist.Beweisskizze(i) Ausgehend von Theorem 20 setzt man i = k; j = l und summiert beide Seiten �uberbeide Indizes. Auf der linken Seite erh�alt mand�nGXg ��y(g)��(g) = d�nGXi ni ��y (Ci)�� (Ci) (B.6)und auf der re
hten Seite entspre
hend d�Æ�� .(ii) Zur Veri�kation ben�otigen wir (ohne Beweis) folgendenHilfssatz Sei R� eine irreduzible Darstellung von G. Summiert man R� �uber alle niGruppenelemente einer festen aber beliebigen Klasse Ci, so ergibt si
h das ResultatXh2CiR� (h) = nid��� (Ci) 11 ; (B.7)wobei 11 den Identit�atsoperator bezei
hnen soll.Zur�u
k zum Beweis von (ii). Summiert man (9) aus Theorem 21 �uber Gruppenelemente gaus der Klasse Ci und �uber Gruppenelemente g0 aus Cj so erh�alt man unter Ausnutzungdes obigen Hilfssatzes auf der linken SeiteX� d�nG nid��� (Ci) nj��y (Cj) Tr11=d� = ninjnG X� �� (Ci)��y (Cj) ; (B.8)w�ahrend si
h die re
hte Seite zu niÆij ergibt. 2



B.2 Beweisskizzen zu den Theoremen 30 und 31 121Theorem 24 Zerlegt man eine reduzible Darstellung R in ihre irreduziblen Anteile, sobestimmt man deren H�au�gkeit a� gem�a� der Formela� = 1nGXi ni ��y (Ci)� (Ci) : (B.9)BeweisskizzeBildet man die Spur von (5) aus Kapitel 0, Abs
hnitt 0.2.2, so erh�alt man� (Ci) =X� a��� (Ci) (?) : (B.10)Na
h (i) von Theorem 22 bilden die �� (Ci) ein orthogonales Vektorsystem, daher lassensi
h die Entwi
klungskoeÆzienten a� dur
h das Skalarprodukt mit ��y (Ci) zuXi ni��y (Ci)� (Ci) (?)= Xi ni��y (Ci)X� a��� (Ci) (Th:22;i)= nG a� (B.11)bestimmen. 2Theorem 25 Eine Darstellung R mit den Charakteren f� (Ci)g ist genau dann irre-duzibel, wenn Xi ni j� (Ci)j2 = nG : (B.12)BeweisskizzeBezei
hne a� die Anzahl der irreduziblen Darstellungen R�, die in der Zerlegung von Renthalten sind. Dann giltXi ni j� (Ci)j2 = Xi ni �a��� (Ci)�y �a��� (Ci)� (Summenkonvention!)= X� X� a��a�Xi ni��y (Ci)�� (Ci)| {z }nGÆ��= nGX� ja�j2 : (B.13)Falls nun R �aquivalent zu einer irreduziblen Darstellung R� ist, gilt a� = 0 f�ur alle � 6= �,und das Kriterium ist selbstverst�andli
h erf�ullt. Ist andererseits das Irreduzibilit�atskriteri-um erf�ullt, mu�P� ja�j2 = 1 sein. Da a� 2 f0; 1; 2; : : :g ist, mu� es ein � geben mit a� = 1und a� = 0 f�ur alle � 6= �. 2B.2 Beweisskizzen zu den Theoremen 30 und 31 aus denAbs
hnitten 4.1.2 und 4.1.3Die Beweise �nden si
h in [1℄ und sind hier ledigli
h der Vollst�andigkeit halber aufgenom-men.



122 Beweisskizzen zu Theoremen aus Kapitel 0 und 4
Theorem und De�nition 30 Seien zwei unit�are, irreduzible Darstellungen R� undR� der Dimension d� und d� einer Gruppe G dur
h ihre Darstellungsmatrizen D�(g) undD�(g) gegeben. Dann legen die MatrizenD�
�(g) = D�(g) 
D�(g) (B.14)f�ur alle g 2 G in eindeutiger Weise eine unit�are Darstellung R� 
R� der Dimension d�d�fest. F�ur den Charakter �R�
R� (g) der Darstellung gilt dabei�R�
R� (g) = �R� (g)�R� (g) : (B.15)Man bezei
hnet die Darstellung R� 
R� als direktes Produkt der Darstellungen R� undR� der Gruppe G.Beweisskizze(i) Sei g1; g2 2 G, dann giltD�
�(g1)D�
�(g2) (4:6)= (D�(g1)
D�(g2)) (D�(g2)
D�(g2)) (B.16)(4:5)= (D�(g1)D�(g2))
 (D�(g1)D�(g2)) (B.17)= D�(g1g2)
D�(g1g2) (B.18)= D�
�(g1g2) : (B.19)Die Matrizen D�
�(g); g 2 G de�nieren also eine Darstellung der Gruppe G der Dimen-sion d�d� .(ii) Die Unitarit�at der DarstellungR�
R� folgt aus der Tatsa
he, da� die Darstellungsma-trizen beider DarstellungenR� undR� unit�ar sind und damit au
h deren direktes Produkt.(iii) Die Charakter der Darstellung R� 
R� bere
hnet man ebenfalls mit Hilfe der Dar-stellungsmatrizen D�
�(g). Es gilt mit der ein-eindeutigen Zuordnung m $ (ij), wobei1 � m � d�d� ; 1 � i � d�; 1 � j � d� :�R�
R� (g) = d�d�Xm=1 �D�
�(g)�mm (B.20)(4:6)= d�Xi=1 d�Xj=1 (D�(g) 
D�(g))ij;ij (B.21)(4:4)= d�Xi=1 d�Xj=1 (D�(g))ii (D�(g))kk (B.22)= �R� (g)�R� (g) : (B.23)2



B.2 Beweisskizzen zu den Theoremen 30 und 31 123Theorem 31 Seien R1 und R2 Darstellungen der beiden Gruppen G1 und G2 unddur
h ihre Darstellungsmatrizen DR1(g) und DR2(g) gegeben. Dann bilden die MatrizenDR1
R2 ((g1; g2)) mit DR1
R2 ((g1; g2)) = DR1(g1)
DR2(g2) (B.24)f�ur alle g1 2 G1 und g2 2 G2 eine Darstellung der Produktgruppe G1 
G2. Die Darstel-lung von G1
G2 ist unit�ar, fallsG1 undG2 unit�ar sind, und treu, fallsG1 undG2 treu sind.BeweisskizzeIm wesentli
hen haben wir zu zeigen, da� (B.24) in der Tat eine Darstellung de�niert.Seien dazu beliebige g1; g01 2 G1 und g2; g02 2 G2, dann folgt mit (B.24):DR1
R2 ((g1; g2))DR1
R2 �(g01; g02)� (B.25)= (DR1(g1)
DR2(g2)) �DR1(g01)
DR2(g02)� (B.26)(4:5)= �DR1(g1)DR1(g01)�
 �DR2(g2)DR2(g02)� (B.27)= DR1(g1g01)
DR2(g2g02) (B.28)(B:24)= DR1
R2 �(g1g01; g2g02)� (B.29)(4:1)= DR1
R2 �(g1; g2)(g01; g02)� : (B.30)Die zweite Behauptung folgt aus der Tatsa
he, da� das direkte Produkt zweier unit�arerMatrizen wieder unit�ar ist.Die dritte Aussage sieht man so: Falls R1 und R2 treu sind, existieren zu allen Darstel-lungsmatrizen die Inversen, und es gilt(DR1(g1)
DR2(g2))�D�1R1(g1)
D�1R2(g2)� (B.31)(4:5)= �DR1(g1)D�1R1(g1)�
 �DR2(g2)D�1R2(g2)� (B.32)= 11
 11 (B.33)= 11 (B.34)und damit �D�1R1(g1)
D�1R2(g2)� = (DR1(g1)
DR2(g2))�1 : (B.35)Bemerkung: In (B.33) und (B.34) sind die Dimensionen der Einheitsmatrizen in geeigneterForm zu erg�anzen. 2



Anhang CErg�anzungen zu Kapitel 2 und 4
C.1 Drehmatrizen der T1-DarstellungDie irreduziblen, dreidimensionalen Darstellungsmatrizen der kubis
hen Gruppe O in derVektordarstellung T1 bestehen aus den Eintr�agen 0 und�1, wobei in jeder Zeile und Spaltejeweils nur eine �1 steht. Unbesetzte Felder sind daher als Null-Eintr�age zu lesen. Sie sindklassenweise geordnet. Sie k�onnen in Gruppentheorieb�u
hern na
hges
hlagen werden undsind [1℄ entnommen.� Klasse ET (id) = 0B� 1 1 1 1CA� Klasse C2T (C2a) = 0B� 11 �1 1CA T (C2b) = 0B� �1�1 �1 1CAT (C2
) = 0B� 1�11 1CA T (C2d) = 0B� �1�1�1 1CAT (C2e) = 0B� �1 11 1CA T (C2f ) = 0B� �1 �1�1 1CA
� Klasse C3



C.1 Drehmatrizen der T1-Darstellung 125t (C3�) = 0B� 1 �1�1 1CA T (C3�) = 0B� �1 �11 1CAT (C3
) = 0B� �1 1�1 1CA t (C3Æ) = 0B� 1 11 1CAT �C�13� � = 0B� �11 �1 1CA T �C�13� � = 0B� 1�1 �1 1CAT �C�13
 � = 0B� �1�1 1 1CA T �C�13Æ � = 0B� 11 1 1CA
� Klasse C4T (C4x) = 0B� 1 1�1 1CA T (C4y) = 0B� �111 1CAT (C4z) = 0B� 1�1 1 1CA T �C�14x � = 0B� 1 �11 1CAT �C�14y � = 0B� 11�1 1CA T �C�14z � = 0B� �11 1 1CA� Klasse C24T (C2x) = 0B� 1 �1 �1 1CA T (C2y) = 0B� �1 1 �1 1CAT (C2z) = 0B� �1 �1 1 1CA :



126 Erg�anzungen zu Kapitel 2 und 4C.2 Erstes Beispiel: Darstellungsmatrizen D ~RIm Falle positiver C-Parit�at sind die Darstellungsmatrizen bzgl. der geordneten BasisOi+; i 2 f1; 2; 3g angegeben, f�ur negative C-Parit�at bzgl. der Basis Oi�; i 2 f1; 2; 3g(vgl. dazu Abs
hnitt 2.3). Aus Platzgr�unden werden beide F�alle in einer 3 � 3-Matrixzusammengefa�t, die C-Eintr�age mit C 2 f+1;�1g sind dabei entspre
hend der �xiertenC-Parit�at zu w�ahlen.� Klasse E� ~R (E) = 3D ~R (id) = 0B� 1 1 1 1CA� Klasse C2� ~R (C2) = C = �1D ~R (C2a) = 0B� C 11 1CA D ~R (C2b) = 0B� C CC 1CAD ~R (C2
) = 0B� 1C1 1CA D ~R (C2d) = 0B� CCC 1CAD ~R (C2e) = 0B� 11 C 1CA D ~R (C2f ) = 0B� CC C 1CA� Klasse C3� ~R (C3) = 0D ~R (C3�) = 0B� CC 1 1CA D ~R (C3�) = 0B� 1C C 1CAD ~R (C3
) = 0B� C1 C 1CA D ~R (C3Æ) = 0B� 11 1 1CA



C.3 Zweites Beispiel: Darstellungsmatrizen D ~R 127
D ~R �C�13� � = 0B� C 
C 1CA D ~R �C�13� � = 0B� C C1 1CAD ~R �C�13
 � = 0B� 1 CC 1CA D ~R �C�13Æ � = 0B� 1 11 1CA� Klasse C4� ~R (C4) = +1D ~R (C4x) =  C1 ! D ~R (C4y) = 0B� 11C 1CAD ~R (C4z) = 0B� 1 C1 1CA D ~R �C�14x � = 0B� 1C 1 1CAD ~R �C�14y � = 0B� C11 1CA D ~R �C�14z � = 0B� 1 1C 1CA� Klasse C24� ~R �C24� = 3 (C = +1) bzw. �1 (C = �1)D ~R (C2x) = 0B� C C 1 1CA D ~R (C2y) = 0B� C 1 C 1CAD ~R (C2z) = 0B� 1 C C 1CA :

C.3 Zweites Beispiel: Darstellungsmatrizen D ~RDie Tabelle ist analog zu C.2 zu lesen. F�ur positive C-Parit�at ist den Darstellungsmatrizendie geordneten Basis Oi+; i 2 f1; : : : ; 4g zugrunde gelegt, im Falle negativer C-Parit�at



128 Erg�anzungen zu Kapitel 2 und 4ist Oi�; i 2 f1; : : : ; 4g eine Basis (vgl. Abs
hnitt 2.4). Es werden beide F�alle in einer4� 4-Matrix zusammengefa�t, indem die C-Eintr�age mit C 2 f+1;�1g entspre
hend der�xierten C-Parit�at zu w�ahlen sind.� Klasse E� ~R (E) = 4D ~R (id) = 0BBB� 1 1 1 1 1CCCA :
� Klasse C2Wie man anhand des Transformationsverhaltens der verdrehten Loops unter derkubis
hen Guppe erkennt, �andern alle vier Operatoren bei Drehungen aus der Klas-se C2 ihre vorgegebene Orientierung. Die Eintr�age sind daher je na
h Wahl von Calle positiv (+1) bzw. alle negativ (�1).
� ~R (C2) = 2C = �2D ~R (C2a) = 0BBB� C CCC 1CCCA D ~R (C2b) =0BBB� CCC C 1CCCA

D ~R (C2
) = 0BBB� CC CC 1CCCA D ~R (C2d) = 0BBB� C CC C 1CCCA
D ~R (C2e) = 0BBB� C C CC 1CCCA D ~R (C2f ) = 0BBB� CC C C 1CCCA :

� Klasse C3Bei Rotationen aus der Klasse C3 �andert si
h keine der Orientierungen der Loops.



C.3 Zweites Beispiel: Darstellungsmatrizen D ~R 129Die Eintr�age sind in beiden F�allen (C = �1) glei
h.� ~R (C3) = 1D ~R (C3�) = 0BBB� 11 11 1CCCA D ~R (C3�) = 0BBB� 1 11 1 1CCCA
D ~R (C3
) = 0BBB� 11 11 1CCCA D ~R (C3Æ) = 0BBB� 1 11 1 1CCCAD ~R �C�13� � = 0BBB� 111 1 1CCCA D ~R �C�13� � = 0BBB� 1 1 11 1CCCA
D ~R �C�13
 � = 0BBB� 1 111 1CCCA D ~R �C�13Æ � = 0BBB� 11 1 1 1CCCA :

� Klasse C4Alle Loops we
hseln ihre Orientierung. F�ur C-Parit�at glei
h +1 ist also f�ur jedenEintrag eine +1 zu setzten, f�ur C = �1 entspre
hend eine �1.� ~R (C4) = 0D ~R (C4x) = 0BBB� C CCC 1CCCA D ~R (C4y) = 0BBB� CC CC 1CCCA
D ~R (C4z) = 0BBB� CC C C 1CCCA D ~R �C�14x � = 0BBB� CCC C 1CCCA



130 Erg�anzungen zu Kapitel 2 und 4D ~R �C�14y � = 0BBB� C CC C 1CCCA D ~R �C�14z � = 0BBB� C C CC 1CCCA :
� Klasse C24Die Orientierung der 4 verdrehten Loops bleibt erhalten, d.h. die Eintr�age f�ur posi-tive und negative C-Parit�at sind identis
h.� ~R �C24� = 0D ~R (C2x) = 0BBB� 11 11 1CCCA D ~R (C2y) = 0BBB� 1111 1CCCA :

D ~R (C2z) = 0BBB� 1 11 1 1CCCA :
C.4 Drittes Beispiel: �Uber-E
k-PlaquettenC.4.1 Irreduzibler Inhalt der ~R-DarstellungDie Zerlegung der Darstellung ~R der �Uber-E
k-Plaquetten in irreduzible Anteile erfolgtmit Hilfe der Formel (2.17) aus Unterabs
hnitt 2.3.2:a� = 1nGXi ni �� (Ci)� ~R (Ci) : (C.1)Summiert wird �uber alle f�unf Klassen der 24-elementigen Gruppe O. Ihre M�a
htigkeitund die Charaktere der irreduziblen Darstellungen entnimmt man der Tabelle in Unterab-s
hnitt 0.3.4. Die Spuren �uber die Darstellungsmatrizen D ~R �ndet man in Unterabs
hnitt2.6.1. Man unters
heidet vier Sektoren:� P = C = +1:aA1 = 124 (1 � 1 � 6 + 6 � 1 � 2 + 8 � 1 � 0 + 6 � 1 � 0 + 3 � 1 � 2) = 1



C.4 Drittes Beispiel: �Uber-E
k-Plaquetten 131aA2 = 124 (1 � 1 � 6 + 6 � (�1) � 2 + 8 � 1 � 0 + 6 � (�1) � 0 + 3 � 1 � 2) = 0aE = 124 (1 � 2 � 6 + 6 � 0 � 2 + 8 � (�1) � 0 + 6 � 0 � 0 + 3 � 2 � 2) = 1aT1 = 124 (1 � 3 � 6 + 6 � (�1) � 2 + 8 � 0 � 0 + 6 � 1 � 0 + 3 � (�1) � 2) = 0aT2 = 124 (1 � 3 � 6 + 6 � 1 � 2 + 8 � 0 � 0 + 6 � (�1) � 0 + 3 � (�1) � 2) = 1 :� P = +1; C = �1:aA1 = 124 (1 � 1 � 6 + 6 � 1 � (�2) + 8 � 1 � 0 + 6 � 1 � 0 + 3 � 1 � 2) = 0aA2 = 124 (1 � 1 � 6 + 6 � (�1) � (�2) + 8 � 1 � 0 + 6 � (�1) � 0 + 3 � 1 � 2) = 1aE = 124 (1 � 2 � 6 + 6 � 0 � (�2) + 8 � (�1) � 0 + 6 � 0 � 0 + 3 � 2 � 2) = 1aT1 = 124 (1 � 3 � 6 + 6 � (�1) � (�2) + 8 � 0 � 0 + 6 � 1 � 0 + 3 � (�1) � 2) = 1aT2 = 124 (1 � 3 � 6 + 6 � 1 � (�2) + 8 � 0 � 0 + 6 � (�1) � 0 + 3 � (�1) � 2) = 0 :� P = �1; C = +1:aA1 = 124 (1 � 1 � 6 + 6 � 1 � 0 + 8 � 1 � 0 + 6 � 1 � 0 + 3 � 1 � (�2)) = 0aA2 = 124 (1 � 1 � 6 + 6 � (�1) � 0 + 8 � 1 � 0 + 6 � (�1) � 0 + 3 � 1 � (�2)) = 0aE = 124 (1 � 2 � 6 + 6 � 0 � 0 + 8 � (�1) � 0 + 6 � 0 � 0 + 3 � 2 � (�2)) = 0aT1 = 124 (1 � 3 � 6 + 6 � (�1) � 0 + 8 � 0 � 0 + 6 � 1 � 0 + 3 � (�1) � (�2)) = 1aT2 = 124 (1 � 3 � 6 + 6 � 1 � 0 + 8 � 0 � 0 + 6 � (�1) � 0 + 3 � (�1) � (�2)) = 1 :� P = C = �1:Die Summanden (6= 0) sind identis
h zum dritten Fall P = �1; C = +1.Man erh�alt also f�ur die vier F�alle~R = A++1 �E++ � T++2 (C.2)~R = A+�2 �E+� � T+�1 (C.3)~R = T�+1 � T�+2 (C.4)~R = T��1 � T��2 : (C.5)Bemerkung:Wer den Ausf�uhrungen in 2.6.1 kein re
htes Vertrauen s
henkt und in (C.1)do
h lieber �uber alle zehn Klassen E;C2; C3; : : : ; IC4; IC24 der vollen kubis
hen Gruppe



132 Erg�anzungen zu Kapitel 2 und 4summieren m�o
hte, hat in allen Summen der obigen Re
hnung den f�unf Summanden wei-tere f�unf hinzuzuf�ugen und die Gruppenordnung auf 48 zu verdoppeln. Im Falle positiverP -Parit�at ist sowohl �� (Ci) = �� (ICi) (vgl. Charaktertabelle von Oh in 0.3.4) als au
h� ~R (Ci) = � ~R (ICi) (Begr�undung s. 2.6.1). Die f�unf weiteren Terme sind also mit denersten f�unf identis
h, da die Summe jetzt mit 2� 24 = 48 normiert wird, �andert si
h amErgebnis ni
hts. F�ur den Fall P = �1 gilt �� (Ci) = ��� (ICi) (vgl. no
h einmal mitder Charaktertabelle von Oh) und � ~R (Ci) = �� ~R (ICi). In den f�unf letzten Summandentreten also zwei Minuszei
hen auf, die si
h gerade wegheben. Das Endresultat bleibt alsounver�andert.C.4.2 Konstruktion einer Orthonormalbasis (Teil II)zweiter Fall: P = +1; C = �1
C (C2) = 0BBBBBBB� �2 0 �1 1 1 �10 �2 1 �1 �1 1�1 1 �2 0 1 �11 �1 0 �2 �1 11 �1 1 �1 �2 0�1 1 �1 1 0 �2

1CCCCCCCA : (C.6)
Dur
h Diagonalisierung �ndet man� die Eigenwerte: -6, 0, 0, -2, -2, -2� und die zugeh�origen Eigenvektoren:

E2 = 8>>>>>>><>>>>>>>:
0BBBBBBB� 1�11�1�11

1CCCCCCCA ;0BBBBBBB� �1100�11
1CCCCCCCA ;0BBBBBBB� 1�1�1100

1CCCCCCCA ;0BBBBBBB� 000011
1CCCCCCCA ;0BBBBBBB� 001100

1CCCCCCCA ;0BBBBBBB� 110000
1CCCCCCCA
9>>>>>>>=>>>>>>>; : (C.7)

Der Darstellungsraum der Darstellungsmatrizen D ~R zerf�allt in drei invariante Unterr�aumeder Dimensionen 1, 2 und 3. F�ur die Darstellung ~R gilt~R = A+�2 �E+� � T+�1 : (C.8)Die Zerlegung ist somit abges
hlossen. E2 bildet also eine Basis aus Loop-Operatoren f�urA+�2 , E+� bzw. T+�1 .



C.5 Majorana-Plaquetten-Operator 133vierter Fall: P = C = �1C (C2) = 0BBBBBBB� 0 0 1 1 �1 �10 0 �1 �1 �1 �11 �1 0 0 �1 11 �1 0 0 1 �1�1 �1 �1 1 0 0�1 �1 1 �1 0 0
1CCCCCCCA : (C.9)Dur
h Diagonalisierung �ndet man� die Eigenwerte: -2, -2, -2, 2, 2, 2� und die zugeh�origen Eigenvektoren:

E4 = 8>>>>>>><>>>>>>>:
0BBBBBBB� 10�1001

1CCCCCCCA ;0BBBBBBB� 011010
1CCCCCCCA ;0BBBBBBB� �111100

1CCCCCCCA ;0BBBBBBB� 0�11001
1CCCCCCCA ;0BBBBBBB� �10�1010

1CCCCCCCA ;0BBBBBBB� 1�11100
1CCCCCCCA
9>>>>>>>=>>>>>>>; : (C.10)

Der Darstellungsraum der D ~R zerf�allt in zwei invariante Unterr�aume der Dimension 3.F�ur die Darstellung ~R gilt ~R = T��1 � T��2 : (C.11)Die Zerlegung ist damit abges
hlossen. Mit Hilfe der reduzierten DarstellungsmatrizenAD ~R(g)A�1 der Klasse C2 �ndet man z.B. f�ur das Element C2a 2 C2:
AD ~R (C2a)A�1 = 0BBBBBBB� 0 0 �11 �1 �1�1 0 0 0 0 �1�1 1 �1�1 0 0

1CCCCCCCA : (C.12)Oberer und unterer Blo
k haben dabei Spur �1 bzw. +1.Die Charaktertabelle aus Unterabs
hnitt 0.3.4 ergibt �T�1 (C2) = �1 bzw. �T�2 (C2) =+1. Also bilden die ersten drei Vektoren aus E4 eine Basis aus Loop-Operatoren f�ur dieDarstellung T��1 und die restli
hen drei entspre
hend eine Basis f�ur T��2 (vgl. dazu au
hdie Ausf�uhrungen zum dritten Fall in Unterabs
hnitt 2.6.3).C.5 Irreduzible Zerlegung der Darstellungen ~R = ~RPCk �uberMajorana-Plaquetten-OperatorenDie Vorgehensweise bei der Zerlegung der Darstellungen ~RPCk in ihre irreduziblen Anteilehabe i
h in Unterabs
hnitt 5.4.3 bes
hrieben. An dieser Stelle seien daher ledigli
h die
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hnungen na
hgetragen. Da in (5.64) die Charaktere �G1 (Ci) f�ur Ci = 12C4und Ci = 6C28 Null ergeben, sind die zugeh�origen Summanden (zweiter und letzter) in denRe
hnungen ni
ht explizit aufgef�uhrt.erster Fall: P = C = +1~R�PS = E++ ; � = A++1 ; : : : ; T++2
a8>>>><>>>>: A1...T2 9>>>>=>>>>; = 148�1 �8>>>>><>>>>>: 11233

9>>>>>=>>>>>; � [2 � (2 + 2)℄ + 1 �8>>>>><>>>>>: 11233
9>>>>>=>>>>>; � [2 � (�2� 2)℄ +

+8 �8>>>>><>>>>>: 11�100
9>>>>>=>>>>>; � [(�1) � (�1� 1)℄ + 8 �8>>>>><>>>>>: 11�100

9>>>>>=>>>>>; � [(�1) � (1 + 1)℄ +
+6 � n ... o � [0 � (�p2�p2)℄ + 6 � n ... o � [0 � (p2 +p2)℄� = 8><>: 0...0~R�PS = E++ ; � = G++1 ; G++2 ;H++a8>>><>>>: G1G2H 9>>>=>>>; = 148�1 �8><>: 224 9>=>; � [2 � (2 + 2)℄ + 1 �8><>: �2�2�4 9>=>; � [2 � (�2� 2)℄ +
+8 �8><>: �1�11 9>=>; � [(�1) � (�1� 1)℄ + 8 �8><>: 11�1 9>=>; � [(�1) � (1 + 1)℄ ++6 � n ... o � [0 � (�p2�p2)℄ + 6 � n ... o � [0 � (p2 +p2)℄� =8><>: 002Es ergibt si
h ~R++2 = E++ 
 fG++1 �G++1 g = H++ �H++ = 2H++ : (C.13)
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~R�PS = T++2 ; � = A++1 ; : : : ; T++2

a8>>>><>>>>: A1...T2 9>>>>=>>>>; = 148�1 �8>>>>><>>>>>: 11233
9>>>>>=>>>>>; � [3 � (2 + 2)℄ + 1 �8>>>>><>>>>>: 11233

9>>>>>=>>>>>; � [3 � (�2� 2)℄ +
+8 � n ... o � [0 � (�1� 1)℄ + 8 � n ... o � [0 � (1 + 1)℄ +
+6 �8>>>>><>>>>>: 1�101�1

9>>>>>=>>>>>; � [(�1) � (�p2�p2)℄ ++6 �8>>>>><>>>>>: 1�101�1
9>>>>>=>>>>>; � [(�1) � (p2 +p2)℄� = 8><>: 0...0~R�PS = T++2 ; � = G++1 ; G++2 ;H++a8>>><>>>: G1G2H 9>>>=>>>; = 148�1 �8><>: 224 9>=>; � [3 � (2 + 2)℄ + 1 �8><>: �2�2�4 9>=>; � [3 � (�2� 2)℄ ++8 � n ... o � [0 � (�1� 1)℄ + 8 � n ... o � [0 � (1 + 1)℄+6 �8><>: �p2p20 9>=>; � [(�1) � (�p2�p2)℄ ++6 �8><>: p2�p20 9>=>; � [(�1) � (p2 +p2)℄ + � = 8><>: 022



136 Erg�anzungen zu Kapitel 2 und 4Man erh�alt ~R++3 = T++2 
 fG++1 �G++1 g = G++2 �G++2 �H++ �H++ (C.14)= 2G++2 � 2H++ : (C.15)zweiter Fall: P = +1; C = �1~R�PS = A+�2 ; � = A+�1 ; : : : ; T+�2
a8>>>>>>>>><>>>>>>>>>: A1A2ET1T2

9>>>>>>>>>=>>>>>>>>>;
= 148�1 �8>>>>><>>>>>: 11233

9>>>>>=>>>>>; � [1 � (2 + 2)℄ + 1 �8>>>>><>>>>>: 11233
9>>>>>=>>>>>; � [1 � (�2� 2)℄ +

+8 �8>>>>><>>>>>: 11�100
9>>>>>=>>>>>; � [1 � (�1� 1)℄ + 8 �8>>>>><>>>>>: 11�100

9>>>>>=>>>>>; � [1 � (1 + 1)℄ +
+6 �8>>>>><>>>>>: 1�101�1

9>>>>>=>>>>>; � [(�1) � (�p2�p2)℄
+6 �8>>>>><>>>>>: 1�101�1

9>>>>>=>>>>>; � [(�1) � (p2 +p2)℄� =8><>: 0...0~R�PS = A+�2 ; � = G+�1 ; G+�2 ;H+�a8>>><>>>: G1G2H 9>>>=>>>; = 148�1 �8><>: 224 9>=>; � [1 � (2 + 2)℄ + 1 �8><>: �2�2�4 9>=>; � [1 � (�2� 2)℄ +



C.5 Majorana-Plaquetten-Operator 137+8 �8><>: �1�11 9>=>; � [1 � (�1� 1)℄ + 8 �8><>: 11�1 9>=>; � [1 � (1 + 1)℄+6 �8><>: �p2p20 9>=>; � [(�1) � (�p2�p2)℄ ++6 �8><>: p2�p20 9>=>; � [(�1) � (p2 +p2)℄� = 8><>: 020Somit gilt~R+�1 = A+�2 
 fG+�1 �G+�1 g = G+�2 �G+�2 = 2G+�2 � 2H+� : (C.16)
~R�PS = E+� ; � = A+�1 ; : : : ; T+�2 und ~R�PS = E+� ; � = G+�1 ; G+�2 ;H+�Die Anwendung der Formel (5.64) liefert die glei
hen Terme wie im ersten Fall f�ur ~R�PS =E++. Das Endresultat kann demna
h in analoger Weise mit~R+�2 = E+� 
 fG+�1 �G+�1 g = H+� �H+� = 2H+� (C.17)�ubernommen werden.~R�PS = T+�1 ; � = A+�1 ; : : : ; T+�2

a8>>>><>>>>: A1...T2 9>>>>=>>>>; = 148�1 �8>>>>><>>>>>: 11233
9>>>>>=>>>>>; � [3 � (2 + 2)℄ + 1 �8>>>>><>>>>>: 11233

9>>>>>=>>>>>; � [3 � (�2� 2)℄ +
+8 � n ... o � [0 � (�1� 1)℄ + 8 � n ... o � [0 � (1 + 1)℄ +
+6 �8>>>>><>>>>>: 1�101�1

9>>>>>=>>>>>; � [1 � (�p2�p2)℄ +



138 Erg�anzungen zu Kapitel 2 und 4
+6 �8>>>>><>>>>>: 1�101�1

9>>>>>=>>>>>; � [1 � (p2 +p2)℄� = 8><>: 0...0~R�PS = T+�1 ; � = G+�1 ; G+�2 ;H+�a8>>><>>>: G1G2H 9>>>=>>>; = 148�1 �8><>: 224 9>=>; � [3 � (2 + 2)℄ + 1 �8><>: �2�2�4 9>=>; � [3 � (�2� 2)℄ ++8 � n ... o � [0 � (�1� 1)℄ + 8 � n ... o � [0 � (1 + 1)℄+6 �8><>: �p2p20 9>=>; � [1 � (�p2�p2)℄ ++6 �8><>: p2�p20 9>=>; � [1 � (p2 +p2)℄ + � = 8><>: 202Man �ndet demna
h~R+�3 = T+�1 
 fG+�1 �G+�1 g = G+�1 �G+�1 �H+� �H+� (C.18)= 2G+�1 � 2H+� : (C.19)dritter und vierter Fall: P = �1; C = �1~R�PS = T��1 ; � = A��1 ; : : : ; T��2 und ~R�PS = T��1 ; � = G��1 ; G��2 ;H��bzw.~R�PS = T��2 ; � = A��1 ; : : : ; T��2 und ~R�PS = T��2 ; � = G��1 ; G��2 ;H��Die resultierenden Summen sind mit denen der ersten beiden F�alle (f�ur ~R�PS = T++2 bzw.~R�PS = T+�1 ) identis
h. Man erh�alt~R��1 = T��1 
 fG��1 �G��1 g = G��1 �G��1 �H�� �H�� (C.20)= 2G��1 � 2H�� : (C.21)



C.5 Majorana-Plaquetten-Operator 139bzw. ~R��2 = T��2 
 fG��1 �G��1 g = G��2 �G��2 �H�� �H�� (C.22)= 2G��2 � 2H�� : (C.23)



Anhang DGruppen SO(3) und SU(2)
D.1 Drehgruppe SO(3)Die Gruppe SO(3) besteht aus der Menge aller reellen 3 � 3-Matrizen R mit den Eigen-s
haften RtR = 11 (D.1)detR = 1 : (D.2)Aufgrund obiger Forderungen vermittelt die Matrix R Rotationen um beliebig w�ahlbareA
hsen und Winkel im dreidimensionalen Raum, weshalb sie au
h als Drehgruppe be-zei
hnet wird. Die SO(3) besitzt demna
h unendli
h viele Elemente und ist zudem ni
ht-abels
h, da die Hintereinanderausf�uhrung von Rotationen i.a. ni
ht kommutativ ist. Ausder Orthogonalit�atsforderung (D.1) folgt, da� von den neun Matrixeintr�agen nur drei freiw�ahlbar sind, als Parameter nehme man �1, �2, �3. Die SO(3) bildet also eine Lie-Gruppe,und die Matrizen R lassen si
h in der FormR = e��a�a (D.3)s
hreiben, wobei man f�ur die Generatoren �a; a = 1; 2; 3 beispielsweise�1 = 0B� 0 0 00 0 �10 1 0 1CA ; �2 = 0B� 0 0 10 0 0�1 0 0 1CA ; �3 = 0B� 0 �1 01 0 00 0 0 1CA (D.4)�ndet. Unter Verwendung des total antisymmetris
hen Tensors dritter Stufe �ab
 mit derNormierung �123 = 1 ergibt si
h in kompakter Form(�a)b
 = ��ab
 : (D.5)Mit Hilfe der Re
henregeln des total antisymmetris
hen Tensors dritter Stufe erh�alt mans
hlie�li
h die Vertaus
hungsrelationen der Generatoren der Drehgruppe[�a; �b℄ = �ab
�
 : (D.6)



D.2 �Uberlagerungsgruppe SU(2) 141Setzt man Ja := i�a; a = 1; 2; 3, so ergeben si
h die hermites
hen (Drehimpuls-) Genera-toren der SO(3), f�ur die (Ja)b
 = �i�ab
 (D.7)[Ja; Jb℄ = i�ab
J
 (D.8)gilt, so da� die Matrizen R = eiJa�a (D.9)eine unit�are Darstellung der SO(3) bilden. Zusammen mit der Ja
obi-Identit�at[Ja; [Jb; J
℄℄ = [[Ja; Jb℄; J
℄ + [Jb; [Ja; J
℄℄ (D.10)de�niert (D.8) die Lie-Algebra der Gruppe SO(3)1. Ihre irreduziblen Darstellungen k�onnenauf rein algebrais
hem Wege mit Hilfe der Eigenwerte j(j+1); j = 0; 1=2; 1; 3=2; 2; 5=2; : : :des Casimir-Operators J2 klassi�ziert werden, ihre Dimensionen ergeben si
h dabei zu2(j + 1). Details �ndet man z.B. in [41℄. F�ur ganzzahlige j erh�alt man die Tensordarstel-lungen der Lie-Algebra. Die halbzahligen j f�uhren auf die Spinordarstellungen.D.2 �Uberlagerungsgruppe SU(2)Die Gruppe SU(2) wird aus komplexen 2� 2-Matrizen gebildet, die den Eins
hr�ankungenUU y = 11 (D.11)detU = 1 (D.12)unterliegen. Von den se
hs reellen Parametern lassen si
h ledigli
h drei frei w�ahlen, so da�ein Element der SU(2) in der Form U = ei 12�a�a (D.13)ges
hrieben werden kann. Die Generatoren �a sind dabei die drei Pauli-Spin-Matrizen�1 =  0 11 0 ! ; �2 =  0 �ii 0 ! ; �3 =  1 00 �1 ! : (D.14)Da f�ur die Pauli-Matrizen h�a; �bi = 2i�ab
�
 (D.15)gilt, erf�ullen sie mit der Entspre
hung Ja = �a=2 die glei
hen Vertaus
hungsrelationen wiedie Generatoren Ja der SO(3). Beide Gruppen stimmen also in ihrer Lie-Algebra �uberein,und die irreduziblen Darstellungen der Lie-Algebren sind somit identis
h.Zu den irreduziblen Darstellungsmatrizen der Elemente ` der Lie-Gruppe SU(2) gelangtman nun dur
h Exponentierung der Erzeugenden ihrer einparametrigen Untergruppe. DieErzeugenden entspre
hen dabei gerade den Generatoren, die die zugeh�orige Lie-Algebra1Die Lie-Algebra der SO(3) wird oftmals als so(3) bezei
hnet.



142 Gruppen SO(3) und SU(2)(hier also su(2)) erf�ullen. F�ur Details verweise i
h auf [20,28℄. Die irreduziblen Dar-stellungen Rj der Drehgruppe SO(3) erh�alt man dann dur
h die zus�atzli
he ForderungRj (�id) = 11 mit �id 2 SU(2) aus ihrer universellen �Uberlagerungsgruppe2 SU(2).Unter Ber�u
ksi
htigung von n�a; �bo = 2Æab11 (D.16)ergibt eine Reihenentwi
klung der Exponentialfunktion (D.13)ei 12�a�a = 
os��2�+ i��bnb� sin��2� ; (D.17)wobei �a = na� mit Pa (na)2 = 1 zu setzen ist. Die SU(2) besitzt demna
h eine 4�-Periodizit�at, da aufgrund des Faktors 1=2 in den trigonometris
hen Funktionen f�ur � = 2�und na beliebig U(2�) = �11 (D.18)und f�ur � = 4� U(4�) = 11 (D.19)gilt. Dagegen zeigt man mit Hilfe einer entspre
hende Entwi
klung von (D.9), da� dieSO(3) eine 2�-Periodizit�at aufweist. Damit ergibt si
h wegenU(� + 2�) �! �U(�) und R(� + 2�) �! R(�) 8� ; (D.20)sowie U(� + 4�) �! U(�) und R(� + 4�) �! R(�) 8� ; (D.21)eine 2:1-Abbildung fU;�Ug  ! R ; (D.22)bzw. in mathematis
her Formulierung, ein Homomorphismus SU(2) ! SO(3) mit einemKern bestehend aus zwei Elementen. Dabei liefert der Homomorphiesatz die BeziehungSO(3) �= SU(2)=Z2 .

2Auf den Begri� der universellen �Uberlagerungsgruppe soll hier ni
ht n�aher eingegangen werden. F�ureine genaue De�nition w�aren gewisse Hilfsmittel aus der Topologie erforderli
h, auf deren Bereitstellungwir an dieser Stelle verzi
hten wollen. Eine mathematis
he Einf�uhrung in die Theorie der Lie-Algebren undihren Darstellungen bietet z.B. [42℄.



Anhang EDira
-Matrizen
E.1 Dira
-Matrizen in euklidis
her und minkowskis
her For-mulierungZwis
hen den euklidis
hen Dira
-Matrizen und denen im Minkowski-Raum besteht derfolgende Zusammenhang [12℄:
eukl:j = �i
mink:j f�ur j = 1; 2; 3 (E.1)
eukl:4 = �i
mink:4 = 
mink:0 : (E.2)E.2 Eigens
haften euklidis
her MatrizenF�ur die euklidis
hen Dira
-Matrizen gelten die folgenden Eigens
haften [43℄:
2� = 11 (E.3)
y� = 
� (E.4)f
�; 
�g = 2Æ��11 : (E.5)Mit den zus�atzli
hen De�nitionen 
5 = 
1
2
3
4 (E.6)��� = i2 [
�; 
� ℄ (E.7)ergibt si
h 
5 = 
y5 (E.8)
25 = 11 (E.9)f
�; 
5g = 0 ; (E.10)sowie ��� (E:5)= i2 (
�
� � (2Æ��11� 
�
�)) (E.11)= i
�
� � iÆ��11 : (E.12)



144 Dira
-MatrizenF�ur weitere Relationen in diesem Kontext konsultiere man [43℄.Eine m�ogli
he Darstellung der Dira
-Matrizen ist na
h [12℄
j =  0 �i�ji�j 0 ! ; j = 1; 2; 3 ; (E.13)wobei mit �j die Pauli-Matrizen gemeint sind (vgl. Anhang D).F�ur 
4 und 
5 = 
1
2
3
4 = 
y5 w�ahlt man in der Dira
-Darstellung
0 = 
4 =  11 00 �11 ! und 
5 =  0 �11�11 0 ! ; (E.14)in der Weyl-Darstellung dagegen
0 = 
4 =  0 1111 0 ! und 
5 =  11 00 �11 ! : (E.15)F�ur den Ladungskonjugationsoperator gelten die folgenden Zusammenh�ange [43℄:Ct = �C (E.16)Cy = C�1 (E.17)C
�C�1 = �
t� (E.18)C�1
t�C = �
� (E.19)C
5C�1 = �
t5 (E.20)C���C�1 = ��t�� (E.21)C�1�t��C = ���� : (E.22)In der Dira
-Darstellung kann die Ladungskonjugationsmatrix alsC =  0 �i�2�i�2 0 ! (E.23)gew�ahlt werden. In der Weyl-Darstellung �ndetC =  i�2 00 �i�2 ! (E.24)Verwendung.In darstellungsfreier Form �ndet man [28℄C = i
mink:2 
0 = �
eukl:2 
0 : (E.25)



Anhang FMajorana-SpinorenDira
-Spinoren sind aus zwei Weyl-Spinoren zusammengesetzte Spinoren, die in der Weyl-Darstellung die Form  =   L R ! (F.1)besitzen, wobei  L und  R je zweikomponentige Weyl-Spinoren darstellen, die si
h na
hder linken bzw. re
hten Fundamentaldarstellung der Lorentzgruppe transfomieren.Im Minkowski-Raum erh�alt man einen Majorana-Spinor, indem man an einen allgemeinenDira
-Spinor die Bedingung � �  y
0 =  tC (F.2)stellt. Dabei ist in minkowskis
her Formulierung
0 =  0 1111 0 ! (F.3)und C die Ladungskonjugationsmatrix.Ein Majorana-Spinor  M geht also wegen (F.2) bei Ladungskonjugation in si
h selbst�uber, also  CM =  M (F.4)und besitzt daher anstatt der vier komplexen Freiheitsgrade eines Dira
-Spinors ledigli
hzwei komplexe bzw. vier reelle Parameter. Die Ladungskonjugation ist dabei dur
h [28℄ C = C � t (F.5)mit C =  i�2 00 �i�2 ! (F.6)de�niert.



146 Majorana-SpinorenGibt man die Hermitizit�atseigens
haft der minkowskis
hen Formulierung auf, so l�a�t si
hein euklidis
her Majorana-Spinor dur
h die Relation�� = �tC (F.7)de�nieren. In der Weyl-Darstellung s
hreibt si
h damit der Majorana-Spinor gem�a�� =  |A�| _A ! ; (F.8)wobei |A ein linksh�andiger Weyl-Spinor ist. F�ur weitere Anmerkungen zu Majorana-Spinoren in euklidis
her Formulierung konsultiere man [43℄ und die darin angegebenenReferenzen.An dieser Stelle seien ledigli
h zwei Re
henregeln f�ur Grassmann-wertige Majorana-Spinoren und � angegeben, wobei die erste in in Kapitel 5 Verwendung �ndet:� � = �� (F.9)� 
�� = ���
� (F.10)Beide Relationen weist man mit Hilfe der de�nierenden Eigens
haft des Ladungskonjuga-tionsoperators C na
h: � � = ( � �)t= ( tC�)t= ��tCt = �tC = �� ; (F.11)bzw. � 
�� = ( � 
��)t= ( tC
��)t= ��t
t�Ct = �t
t�C = ��tC
� = ���
� : (F.12)



Anhang GLorentztransformationenEine Lorentztransformation in minkowskis
her Formulierung ist eine linerare Transforma-tion des Vierervektors x� = (x0; x1; x2; x3)x� �! x0� = a��x� mit a�� 2 R ; (G.1)die der Bedingung x02 = x2 � g��x�x� = x�x� (G.2)gen�ugt. Dabei ist g�� = g�� = diag(1;�1;�1;�1) die Metrik im Minkowski-Raum. Derkovariante Vierervektor x� � g��x� transformiert si
h in analoger Weise gem�a�x� �! x0� = a��x� : (G.3)F�ur a�� gelten die folgenden Relationen [35,40,44℄:(a�1)�� = a�� (G.4)a��a�� = Æ�� (G.5)a��a�� = Æ�� (G.6)g��a��a�� = g�� : (G.7)Aufgrund des Relativit�atsprinzips und der daraus resultierenden Lorentz-Kovarianz-Forderungder Dira
-Glei
hung ergibt si
h f�ur das Transformationsverhalten der vier Komponenteneines Dira
-Spinors unter Lorentztransformationen der lineare Zusammenhang 0i(x0) = Sij j(x) (G.8)mit i; j = 1; : : : ; 4. Die 4� 4-Matrix S = S(a) hat dabei die BedingungS�1(a)
�S(a) = a��
� (G.9)zu erf�ullen.W�ahlt man gem�a� der Standarddarstellung
0 =  11 00 �11 ! ; (G.10)



148 Lorentztransformationenso gilt f�ur die Matrix S insbesondere die Beziehung [35℄Sy = 
0S�1
0 : (G.11)F�ur den hermites
h-konjugierten Spinor  y und den konjugierten Spinor1 � �  y
0 erh�altman unter Lorentztransformation [35℄ 0(x0)y =  y(x)Sy (G.12)bzw. � 0(x0) =  0(x0)y
0(G:12)=  y(x)Sy
0(G:11)=  y(x)
0S�1= � (x)S�1 : (G.13)In euklidis
her Formulierung ist dagegen die De�nition � �  y
0 ni
ht mehr g�ultig, soda� die Herleitung f�ur die Transformation (G.13) des konjugierten Spinors f�ur euklidis
heSpinoren ni
ht �ubernommen werden kann [45℄. Stattdessen setzt man wie im Falle dereuklidis
hen Majorana-Spinoren (vgl. Anhang F) f�ur den konjugierten Spinor� =  tC : (G.14)Damit gilt unter Lorentztransformation� 0(x0) =  0(x0)tC= (S (x))t C=  t(x)StC= � (x)C�1StC : (G.15)F�ur die Ladungskonjugationsmatrix C und die Lorentz-Transformationsmatrix S �ndetman als Analogon zu Glei
hung (G.11) in euklidis
her FormulierungSt = CS�1C�1 (�) ; (G.16)so da� wie im Minkowski-Fall letztendli
h wieder� 0(x0) = � S�1 (G.17)gilt.1In der Literatur �ndet man au
h die Bezei
hnung adjungierter Spinor.



149(�) Begr�undung:Im Falle in�nitesimalen Transformationsparameters ��� mit ��� = ���� wirddie Lorentztransformation von Spinoren dur
h die folgende Matrix bes
hrieben(vgl. [46℄): S � 11� i4������ ; ��� 2 R : (G.18)Damit ergibt si
h f�ur kleine Abwei
hungen von der Identit�atS�1 � 11 + i4������ (G.19)St � 11� i4����t�� : (G.20)Wegen C�1StC = C�1�11� i4����t���C= 11� i4��� C�1�t��C| {z }����= 11 + i4������= S�1 (G.21)erh�alt man somit St = CS�1C�1 : (G.22)
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hen Themenvors
hlag als Betreuer dieserArbeit zur Verf�ugung stellte. Ein weiterer Dank gilt Herrn Prof. Dr. Manfred Stingl f�urdie Bereits
haft, die Zweitkorrektur meiner Arbeit zu �ubernehmen.� meine Zimmerkollegin Christel Kamp und meine Zimmerkollegen Claus Gebert undTobias Galla, die allesamt f�ur ein angenehmes Arbeitsklima Sorge getragen haben. Ins-besondere Letztgenannter hatte stets ein o�enes Ohr f�ur die vielen physikalis
hen undmathematis
hen Fragen und Probleme, die si
h mir w�ahrend unserer gemeinsamen Stu-dienzeit in M�unster oftmals stellten. Claus danke i
h zudem f�ur seine Geduld bei derBeantwortung so man
her meiner Computerfragen und f�ur �uberaus detaillierte Korrektur-listen zu den einzelnen Kapiteln der vorliegenden Arbeit.� all diejenigen, die si
h auszugsweise am l�astigen Korrekturlesen beteiligt haben. Hier sindganz besonders Ralph Brinks, Otfried G�uhne und Andreas S
hmitz zu nennen. Ohne Eu
hw�are man
her Dru
kfehler und man
he spra
hli
he S
hwa
hsstelle unentde
kt geblieben.� zu guter Letzt Stephanie Uhlarik, die Dame meines Herzens, die w�ahrend der Fertig-stellung dieser Arbeit man
hes Mal Geduld beweisen mu�te, und die mir 48 Stundenvor Abgabefrist dur
h das "Endspurt-Diplomarbeit-�Uberlebenspaket\ die Gewi�heit gab:Alles wird gut!





Hiermit versi
here i
h, die vorliegende Diplomarbeit selbst�andig angefertigtund keine anderen als die angegebenen Hilfsmittel verwendet zu haben.
M�unster, im M�arz 2000












