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Einleitung

Jedem von uns begegnen in der Alltagswelt stindig Symmetrien in den unterschiedlich-
sten Facetten und Ausprigungen. Dariiber hinaus mag jeder einzelne eine etwas andere
Vorstellung des Begriffs Symmetrie haben. Einige werden sich Symmetrien als Figuren
oder Formen veranschaulichen, die bei einer Bewegung invariant sind, d.h. unverdndert
bleiben. Als Beispiel sei hier die Drehung einer Kugel um ihr Zentrum genannt. Nach
Rotation um einen beliebigen Winkel bietet sich stets das gleiche Bild. Weitere, suggesti-
vere Beispiele konnten etwa Schneekristalle, Bliiten, das Muster eines Pakettbodens oder
die bekannten Graphiken von M. C. ESCHER sein. Andererseits kann die Betrachtung von
Objekten im Bereich der Architektur oder der bildenden Kiinste von der Asthetik und den
gewihlten Proportionen Faszination ausiiben, und auch in vielen Werken der Musik und
Literatur verbinden sich kiinstlerische Freiheit mit dem Wunsch nach Einhaltung gewisser
Ordnungsschemata. Die diesen unterschiedlichen Assoziationen zugrunde liegende Idee ist
dabei die Beibehaltung oder insbesondere auch Erhaltung einer vorgegebenen Struktur.

Auch in der Physik spielen Symmetrien eine wesentliche Rolle. Dabei war man seit jeher
bemiiht, der Natur bzw. dem Naturgeschehen gewisse Symmetrien abzuschauen, aber auch
zuzuschreiben, oftmals allerdings in Form eher irrationaler, mythischer Gedankenkonstruk-
te. Als Beispiel seien hier die Weltharmonievorstellungen von PYTHARGORAS und PLATO
genannt. Diese Denkweise wurde allerdings bald abgelost, und man versucht stattdessen
Symmetrien in rationaler Weise zu erfassen und sie in einen mathematischen Formalismus,
der Gruppentheorie einzubetten. Dabei hat sich gezeigt, dafl diese zunichst rein mathema-
tische Theorie auch ein probates Hilfsmittel zur Losung von physikalischen Problemstellun-
gen sein kann, indem man die in den physikalischen Modellen erwarteten Symmetrien, die
sowohl in anschaulicher, aber manchmal auch in ganz indirekter Art vorkommen kénnen,
mit den abstrakten Begriffen der Gruppentheorie verbindet. Beispielsweise gelang es ge-
gen Ende des neunzehnten Jahrhunderts bei der Klassifikation von Kristallen erstmals,
den Symmetrie-Gedanken gruppentheoretisch zu erfassen. Aber auch schon vor dieser Zeit
nutzte man in der Physik geeignete Symmetrieeigenschaften aus, etwa in dem nach J.
KEPLER benannten Kepler-Problem, bei dem man aus physikalisch sinnvollen Invarianz-
forderungen des Raumes die Drehimpulserhaltung folgerte und letztendlich die méglichen
Bahnkurven der Himmelskorper erhielt. Spéater sollte sich herausstellen, daf3 dieses Resul-
tat ein Spezialfall des Anfang des zwanzigsten Jahrhunderts von E. NOETHER bewiesenen
Theorems ist, wonach jede Symmetrie mit einer physikalischen Erhaltungsgrofie verkniipft
ist. Symmetrieargumente dienen somit u.a. zur Einschrinkung der Dynamik eines Systems
und sind in allen Bereichen der Physik generell fiir physikalische Fragestellungen oftmals
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von zentraler Bedeutung. Dies gilt in besonderem Mafle auch fiir die moderne Theorie der
Elementarteilchen, der wir uns nun zuwenden wollen.

Ohne auf die historische Entwicklung bis hin zum heutigen Verstindnis der Elementarteil-
chen als kleinste Bausteine der Materie ndher eingehen zu wollen, ist allgemein bekannt,
daB bereits seit Jahrhunderten immer wieder Vorschlidge zur Beschreibung der elementa-
ren Bestandteile unserer Welt gemacht worden sind. Dabei wurden die unterschiedlichsten
Modelle aufgestellt, die in der Folgezeit entweder verbessert oder aber verworfen wurden.

Nach unserem derzeitigen Kenntnisstand wird die Materie des uns umgebenden Universum
mit Hilfe des Standardmodells der Elementarteilchen beschrieben, womit vorerst ein ge-
wisser Abschlu8 —zumindest innerhalb des derzeit experimentell zugénglichen Giiltigkeits-
bereiches— bei den Bemiihungen um eine Vereinheitlichung der Teilchenwelt erreicht ist.
Das Standardmodell basiert auf der Tatsache, dafl Elementarteilchen gewissen Wechsel-
wirkungen unterliegen, von denen dieses Modell drei miteinander verkniipft. Insgesamt
sind zur Zeit vier fundamentale Wechselwirkungen bekannt, wobei die vierte, die Gravita-
tion, noch nicht in zufriedenstellender Weise in die Theorie eingebunden werden konnte.
Die anderen drei fundamentalen Wechselwirkungen sind zum einen die starke Kraft, die
fiir den Zusammenhalt der Bausteine der Atomkerne verantwortlich ist, zum anderen die
schwache Wechselwirkung, die u.a. Ursache fiir den radioaktiven g-Zerfall von Atomker-
nen ist; als letzte Wechselwirkung ist die elektromagnetische Kraft zu nennen, mit deren
Hilfe sich drei klassische Gebiete der Physik —~Optik, Magnetismus und Elektrizitit—, die
immerhin bis in die Anfinge des zwanzigsten Jahrhunderts noch unterschieden wurden,
vereinheitlichen lieflen. Die dieser Kraft zugrunde liegende, relativistische Quantentheorie
wird dabei heute als Quantenelekrodynamik (QED) bezeichnet. Man ist nun grundsétzlich
daran interessiert, alle vier Wechselwirkungen durch ein gemeinsames Modell zu erfas-
sen. Ein erster Schritt in diese Richtung erfolgte durch die von GLASHOW, WEINBERG
und SALAM in den sechziger Jahren formulierte Theorie der elektroschwachen Wechsel-
wirkung, die die beiden zuletzt genannten fundamentalen Krifte miteinander verbindet.
Dieses Modell —und auch schon das der elektrodynamischen Wechselwirkung— basiert da-
bei auf gewissen Symmetrien. Man spricht in diesem Zusammenhang auch physikalisch
exakter von sog. Symmetriegruppen, die, wie oben bereits erwéhnt, eigentlich mathemati-
schen Ursprungs sind. Zusammen mit der Quantenchromodynamik (QCD) als Theorie der
starken Kraft beschreibt die Glashow-Salam-Weinberg-Theorie das heutige Standardmo-
dell der Elementarteilchenphysik. Die zugehorige Symmetriegruppe besteht dabei aus drei
unterschiedlichen sog. Eichgruppen und schreibt sich in mathematischer Formulierung als

GSM = SU(?)) X SU(2) X U(l) = SU(?)) X GGSW . (1)

Das Standardmodell ist somit eine lokale Eichtheorie, die auf Grundlage einer relativisti-
schen Quantenfeldtheorie formuliert ist. Um eine Vorstellung von der eminenten Bedeu-
tung dieser Theorie in Bezug auf die Teilchenphysik zu bekommen, sei an dieser Stelle
angemerkt, da bislang kein experimenteller Befund auf Unstimmigkeiten mit den auf
der Grundlage des Standardmodells getroffenen Vorhersagen hindeutet. -Dagegen gibt es
Phénomene, die zur Zeit nicht konsistent im Rahmen des minimalen Standardmodells er-
klarbar sind, z.B. die Asymmetrie von Materie und Antimaterie im Universum.— Stattdes-
sen waren oftmals Folgerungen aus dem theoretischen Zugang Ausloser fiir experimetelle
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Durchbriiche im Rahmen der Theorie, wie z.B. zuletzt bei der Entdeckung des Top-Quarks
(1994).

Das Teilchenspektrum des Standardmodell zerfallt in Quarks und Leptonen. Quarks un-
terliegen der starken Kraft und lassen sich z.B. in geeigneter Weise zu Protonen und Neu-
tronen zusammenfiigen, den Bausteinen der Atomkerne. Leptonen wie etwa das Elektron
oder das Elektron-Neutrino bleiben dagegen von der starken Kraft unberiihrt. Sie wech-
selwirken iiber die schwache Kraft. Beide Sorten von Teilchen haben allerdings auch eines
gemeinsam: Jedem physikalischen Teilchen 148t sich ein zusédtzlicher, charakteristischer,
innerer Freiheitsgrad (Spin) zuordnen, nach der die Elementarteilchen ebenfalls klassifi-
ziert werden konnen. Quarks und Leptonen haben allesamt einen halbzahligen Spin und
werden somit als Fermionen bezeichnet. Thr Pendant sind die sog. Bosonen mit ganzzahli-
gem Spin. Sie wirken als Vermittler der Krifte zwischen den Fermionen. Als bekanntestes
Beispiel sei hier das Photon als Austauschteilchen der elektromagnetischen Wechselwir-
kung genannt. Auch im Rahmen der Elementarteilchenphysik spielt der Symmetriebegriff
nun wieder eine wesentliche Rolle, da sich ihre Eigenschaften aus denen einer physikalisch
motivierten Symmetriegruppe, der Poincaré-Gruppe, ableiten lassen.

Nachdem WILSON in den siebziger Jahren erstmals eine gitterregularisierte, eichinvarian-
te, euklidische Quantenfeldtheorie formulierte, zeigte sich das Konzept alsbald als aufer-
gewdhnlich fruchtbar fiir die Entwicklung der Teilchenphysik. Der Grund hierfiir liegt in
dem in dieser Theorie offen gelegten, direkten Zusammenhang zwischen statistischer Phy-
sik und der Quantenfeldtheorie, so daf} zahlreiche Methoden aus diesem Gebiet fiir Unter-
suchungen im Rahmen des Standardmodells iibernommen werden konnten. Zudem bietet
sie eine theoretische Grundlage und Rechtfertigung fiir eine —neben den bislang erwéhnten,
traditionsreichen Methoden zum Auffinden physikalischer Zusammenhénge: Modellbildung
und Experiment— weitere Moglichkeit der mittlerweile standardméflig durchgefiihrten Un-
tersuchung von physikalischen Sachverhalten. Die Entwicklung moderner, leistungsfihi-
ger Grofirechner hat es in den vergangenen zwanzig Jahren ermdoglicht, die oftmals teu-
ren und zeitaufwendigen Beschleunigerexperimente durch computergestiitzte Simulations-
rechnungen zu ergénzen. Dabei hat man aufgrund der endlichen, zur Verfiigung stehen-
den Rechnerleistungen die kontinuierliche, physikalische Raum-Zeit durch ein vierdimen-
sionales, kubisches Gitter zu ersetzen, so dal fortan physikalische Zustinde —bzw. sog.
Feldkonfigurationen— nur noch auf Gitterplidtzen oder ihren Verbindungslinien definiert
sind. Die oben schon einmal erwdhnten Invarianzforderungen des physikalischen Raum-
es miissen dabei allerdings zum Teil aufgegeben werden. Im Falle des dreidimensionalen,
euklidischen, uns umgebenden Raumes bedeutet das beispielsweise, dafl die natiirliche
Rotationsinvarianz aufgrund der nunmehr gitterhaften, rdumlichen Struktur durch eine
untergeordnete, diskrete Symmetrie zu ersetzen ist. Betrachtet man dazu der Einfach-
heit halber lediglich einen Ausschnitt eines dreidimensionalen Gitternetzes in Form eines
Wiirfels, so bedeutet das gerade, dal er sich nur mittels Drehungen um geeignete Ach-
sen (Symmetrieachsen) und Winkelmafe in sein Ebenbild iiberfithren 148t. Insbesondere
auf diesen Sachverhalt wird im Rahmen der vorliegenden Arbeit noch genauer einzugehen
sein.

Trotz des tiberaus groflen Erfolges des Standardmodells werden weiterhin Versuche un-
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ternommen, weitreichendere Theorien und Modelle zu entwickeln, die das Standardmodell
moglicherweise als einen Spezialfall enthalten. Fernziel ist es dabei, irgendwann einmal alle
vier fundamentalen Wechselwirkungen mit Hilfe einer , Theory of Everything“ beschrei-
ben zu kénnen. Heute glaubt man erkannt zu haben, dafy die Supersymmetrie wesentlicher
Bestandteil einer solchen Theorie sein mufl. Daher begann man bereits Anfang der sieb-
ziger Jahre mit der Untersuchung supersymmetrischer Theorien, auf die nun als letztes
eingegangen werden soll.

Die entscheidend neue Idee der Supersymmetrie (SUSY) ist es, daf sich fermionische und
bosonische Teilchen —mittels geeigneter, neu hinzugefiigter Transformationen— ineinander
iiberfithren lassen. Daraus resultiert allerdings eine Erweiterung des bisher vierdimensio-
nal beschriebenen, physikalischen Raumes um vier weitere Dimensionen und in letzter
Konsequenz eine Verdoppelung des erwarteten Teilchenspektrums. Damit hat beispiels-
weise jedes Boson des Standardmodells ab sofort ein Fermion als sein supersymmetrisches
Pendant und umgekehrt jedes Fermion einen bosonischen SUSY-Partner. SUSY-Partner
sollten sich nur — aufgrund der Definition von Boson und Fermion— in ihrem Spinfreiheits-
grad unterscheiden, ansonsten aber identische physikalische Eigenschaften besitzen. Die
Tatsache, dafl bis zum heutigen Tage noch keine supersymmerischen Teilchen in Hoch-
energieexperimenten nachgewiesen werden konnten, deutet nach derzeitigem Kenntnis-
stand allerdings darauf hin, dal die SUSY-Teilchen eine i.a. h6here Masse tragen diirften
als ihre Partner aus dem Standardmodell. In physikalischer Formulierung spricht man in
diesem Zusammenhang von einer sog. gebrochenen supersymmetrischen Theorie. Weiter-
hin sei hier angemerkt, dafl aus diesem Grunde derzeit grole Hoffnungen auf die neue,
héherenergetische Beschleunigergeneration gesetzt werden, um in zukiinftigen Experimen-
ten erste zuverlissige Daten zur Bestidtigung der Evidenz von supersymmetrischen Teilchen
zu erhalten.

Es stellt sich nun die Frage, welche Griinde fiir eine supersymmetrische Beschreibung
jenseits des Standardmodells sprechen. Stellvertretend seien hier drei hiufig zu findende
Argumente genannt:

Das wohl iiberzeugendste unter ihnen ist das sog. Hierarchie-Problem. In der Quanten-
feldtheorie —und damit insbesondere auch im Standardmodell- sind die physikalischen
Felder der betrachteten Theorie durch sog. Kopplungskonstanten miteinander verbunden.
Diese sind in der Theorie des Standardmodell nicht konstant, sondern energieabhéngig.
Man spricht in diesem Zusammenhang von laufenden Kopplungen. Renormierungsgrup-
pentheoretische Untersuchungen zeigen, dafl diese Kopplungen in keinem Energiebereich
zusammentreffen, aber sich zumindest —spétestens bei einer Energie von ungefihr 10
GeV- anndhern. Auf der Grundlage eines supersymmetrischen Standardmodells wiirden
sich die entsprechenden Kopplungen dagegen in einem Bereich um etwa 10'® GeV vereinen,
so dal man oberhalb dieser Energieskala eine ,,Grand Unifying Theory“ (GUT) erwarten
konnte, die die starke und elektroschwache Wechselwirkung durch eine gemeinsame Kopp-
lungskonstante beschreiben kénnte. Das Problem besteht nun darin, dafl man aufgrund von
theoretisch sehr iiberzeugenden, physikalischen Betrachtungen annimmt, dafl im Energie-
bereich von ,lediglich“ 100 GeV ein Teilchen ( das sog. Higgs-Boson) existiert, welches fiir
den Mechanismus der Massenerzeugung im Standardmodell verantwortlich gemacht wird.
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Wegen seiner wichtigen Bedeutung fiir das Standardmodell erwartet man, dafl es auch
in GUT-Theorien eine wesentliche Rolle spielen muflte. Seine relativ geringe Energie und
die weitaus hoher liegende Energieskala einer ,,Groflen Vereinheitlichten Theorie* wiirde
es nun notwendig machen, recht willkiirlich wirkende Restriktionen an die Parameter sol-
cher GUT-Theorien zu stellen. Dieses Problem bezeichnet man als Hierarchie-Problem.
Die Supersymmetrie entschérft in gewisser Weise dieses Problem durch in ihr formulierte
,non-renormalization“-Theoreme. Es muf} allerdings eingerdumt werden, daf3 bislang ein
experimenteller Nachweis des Higgs-Bosons noch aussteht.

Als weiteres Argument fiir die Anwendbarkeit von supersymmetrischen Theorien sei hier
noch angemerkt, dafl sich eine supersymmetrische Beschreibung unserer Natur zudem
durch gewisse Anhaltspunkte hinsichtlich der Vereinigung von Eich- und Gravitations-
wechselwirkung motivieren 148t, womit sich erste Ansitze zu einer allumfassenden Theorie
aller vier fundametaler Wechsewirkungen anbieten.

Zuletzt sei auf experimentelle Befunde zur Bestimmung der Protonmasse eingegangen.
Experimenten entnommene Daten deuten méglicherweise auf deren Diskrepanz mit den
Vorhersagen aus dem Standardmodell hin. Sollten sich diese Ergebnisse in der Zukunft
bewahrheiten, so wiirde ein erster experimenteller Widerspruch zu den Prognosen des
Standardmodells vorliegen, wohingegen sich die Resultate mit Hilfe der supersymmetri-
schen Theorien erkliren lieflen.

Wie im Zuge der Einfithrung in diese Arbeit bereits erwédhnt wurde, hat man bislang keine
direkten experimentellen Hinweise auf supersymmetrische Teilchen finden k6nnen, so dafl
theoretisch angelegte Untersuchungen und numerische Methoden im Sinne von computer-
gestiitzen Simulationen insbesondere auch fiir supersymmetrische Theorien geeignete und
notwendige Ansatzpunkte darstellen. Die vorliegende Arbeit wird sich im folgenden mit
beiden Aspekten beschiftigen, wobei ein deutlicher Schwerpunkt auf den theoretischen
Betrachtungen liegen wird. Sie besteht dabei aus sechs Kapiteln, deren Inhalt an dieser
Stelle kurz skizziert werden soll.

Nachdem in einem vorangestellten Kapitel gruppentheoretische Vorbereitungen getroffen
werden, um die im ersten Teil der Arbeit betrachteten Gitter-Operatoren untersuchen zu
konnen, gibt das folgende Kapitel einen Einblick in die Theorie der Existenz von Glueball-
Zustdnden in stark gekoppelten Gittereichtheorien und ihrer Massenbestimmung mit Hilfe
von Gitter-Simulationen.

Im zweiten Kapitel erfolgt eine Ausarbeitung eines Artikels von B. BERG und A. BILLOIRE
[19], der die gruppentheoretischen Untersuchung von Wilson-Loops unter der untergeord-
neten Gitter-Symmetriegruppe O der Drehgruppe SO(3) beinhaltet. Dabei wird die zu-
grunde liegende Konstruktionsmethode zur Bestimmung von Darstellungen der kubischen
Gruppe iiber Wilson-Loops anhand von ausgewéahlten Beispielen ausfiihrlich erldutert und
die im Artikel angegebenen Resultate explizit reproduziert.

Eine formale Einfithrung in supersymmetrische Theorien, wobei insbesondere auf die in
der Supersymmetrie vorkommenden Supermultipletts eingegangen wird, gibt das dritte
Kapitel. Schliefllich wird die Konstruktion der Wirkung der N = 1 Super-Yang-Mills-
Theorie des vierdimensionalen Kontinuums skizziert.



6 Einleitung

Das nichste Kapitel schlieit sich thematisch und formal an das einfithrende Kapitel an.
In ihm wird einerseits die dort bereits behandelte Darstellungstheorie endlicher Gruppen
auf das Konzept der Produktgruppen erweitert, und zum anderen die kubische Gruppe
auf ihre Uberlagerungsgruppe ausgeweitet. In diesem Sinne dient es der Bereitstellung der
fiir das letzte Kapitel benttigten Hilfsmittel.

Nun folgt unter Verwendung und Ausbau der Methoden des zweiten Kapitels eine grup-
pentheoretische Behandlung unterschiedlicher Gitter-Operatoren der N = 1 Super-Yang-
Mills-Theorie. Den durch die Supersymmetrie iiberdies in Form von Majorana-Spinoren
hinzukommenden, fermionischen Freiheitsgraden wird dabei sowohl durch die im vorhe-
rigen Kapitel eingefiihrten Erweiterungen hinsichtlich der Darstellungstheorie endlicher
Gruppen, als auch durch die den Untersuchungen zugrunde liegende erweiterte Gitter-
Symmetriegruppe Rechnung getragen.

Die Arbeit schlieft mit einer Zusammenfassung und einem Ausblick.



Kapitel 0
Grundlagen der Gruppentheorie 1

Dieses vorangestellte Kapitel gibt in kompakter Form eine Einfithrung in die Darstel-
lungstheorie endlicher Gruppen, wie sie fiir die beiden folgenden Kapitel benétigt wird.
Desweiteren soll es der Festlegung von Notationen dienen. Dem Konzept der Produkt-
gruppen und ihrer irreduziblen Darstellungen wird spéter ein eigenes Kapitel gewidmet
sein, da ihre Konstruktion im ersten Teil der Arbeit nicht benétigt wird. Dagegen steht
zuniichst die kubische Gruppe O als eine endliche Untergruppe der Drehgruppe SO(3) im
Mittelpunkt meiner Untersuchungen, so dafl sie in diesem einfithrenden Kapitel als Bei-
spiel einer endlichen Gruppe eingehend behandelt werden soll. Spiter werden wir dann zu
einer , groferen® Gruppe, namlich ihrer Uberlagerungsgruppe iibergehen. Sie wird noch an
geeigneter Stelle vorzustellen sein.

Fiir detailliertere Ausfithrungen zu diesem Kapitel sei auf die umfangreiche Literatur zur
Gruppentheorie, z.B. [1-6], verwiesen.

0.1 Elementare Gruppentheorie

Zunichst wollen wir einige gruppentheoretische Definitionen angeben und dabei beginnen
mit

Definition 1 Eine Menge G = {a,b,c,...} bildet eine Gruppe, wenn auf ihr eine Ver-
kniipfung o : G x G — G erklart ist, die folgende Eigenschaften besitzt:

E; :Die Operation o ist assoziativ, d.h. falls a, b, ¢ € G gilt, dann ist (a o b)oc = ao(bo ¢).

Ey : Es gibt ein neutrales Element e € G mit aoe =eoa = a fiir alle a € G.

E3 : Es gibt fiir alle a € G ein inverses Element a ! € G mit aoca ! =a loa=ce.

Definition 2 Eine Gruppe G heifit abelsch, falls die Vekniipfung o kommutativ ist, d.h.
falls a o b = b o a fiir alle a,b € G gilt.

Definition 3 Unter der Ordnung einer endlichen Gruppe versteht man die Anzahl ihrer
Elemente.
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Beispiele: Das denkbar einfachste Beispiel ist die einelementige Gruppe G = {e} beste-
hend aus dem neutralen Element e. Sie ist eine abelsche Gruppe der Ordnung eins. Eine
bekannte nicht-triviale endliche Gruppe ist die Permutationsgruppe S,. Sie enthilt alle
Konfigurationen an n—Tupeln, die sich aus Permutationen des Tupels (1,...,n) bilden
lassen. Die S,, enthélt n! Elemente und ist fiir n > 2 eine nicht-abelsche Gruppe. In
Abschnitt 0.3 werden wir eine weitere endliche nicht-abelsche Gruppe kennenlernen, die
kubische Gruppe O, deren Ordnung 24 ist. In der Physik spielen insbesondere Gruppen
mit unendlich vielen Elementen eine wichtige Rolle. Als Beispiele seien hier die Rotati-
onsgruppe SO(3) und die SU(N) genannt, letztere dient insbesondere zur Beschreibung
von Eichsymmetrien im Standardmodell der Elementarteilchen. Die SO(3) und SU(2)
beschreiben Drehungen im dreidimensionalen reellen bzw. zweidimensionalen komplexen
Raum. Diese Gruppen werden uns spiter —im Zusammenhang mit der Uberlagerungsgrup-
pe von O— noch mehrmals begegnen.

Gehen wir nun noch einmal kurz auf die Permutationsgruppe S, mit n > 3 ein. Betrachtet
man nur solche Elemente, die sich ausgehend vom Einselement aus einer geraden Anzahl
von Transpositionen (das sind Vertauschungen zweier Komponenten in einem Tupel) er-
geben, so bilden diese eine echte Teilmenge A,, C S,,. A, besitzt wieder Gruppenstruktur,
d.h. insbesondere, da} A,, abgeschlossen ist. Man sagt, A, ist eine Untergruppe der S,.
Die Definition dazu liest sich so:

Definition 4 Eine Teilmenge H einer Gruppe G heifit Untergruppe von G, falls sie mit
der induzierten Verkniipfung wieder eine Gruppe bildet.

An dieser Stelle sei eine Schreiberleichterung vereinbart: Fiir die Gruppenverkniipfung o
schreibt man oftmals einfach ein -, oder man verzichtet génzlich auf ein Symbol. Letztere
Konvention wollen wir von jetzt an einhalten, also a o b abkiirzend mit ab bezeichnen.

Man ist nun daran interessiert, jedes Elemente einer Gruppe eindeutig einer sog. Klasse
zuzuordnen und diese dann durch jeweils einen Reprisentanten zu beschreiben. Hierzu
definiert man eine Aquivalenzrelation und daraus Aquivalenzklassen.

Definition 5 Zwei Elemente a,b € G heiflen zueinander konjugiert bzgl. G (a ~ b), falls
es ein g € G gibt, mit b = g 'ag.

Definition 6 Man nennt die Menge aller zu a konjugierten Elemente auch Klasse von a
und bezeichnet sie mit (a).

Daf} diese Definition das Verlangte leistet, bestitigt

Bemerkung 7 Jedes Gruppenelement g liegt in genau einer (konjugierten) Klasse von
G, d.h. die Klassen sind disjunkt und die Vereinigung ergibt G; insbesondere bildet das
neutrale Element eine Klasse fiir sich.

Beweis: Fiir einen Beweis der Aussage sei auf [1] verwiesen.
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Zum Schluf} dieses Abschnitts wollen wir Abbildungen zwischen zwei Gruppen einfiihren.
Sie bilden die Grundlage fiir das Konzept der Darstellungungstheorie, welches im néchsten
Abschnitt behandelt wird.

Definition 8 Eine Abbildung ® : G — G’ von einer Gruppe G in eine andere Gruppe
G’ heifit Gruppenhomomorphismus, falls sie die Gruppenverkniipfung respektiert, d.h. fiir

® (g9;) = g; und g1g2 = g3 gilt g1g5 = g3 mit g; € G, g; € G',i € {1,2,3}.

0.2 Darstellungstheorie endlicher Gruppen

In geometrischen und physikalischen Anwendungen ist die Gruppentheorie meist eng mit
Symmetrietransformationen verbunden. Zur Erlduterung seien zwei Beispiele angespro-
chen: Differentialgleichungen sind oftmals invariant gegeniiber bestimmten Symmetrie-
transformationen, die das Auffinden von Lésungen erheblich vereinfachen kénnen (s. Kep-
lerproblem). Der Vektorraum der Lésungen bildet dabei einen Darstellungsraum auf dem
die Symmetriegruppe dann wirkt.

In der Quantenmechanik ist der Hamiltonoperator des Wasserstoffatoms invariant unter
reinen Drehungen im dreidimensionalen Zustandsraum. Die Menge dieser Koordinaten-
transformationen bildet dabei eine Gruppe, die sog. Invarianz-Gruppe des Hamiltonope-
rators. Ordnet man nun jedem einzelnen Gruppenelement g genau ein Element Dx(g) aus
der Gruppe der nicht-singuldren d x d Matrizen mit der gew6hnlichen Matrizenmultipli-
kation als Verkniipfung derart zu, dafl

Dr(g192) = Dr(g91)Dr(g2) (1)

gilt, ist R = {Dr(g)} eine d-dimensionale Darstellung der Invarianz-Gruppe!, und es
zeigt sich, daf alle Energie-Eigenrdume des Hamiltonoperators Darstellungsrdume der
Invarianz-Gruppe bilden. Fiir Details konsultiere man [1]. Im folgenden werden nun die
Grundziige der Darstellungstheorie systematisch eingefiihrt. Wir beginnen mit dem Begriff
der Darstellung.

0.2.1 Grundbegriffe

Unter der Darstellung einer Gruppe versteht man i.a. einen Homomorphismus, der in den
Raum der Automorphismen eines Vektorraumes V abbildet. Die mathematische Definition
lautet wie folgt:

Definition 9 Ein Homomorphismus R : G — Aut(V), g — R(g) von G in eine Gruppe
von Operatoren R (G) eines linearen Vektorraums V heifit eine Darstellung der Gruppe G
mit dem Darstellungsraum V, wenn die Darstellungsoperatoren die gleichen Verkniipfungs-
regeln erfiillen, wie die Gruppe G, also wenn R (g1) R (g2) = R (g9192) gilt.

!Strenggenommen ist das Gleichheitszeichen an dieser Stelle falsch, da wir im folgenden zwischen der
Darstellung R und ihren Darstellungsmatrizen D unterscheiden wollen. Es besteht aber ein eineindeutiger
Zusammenhang zwischen Darstellungen und ihren Darstellungmatrizen, so daf diese ungenaue Formulie-
rung hier erlaubt sei.
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Die Dimension der Darstellung ist dabei die Dimension des Vektorraumes V.
Eine Darstellung heifit treu, falls R ein Isomorphismus ist, andernfalls nennt man sie de-

generiert.

Ich werde mich bei den weiteren Betrachtungen auf endliche Gruppen und endlich-dimen-
sionale Vektorrdume beschrianken, wobei nur am Rande zu bemerken ist, dafl die meisten
Resultate auch auf unendlich-dimensionale Ridume ausgeweitet werden kénnen. Diese Ein-
schrinkung gilt fiir das gesamte Kapitel. Falls an vereinzelten Stellen auf die Endlichkeit
nochmals explizit hingewiesen wird, hebt das die allgemeine Einschrinkung keinesfalls auf,
sondern dient lediglich der exakteren Formulierung.

Aus der Linearen Algebra ist bekannt, dafi die Menge der Automorphismen Aut(V') ei-
nes n-dimensionalen, C-linearen Vekorraums V isomorph zu der Menge C"**™ ist, also
® : Aut(V) — C»*". Betrachtet man nun die Darstellung M(R) : G — C¥", g
® (R(g)), so ist das Bild M(R)(G) eine Untergruppe von C**" und damit isomorph zum
Bild R(G) C Aut(V) von R. Dies gibt Anlaf} zu folgender

Bemerkung und Definition 10 Jede endlich-dimensionale Darstellung R kann in Form
von Darstellungsmatrizen D (g), g € G, beschrieben werden. Die induzierte Verkniipfung
ist dann die Matrizenmultiplikation. Man sagt, die oben definierte Darstellung M(R)
bildet eine Matrizdarstellung von G.

Beispiele: Jede Gruppe G besitzt eine triviale Darstellung 7, die durch Dy (g) = 1 fiir alle
g € G definiert ist. Der zugehorige Vektorraum ist R bzw. C.

Sei G eine Gruppe von Matrizen (z.B. GL(n) oder SU(N)), V = C und Dx(g) = det g.
Dies definiert eine nicht-triviale eindimensionale Darstellung R von G.

Als weitere Beispiele seien die aus der Quantenmechanik bekannten (irreduziblen) Ma-
trixdarstellungen der Drehgruppe SO(3) genannt (Achtung: ord(SO(3)) = o), die im
Zusammenhang mit den Spinfreiheitsgraden eines quantenmechanischen Teilchens eine
wichtige Rolle spielen. Sie werden durch die Quantenzahl j charakterisiert und ihr Dar-
stellungsraum ist 2(j + 1)-dimensional.

Dariiberhinaus findet man zusétzliche Beispiele in [4].

0.2.2 Nicht-dquivalente und irreduzible Darstellungen

Zu einer vorgegebenen Gruppe gibt es i.a. mehrere mégliche Darstellungen. Eine Klassi-
fikation dieser unterschiedlichen Darstellungen kann auf zwei verschiedene Arten gesche-
hen. Zum einen stellt Bemerkung 10 bereits einen direkten Zusammenhang zwischen den
Darstellungsoperatoren und gew6hnlichen Matrizen her. Man fithrt nun den Begriff der
Ahnlichkeit von Darstellungen ein, der bereits fiir Matrizen aus der Linearen Algebra be-
kannt ist. Er {ibertrégt sich auf die Darstellungstheorie ganz kanonisch:

Sei R eine Darstellung von G auf V' und S ein invertierbarer Operator auf V. Dann ist
die durch R’ (g) = SR (g9) S~! ,Vg € G definierte Darstellung R’ eine Darstellung von G
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mit gleicher Dimension. Die Darstellungsmatrizen der beiden Darstellungen héngen dabei
in gleichem Mafle zusammen wie zwei Matrizen, die eine lineare Abbildung bzgl. zweier
unterschiedlicher Basen beschreiben. Man sagt R und R’ sind durch eine Ahnlichkeits-
transformation ineinander iibergegangen.

Definition 11 Zwei Darstellungen heiBen dquivalent, falls sie durch eine Ahnlichkeits-
transformation ineinander iiberfithrt werden kénnen.

Aquivalente Darstellungen bilden eine Aquivalenzklasse, und in den meisten Fillen geniigt
es, einen Reprisentanten aus jeder Klasse zu kennen. Wie entscheidet man aber bei zwei
Darstellungen, ob sie dquivalent sind oder nicht? Man bend&tigt eine Charakterisierung,
die sich bei Ahnlichkeitstransformationen nicht &ndert. Fiir Matrizendarstellungen ist die
Spur eine entsprechende Invariante. Man definiert daher:

Definition 12 Der Charakter x* (¢g) von g € G in einer Darstellung R ist durch

X" (9) =Tt R (9) (2)

erklirt. Falls Dg(g) die zugehorige Darstellungsmatrix zu R (g) ist, gilt
X" (9) = Z (Dr(9)):; - (3)

i

Bemerkung 13 Alle Gruppenelemente einer Klasse (vgl. Definition 6) haben den gleichen
Charakter, d.h. der Charakter ist eine Klassenfunktion.

Beweis: Seien g,p € G, dann gilt wegen der Invarianz der Spur gegeniiber zyklischer Ver-
tauschung Tr (D (p) D= (9) D= (p™')) = TrDx (g) fiir alle p € G.

Ein weiteres wichtiges Hilfsmittel, die unterschiedlichen Darstellungen einzuteilen, ist die-
se, sie in eine direkte Summe aus irreduziblen Darstellungen zu zerlegen. Jede denkbare
Darstellung einer beliebigen Gruppe enthélt gewisse Informationen iiber sie. Ziel ist es
nun, moglichst niedrigdimensionale Darstellungen zu finden, die die gesamte Information,
die man durch Darstellungen iiberhaupt erhalten kann, beinhalten. Um dieses Vorhaben
in eine mathematische Form zu fassen, sind zunichst einige Begriffe nétig.

Definition 14 Sei R eine Darstellung von G auf dem endlichen Vektorraum V und sei
V1 ein Unterraum von V. Dann heifit V7 invarianter Unterraum von V bzgl. R , falls fiir
allex € Vi und g € G R(g)(x) € V; ist.

Ein invarianter Unteraum ist minimal, falls er keine nicht-trivialen invarianten Unterrdume
bzgl. R mehr enthilt.

Falls V; invariant unter R ist, definiert man die Einschrinkung von R auf Vi als

R'(9)=R(9) I mit R'(g)v1 =R(g)v1, g€G,vm €. (4)

Beispiele: Triviale invariante Unterrdume von V bzgl. R sind der Vektorraum V selbst
und der Nullraum.



12 Grundlagen der Gruppentheorie I

Definition 15 Eine Darstellung R von G heifit irreduzibel, wenn es keinen nicht-trivialen
invarianten Unterraum von V bzgl. R gibt, ansonsten ist die Darstellung reduzibel.

Falls das orthogonale Komplement eines invarianten Teilraums ebenfalls invariant bzgl. R
ist, nennt man die Darstellung R vollstdndig reduzibel.

Es stellt sich nun die Frage, was mit der Unterscheidung von reduziblen und irreduziblen
Darstellungen gewonnen ist. Hier zeigt sich, dafl jede reduzible Darstellung in irreduzi-
ble Darstellungen zerlegt werden kann und umgekehrt aus der Kenntnis aller irreduziblen
Darstellungen alle reduziblen Darstellungen konstruiert werden kénnen. Somit kommt den
irreduziblen Darstellungen eine herausragende Rolle zu, und deren Auffinden 16st das Dar-
stellungsproblem von Gruppen vollkommen. Die oben gemachten Aussagen wollen wir am
Ende dieses Unterabschnitts in einem Theorem prizisieren (vgl. Theorem 17), auf den
Beweis soll allerdings verzichtet und auf die bereits oben genannte Literatur verwiesen
werden. Ich mo6chte an dieser Stelle allerdings darauf hinweisen, daf§ als wesentliches Hilfs-
mittel die Aussage dient, dafl man sich bei der Beweisfithrung auf unitire Darstellungen
beschrinken kann. Deshalb zun&chst

Theorem 16 Jede Darstellung R einer endlichen Gruppe auf einem Raum mit einem
inneren Produkt ist dquivalent zu einer unitdren Darstellung. Dabei heifit R eine unitdre
Darstellung, falls auf dem Darstellungsraum der Gruppe G ein inneres Produkt (Skalar-
produkt) definiert ist und die Operatoren R (g) fiir alle g € G unitér sind, d.h. falls sie
das innere Produkt zweier Elemente invariant lassen.

Man kann nun zeigen, daf jede reduzible unitire Darstellung R : G — Aut(V) auf V mit
nicht-trivialem invarianten Unterraum V; ihren zu V3 orthogonalen Raum Vlj- ebenfalls als
invarianten Unterraum besitzt. Somit sind auch R' : G — Aut(V1) mit R'(9) = R(9) |w;
und R" : G — Aut(V{") mit R"(g) = R(g) |y, eine Darstellung von G. Da V =V, & Vit
legen R' und R" die Darstellung R eindeutig fest. Daher schreibt man R = R’ & R".
Man sagt, R ist die direkte Summe von R’ und R"” . Nimmt man nun 0.B.d.A. an, dal V;
der kleinste echte invariante Unterraum von V ist, so ist R’ zwangsliufig irreduzibel und
V- aufgrund obiger Aussage invariant unter R”. Falls R” nicht irreduzibel ist, wihlt man
auch in V;* den kleinsten echten invarianten Unterraum aus —dieser ist dann invariant
unter einer irreduziblen Darstellung R"— und spaltet ihn ab; dieser Ablauf kann solange
fortgefiithrt werden, bis man die reduzible Darstellung R vollsténdig in irreduzible Anteile
zerlegt hat. Da V endlich-dimensional ist, bricht die Prozedur nach endlich vielen Schritten
ab. Man erhilt schlief8lich

k
R =P aR", (5)
pn=1

wobei a, € Ny und die r" paarweise nicht-dquivalent zueinander sind?2.

Es sei angemerkt, daf die Zerlegung (5) nicht eindeutig ist, es wird sich aber im néchsten
Abschnitt herausstellen, da8 die a, jedoch fiir jede Zerlegung eindeutig bestimmt sind.
Man erhilt also das bereits angekiindigte

2Gleichung (5) meint genauer R=R' @ --- @R @R’ ®---d R’ ®---dR"--- R .
N AN g . N ==

al-ma.l uz-mal ak.-ma.l
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Theorem 17 Jede endlich-dimensionale unitdre Darstellung einer endlichen Gruppe kann

vollstdndig in eine direkte Summe von irreduziblen unitdren Darstellungen zerlegt werden.

Am Ende dieses Abschnitts sei noch einmal kurz auf die zugehérigen Matrixdarstellungen
irreduzibler Darstellungen eingegangen. Zerlegt man V in die direkte Summe V = V; @ V4,
so kann durch geeignete Wahl der Basisvektoren die zu R gehorige Darstellungsmatrix in
eine obere Dreiecksform gebracht werden. Zerlegt man aber die Darstellung R gem&8 Theo-
rem 17 vollstdndig in ihre irreduziblen Anteile, so erhilt die Darstellungsmatrix Blockdia-
gonalgestalt.

0.2.3 Eigenschaften irreduzibler Darstellungen

Das zentrale Problem in der Darstellungstheorie endlicher Gruppen ist zum einen das
Auffinden aller nicht-dquivalenten, irreduziblen Darstellungen, sowie praktische Metho-
den zum Aufspalten reduzibler Darstellungen. Dieser Abschnitt stellt daher die dafiir
wesentlichen Theoreme vor. Zuvor wollen wir aber die beiden Lemmata von Schur (ohne
Beweis) zitieren, man findet sie u.a. in jedem der oben genannten Biicher zur Gruppen-
theorie. Mit Hilfe dieser Lemmata 148t sich das Orthonormalititstheorem folgern, das —in
basisunabhéngiger Formulierung- fiir die Praxis von wesentlicher Relevanz ist.

Lemmata von Schur

Lemma 18 Sei R eine irreduzible Darstellung der (endlichen) Gruppe G auf einem (end-
lich-dimensionalen) Vektorraum V und A ein beliebiger Operator auf V. Falls A mit allen
Operatoren {R (g),g9 € G} vertauscht, also AR (g) = R (g) A fiir alle g € G gilt, dann
muf} A ein Vielfaches des Identitatsoperatores sein, d.h. es ist A = All mit einer komplexen
Zahl .

Lemma 19 Seien R und R’ zwei irreduzible Darstellungen einer (endlichen) Gruppe G
auf den (endlich-dimensionalen) Vektorrdumen V bzw. V' und A eine lineare Transforma-
tion von V' nach V mit AR'(g9) = R (g) A fiir alle ¢ € G. Dann ist entweder (i) A =0
oder (ii) V und V' sind zueinander isomorph und damit R &quivalent zu R'.

Orthonormalititstheorem

Jetzt sind wir in der Lage, die zentralen Resultate der Darstellungstheorie endlicher Grup-
pen anzugeben. Vorweg aber noch einige Notationvereinbarungen:
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ng: Gruppenordnung;
W, V: indiziert nicht-iquivalente, irreduzible Darstellungen R", R von G;
dy: Dimension der Darstellung R";

DH(g):  die zu g € G gehérige Matrix der Matrixdarstellung M (R") beziig-
lich einer Orthonormalbasis;

Ci: konjugierte Klasse, (i = 1,2,...,n¢) ;

x* (C;): Charakter der Elemente in der Klasse C; in der Darstellung R";
n;: Anzahl der Elemente in der Klasse C; ;

ne: Anzahl der Klassen in der Gruppe G.

Theorem 20 Fiir zwei beliebige, nicht-dquivalente, irreduzible, unitire Darstellungsma-
trizen gilt:

d
é > DM (9)iD¥(9)j1 = S 0i0m (6)
g

mit der Konvention® D*(g)x; = D**(g).

Beweis: Eine Beweisskizze findet sich in Anhang B.1.

Man beachte, dal auf die Irreduzibilitdtsforderung keinesfalls verzichtet werden darf. Der
Beweis benutzt in beiden Féllen die Lemmata von Schur, die nur fiir irreduzible Darstel-
lungen Giiltigkeit besitzen.

An dieser Stelle eine Bemerkung zur Bezeichnung ,,Orthonormalitatstheorem*. Sie wird
durch folgende geometrische Anschauung motiviert: Fat man (d, /ng)% D*(g)’; fiir ein
festes Tripel (u, j,[) als einen ng-komponentigen Vektor im ng-dimensionalen ,,Gruppen-
elemente“-Vektorraum auf (die Gruppenelemente g durchlaufen dabei die volle Gruppe
G), so besagt das Theorem, daf} all diese Vektoren orthonormal zueinander sind. Da (7,1)

2 yerschiedene orthonormale

genau (d,)? Werte annehmen kann, gibt es insgesamt > 4 (du)
Vektoren in der p-Darstellung. Weil der zugehorige Vektorraum aber ng-dimensional ist,

kann es maximal ng verschiedene orthonormale Vektoren geben. Es gilt also:

> (dy)’ <ne - (7)

Tatsdchlich kann die obige Ungleichung mit Hilfe der reguldren Darstellung dahingehend
verschirft werden, daf in (7) die Gleichheit gilt. Man vergleiche dazu Anhang A. Festhalten
wollen wir aber schon einmal das

Vollstandigkeitstheorem

Theorem 21 Die Dimensionsparameter {d,} der nicht-dquivalenten irreduziblen Darstel-
lungen gentiigen der Relation

Z al,t2 =ng, (8)
m

3Die hermitesche Konjugation umfafit kompleze Konjugation mit zusétzlicher Transposition. Man
schreibt AT;; = (A1), = (4*7T), = (4");, = A"

ij ij
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und fiir die zugehorigen Darstellungsmatrizen gilt damit wegen der maximalen Anzahl
linear unabhéngiger Vektoren im ng-dimensionalen Raum die Vollstindigkeitsrelation

d
> L DH(g) e DM (g )it = by (9)
ng
wilk
1 falls

T das Kronecker-Symbol bezeichnet.
0 sonst

wobei 61']' mit 61']' = {

Orthonormalitits- und Vollstdndigkeitsrelation fiir irreduzible Charaktere

Das Orthonormalitéts- und Vollstdndigkeitstheorem ist aus theoretischer Sicht von tiberaus
grofler Bedeutung. Fiir das Auffinden von irreduziblen Darstellungen in der Praxis ist
es allerdings weniger geeignet, da die Gestalt der Darstellungsmatrizen von der konkret
gewihlten Basis von V' abhingt. Eine Basistransformation fithrt aber nur auf dquiva-
lente Darstellungen. Sie spielt also fiir die eigentlich betrachtete irreduzible Darstellung
R keine Rolle. Die Darstellungsmatrizen D(g) mit ¢ € G tragen also im Prinzip ,zu
viel“ Information. In Definition 12 wurde der Charakter einer Darstellung R als die Spur
iiber die Operatoren R (g) eingefiihrt. Sie sind unabhiingig von der Wahl der Basis im
Darstellungsraum, d.h. invariant gegeniiber Ahnlichkeitstransformationen, und bilden ei-
ne Klassenfunktion. Orthonormalitdts- und Vollstdndigkeitstheorem konnen in der Tat
basisunabhéngig formuliert werden.

Theorem 22 Die Charaktere der nicht-dquivalenten, irreduziblen Darstellungen geniigen
folgenden Relationen:

Zn”_éxu’f CHX"(Cy) = b (Orthonormalitét) (10)
5 :_; X (C)X™ (C;) = 6&;  (Vollstindigkeit), (11)

7

wobei gemiB Konvention x* (C;) = (x* (C;))* ist.
Beweis: Eine Skizze des Beweises habe ich in Anhang B.1 bereitgestellt.

Fiir eine fest vorgegebene irreduzible Darstellung p bilden die (n; /ng)% x* (C;) mit ¢ =
1,...,n¢c einen Vektor im neo-dimensionalen Vektorraum. Von ihnen gibt es genau so vie-
le, wie es nicht-dquivalente irreduzible Darstellungen gibt. Theorem 22 besagt, dafl alle
derart gebildeten Vektoren orthogonal zueinander stehen. Hieraus folgt, dal die Anzahl
der nicht-dquivalenten irreduziblen Darstellungen von G kleiner oder gleich n¢ sein mu8.
Man kann zeigen, daf auch hier die Gleichheit gilt (vgl. Theorem 21), einen Beweis hierzu
findet man in [1]. Als weitere wichtige Folgerung notieren wir

Folgerung 23 Die Anzahl der nicht-dquivalenten, irreduziblen Darstellungen einer end-
lichen Gruppe ist gleich der Anzahl von konjugierten Klassen von G. Also kann x* (C;)
als quadratische ng x ng Matrix aufgefafit werden, wobei y die Zeilen und ¢ die Spalten
indizieren. Man nennt eine aus diesen Spalten erzeugte Tabelle auch Charakter-Tabelle.
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Wir wollen nun eine Aussage dariiber machen, wie oft eine irreduzible Darstellung in einer
Zerlegung einer reduziblen Darstellung einer endlichen Gruppe vorkommt.

Theorem 24 Zerlegt man eine reduzible Darstellung R in ihre irreduziblen Anteile, so
bestimmt man deren Hiufigkeit a, gem&fl der Formel

1
a = - > ni xH(C)XR(C) (12)
)
Beweis: Der Beweis ist in Anhang B.1 skizziert.

Zum Schluf} dieses Abschnitts mochte ich noch ein notwendiges und hinreichendes Krite-
rium fiir Irreduzibilitit angegeben.

Theorem 25 Eine Darstellung R mit den Charakteren {x (C;)} ist genau dann irreduzi-
bel, wenn

Z:nib((ci)l2 =ng . (13)

Beweis: Die Beweisskizze kann ebenfalls in Anhang B.1 nachgelesen werden.

Fiir endliche Gruppen gibt uns dieses Kriterium also einen leicht auszufiihrenden Test auf
Irreduzibilitdt an die Hand.

0.3 Kubische Gruppe und ihre irreduziblen Darstellungen

Nachdem nun die wesentlichen Begriffe und Theoreme der Darstellungstheorie endlicher
Gruppen eingefithrt wurden, soll im folgenden die kubische Gruppe als Beispiel einer
endliche Gruppe genauer vorgestellt und insbesondere deren irreduziblen Anteile bestimmt
werden.

0.3.1 Kubische Gruppe O

Die kubische Gruppe ist eine nicht-abelsche, endliche Gruppe mit 24 Elementen und wird
abkiirzend mit dem Symbol O bezeichnet. Sie ist isomorph zur Permutationsgruppe Sj.
Thre Elemente lassen sich mit den Rotationen eines Wiirfels identifizieren, die seine Lage
invariant lassen. Die eindeutig bestimmten Rotationsachsen bezeichnet man als Symme-
trieachsen des Wiirfels.

Ein dreidimensionaler Wiirfel hat insgesamt 13 Symmetrieachsen (vgl. Abb. 1).

Verwendet man zur Beschreibung dieser Achsen ein dreidimensionales kartesisches Koor-
dinatensystem und legt dessen Nullpunkt in die Mitte des Wiirfels, so lassen sich drei
von ihnen durch die drei Koordinatenachsen beschreiben, d.h. die Achsen gehen durch
die Mittelpunkte gegeniiberliegende Seitenflichen, hier sind Rotationen um Vielfache von
+7 moglich. Weitere vier Achsen mit Rotationen um Vielfache von i%” werden durch
die Raumdiagonalen beschrieben. Sechs weitere Achsen verlaufen parallel zu den Seiten-
flichendiagonalen durch den Ursprung des Koordinatensystems, erlaubt sind hier Rota-
tionen um Vielfache von 7. Um die 10 Rotationsachsen (ohne Koordinatenachsen) nun
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Abbildung 1: Symmetrieachsen eines Wiirfels

mit einer eindeutig bestimmten Orientierung zu versehen, bestimmt man vier Eckpunkte
a,...,v und sechs Kantenmittelpunkte a,...,f des Wiirfels und 148t die Achsen durch
den Koordinatenursprung und dann durch die ausgezeichneten Punkte verlaufen. Man be-
zeichnet sie entsprechend mit Oa, OB, Oy, 0§, Oa, Ob, Oc, Od, Oe und Of (vgl. Abb. 1
und 2).

Wir wollen im folgenden nur aktive, d.h. linkshindige Drehungen modulo 27 betrachten,
um die Anzahl der moglichen Drehungen minimal zu halten. Man beachte, dafl insbeson-
dere eine Drehung um —¢ identisch mit einer Drehung um 27 — ¢ ist.

Man unterscheidet nun die Symmetrieachsen des Wiirfels nach ihrer Ordnung. Die Ord-
nung einer Achse ist dabei definiert als Anzahl erlaubter Drehungen (einschliellich der
Identitét), die den Wiirfel in sich selbst iiberfiihren, und wird mit C; bezeichnet, wobei j
die Anzahl der moglichen Drehungen indiziert. Beim Wiirfel hat man also:

e 3Cy-Achsen Cy ,i€ {z,y,z} Rotationen um n-mal § (n =1,...,4)
e 4 Cs-Achsen Cg;,i € {a,...,d} Rotationen um n-mal 2?” (n=1,2,3)
e 6 Cyo-Achsen Coy;,i € {a,...,f} Rotationen um n-mal 7 (n = 1,2)

Die Rotationen kénnen mit Cj; (¢) bezeichnet werden, die Rotationsmafle p = £7, :l:%’r, T

sind dabei passend zur Wahl von j zu wéhlen. Beachtet man, dafl die jeweils j-te Rotation

z
aTd
e
C 1)
O
T )
by | B
a
f

~

Abbildung 2: Die Achsen O«, OB, Ov, 04, Oa,Ob,Oc,0d,Oe,Of sowie z,y, z
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um die Achse Cj; die Identitdt ist, hat man insgesamt 24 Symmetrieoperationen. Dies
sind genau die 24 Elemente der kubischen Gruppe O. Sie 148t sich demnach in der Form
0 = {C4z (90)v03j (‘P)ac2k (30) | 1=1,2,3;7=1,...,4; k=1,...,6; Y= i%vﬂ'a:‘:%}
schreiben, wobei die ¢ geeignet zu wihlen sind. Gruppenverkniipfung ist dabei die Hinter-
einanderausfithrung zweier Rotationen. Diese sind in der Tat nicht kommutativ, d.h. die
Gruppe O ist nicht-abelsch!

Unter zur Hilfenahme einer Verkniipfungstabelle kann man jetzt nachrechnen, dafl die 24
Elemente von O in fiinf konjugierte Klassen (vgl. Definition 6) zerfallen, diese werden
mit E,6Cs,8C3,6C und 3C% bezeichnet?. In ihnen befinden sich jeweils ausschlieBlich
Drehungen um Symmetrieachsen gleicher Ordnung:

E = {id} : Identitat

6Cy = {Co (¢)} mit i€ {a,...,f} und ¢p=m7

Rotationen um die Achsen Oa, Ob, Oc, Od, Oe, Of parallel zu den
sechs Seitenflichendiagonalen, insgesamt also sechs Elemente;

8C; = {Csi ()} mit i€{a,...,0} und ==+

Rotationen um die vier Raumdiagonalen Oc«, O3, Oy, O, insgesamt also
acht Elemente;

6Cs = {C4i ()} mit i€ {z,y,2} und ¢==£7F

Rotationen um die drei Koordinatenachsen z, y, z, insgesamt also
sechs Elemente;

und schliefllich
e 302 ={Cyi ()} mit i€ {r,y,2} und p=m

Rotationen um die drei Koordinatenachsen z, y, z, insgesamt also
drei Elemente.

0.3.2 Irreduzible Darstellungen von O

Die kubische Gruppe besitzt nach der Folgerung aus Theorem 22 genau so viele nicht-
dquivalente, irreduzible Darstellungen wie konjugierte Klassen. Thre Dimensionsparameter
d, konnen mit Hilfe der Formel (8) aus Theorem 21 bestimmt werden, da sich die Be-
dingung 22:1 d,? = 24 nur fir (di,...,ds) = (1,1,2,3,3) erfiillen 148t. Man bezeichnet
die zwei eindimensionalen Darstellungen iiblicherweise mit A;, A2, die zweidimensionale
Darstellung mit £ und die beiden dreidimensionalen Darstellungen mit 77 und 7». Die
triviale Darstellung A; wurde bereits in 0.2.1 als Beispiel erwéhnt. 77 findet man haufig
auch unter dem Begriff Vektordarstellung.

“Die Zahl vor dem Klassensymbol gibt die Anzahl ihrer Elemente an. Falls Verwechslungen ausgeschlos-
sen sind, wird diese stellenweise auch weggelassen.
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Es ist nun prinzipiell méglich, mit Hilfe des Orthonormalitits- und Vollstindigkeitstheo-
rems den kompletten Satz an Matrizen aller fiinf nicht-Aquivalenter irreduzibler Darstel-
lungen zu bestimmen. Damit wire das Problem, alle Darstellungen der kubischen Gruppe
aufzufinden, vollstdndig gelost, da sich durch geeignete Wahl der Basis alle reduziblen
Matrixdarstellungen blockweise aus den fiinf irreduziblen Matrizen aufbauen lassen. Wie
allerdings schon erwéhnt, ist eine basisunabhéngige Formulierung unter Verwendung irre-
duzibler Charaktere wesentlich kompakter, —wenn auch drmer an Information— aber fiir un-
sere Zwecke absolut ausreichend. Wir wollen also im folgenden Unterabschnitt alle x* (C;)
mit u € {1,...,5},C; € {Ca,C3,C4,C?} bestimmen und in einer Charakter-Tabelle (vgl.
Folgerung 1) anordnen.

0.3.3 Charaktertabelle von O

Die Konstruktion einer Charaktertabelle ist fiir alle endlichen Gruppen G der Ordnung n
gleich und kann nach Bedarf in der Literatur, z.B. [3], nachgelesen werden. Wir wollen aber
der Vollstandigkeit halber kurz die wichtigsten Regeln, die fiir das Erstellen der Tabelle
von Bedeutung sind, aufzihlen.

1. Die Anzahl der irreduziblen Darstellungen ist gleich der Anzahl der konjugierten
Klassen. Die Gruppe O hat davon fiinf. Ihre Charaktertabelle besteht demnach aus
5 Zeilen und 5 Spalten.

2. Die Dimension d, der irreduziblen Darstellungen ist gegeben durch 4 d,ﬁ =ng.Im
Abschnitt 0.3.2 wurde fiir die kubische Gruppe bereits die eindeutige Losung mit 1,
1, 2, 3 und 3 angegeben. Da das neutrale Element einer Gruppe in jeder Darstellung
durch die Einheitsmatrix dargestellt wird, ist die Spur der Darstellungsmatrix fiir
alle p gleich d,,, also in der ersten Spalte steht stets x* (1) = d,.
Vereinbart man, daf die (irreduzible) Trivialdarstellung, die jedem Gruppenelement
die 1 zuordnet, mit p = 1 indiziert wird, so ist die erste Zeile der Tabelle durch
x!(C;) = 1 fiir alle C;,i € {1,...,n¢}, gegeben.
Fiir die kubische Gruppe erhalten wir demnach als erste Zeile (1,...,1) und als erste
Spalte (1,1,2,3,3).

3. Fiir die Zeileneintrége der Tabelle gilt nach (10)

S g XM (C) X (Ch) = ndu -

Die Zeilen sind also orthogonal zueinander und die mit n; gewichtete Summe ist auf
ng normiert.

4. Die Spalten der Tabelle sind nach (11) ebenfalls orthogonal zueinander und auf

ng/n; normiert, also gilt

n;

Y xt () XM (C)) = G4 . (14)
w
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Oftmals reichen die ersten drei Regeln aus, um die Charaktertabelle vollstindig zu be-
stimmen. Regel vier kann dann der Kontrolle dienen. Fiir die kubische Gruppe sind die
ersten beiden Regeln bereits ausgefithrt worden. Die dritte Regel fithrt auf ein l6sbares
Gleichungssystem, deren explizite Ausfithrung auf die folgende Tabelle fiihrt:

konj. Klassen E Cy C3 (4 CZ

| konj. Klassen | 1 6 8 6 3
Darstellung A | 1 1 1 1
A, |1 -1 1 -1
E |2 0 -1 0

7 | 3 -1 0 1 -1

> | 3 1 o -1 -1

0.3.4 Gruppe Oy

Wir schlieflen dieses Kapitel mit der Einfiihrung der Gruppe Oy, die eng mit der kubi-
schen Gruppe O verbunden ist. Sie besitzt 48 Elemente und wird haufig auch als volle
kubische Gruppe bezeichnet. Thre Elemente lassen sich dhnlich wie im Falle der kubischen
Gruppe mit den Symmetrieeigenschaften eines Wiirfels in Verbindung bringen, indem man
neben den in 0.3.1 eingefiihrten Rotationen um die Symmetrieachsen eines Wiirfels auch
zusitzlich noch eine Punktspiegelung (Inversion I) am Ursprung® zuldfit. Eine Inversion
dreht die Vorzeichen aller Koordinaten um, d.h. r wird zu —r fiir alle r € R®. Man kann
also jedes Element aus Op mit einer Drehung und anschlielender optionaler Inversion
identifizieren. Man beachte, dal die Reihenfolge dieser beiden Operationen fiir die Endla-
ge/Endkonfiguration des Wiirfels dabei eigentlich keine Rolle spielt®. Die 24 zusitzlichen
(gespiegelten) Elemente der Gruppe Oy, macht man durch ein I vor dem Rotationssymbol
kenntlich, demnach beschreibt (IC5,) beispielsweise eine Drehung um 7 um die z-Achse
inklusive Punktspiegelung.

Die Aussagen iiber die Gruppe O hinsichtlich konjugierter Klassen, irreduzibler Darstel-
lungen und Charaktertabelle lassen sich leicht auf die Gruppe Oy, iibertragen und seien
deshalb im folgenden kurz genannt.

Irreduzible Darstellungen

Da Rotation und Inversion kommutieren und sich eine gespiegelte Konfiguration g, € Oy,
des Wiirfels” nicht durch Hintereinanderschalten geeigneter Rotationen aus O erzeugen
148t, zerfillt die volle kubische Gruppe in zehn konjugierte Klassen. Man bezeichnet sie mit
E,C,,C3,C4,03,1,1C5,1C;,ICy,IC2. Die Anzahl nicht-dquivalenter, irreduzibler Dar-

’Der Ursprung liegt im Mittelpunkt des Wiirfels.

8Mathematisch ausgedriickt ist die Gruppe Oy, das direkte Produkt aus der kubischen Gruppe O und der
zweielementigen Gruppe {e, I}, also On = O x {e, I'}, wobei e das neutrale Element der zweielementigen
Gruppe bezeichnet. Der Begriff des direkten Produktes wird spéter in Kapitel 4 eingehender besprochen.

"Die Elemente gy, haben alle die Form g, = (g,e) oder gn = (g,I) mit g € O.
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stellungen ist nach der Folgerung aus Theorem 22 damit ebenfalls zehn. Diese werden mit
AiE,A;'E,Ei,Tli und T2jE bezeichnet?®.
Charaktertabelle

Die Charaktertabelle von Oy, 148t sich mit einigem rechnerischen Aufwand mit Hilfe der
in 0.3.3 angegebenen Regeln aufstellen. Man findet [1]:

konj. Klassen E Cy (C35 Cy C’Z I ICy IC3 ICy 1 C’Z
| konj. Klassen | 1 6 8 6 3|1 6 8 6 3
Darstellung A7 [ 1 1 1 1 1 1 1 1
Ay |1 -1 1 -1 1 -1 1 -1
Paritit =1 E* |2 0 -1 0 2 0 -1
IF13 -1 0 1 -1|3 -1 0 1 -1
T, | 3 0 -1 -1]3 1 0o -1 -1
Af |1 1 1 1 -1 -1 1 -1 -1
Ay |1 -1 -1 -1 1 -1 1 -1
Paritit=—1 E~ |2 0 -1 0 -2 0 1 -2
T, |3 -1 0 1 -1|-3 1 0 -1
T, |3 1 0 -1 -1[-3 -1 0 1

0.4 Schluflbemerkung

Weitere gruppentheoretische Grundlagen finden sich in Kapitel 4, in dem insbesondere
auf die Konstruktion direkter (endlicher) Produktgruppen und deren irreduziblen Dar-
stellungen eingegangen wird. Ferner ist dann eine weitere, diskrete, endliche Gruppe zu
diskutieren, die Uberlagerungsgruppe 20 der kubischen Gruppe O.

Im folgenden Kapitel werde ich zunéchst auf physikalische Fragestellungen eingehen, um
anschlieflend das Transformationsverhalten von damit in Zusammenhang stehenden Gitter-
Operatoren unter der kubischen Gruppe zu untersuchen.

8Das =+ steht fiir die Paritit P der Darstellung (vgl. Kapitel 2). Die Paritit ist +1, falls fiir die Charakter
der irreduziblen Darstellung x (g x e) = x(g x I) gilt, die Paritéit ist —1, falls x(g x e) = —x(g x I).



Kapitel 1
Glueballspektrum auf dem Gitter

In diesem Kapitel soll ein kurzer Uberblick iiber die Anwendung nicht-abelscher Gitter-
eichtheorien zur Bestimmung von Glueballmassen gegeben werden. Die zugrunde liegenden
Arbeiten sind ein Beispiel dafiir, in welchem Mafile Berechnungen auf dem Gitter Vorher-
sagen fiir die Kontinuumsphysik liefern kénnen.

In knapper Form werde ich zunéchst die Grundgedanken der Eichtheorie und ihrer Formu-
lierung auf dem Gitter darstellen und auf die Existenz von massiven Zustdnden in stark
gekoppelten Gittereichtheorien eingehen. Daran anschlieflen wird sich der Zusammenhang
zwischen Spinzustinden im Kontinuum und ihren Entsprechungen auf dem Gitter. Dabei
stellt sich die Frage, welche Auswirkung die auf dem Gitter gebrochene Drehsymmetrie auf
ihre irreduziblen Darstellungen hat und wie diese durch Gitteroperatoren zu realisieren
sind. Es wird sich dabei herausstellen, dafl gerade die irreduziblen Darstellungen der ku-
bischen Gruppe zur Charakterisierung von Spinzustinden auf dem Gitter benutzt werden
konnen.

Auf numerische Ergebnisse im Rahmen der Glueball-Spektroskopie, die in erster Linie aus
Monte-Carlo Simulationen aber auch aus Hochtemperaturentwicklungen! (strong coupling
expansion) [7,8] stammen, soll hier nicht ndher eingegangen werden. Hierzu vergleiche man
z.B. [9,10] und die darin aufgefiithrten Referenzen.

1.1 Grundziige der Gittereichtheorie

Vorab stelle ich die grundlegenden Begriffe und Bezeichnungen der Gittereichfeldtheorie
zusammen. Fiir eine umfassendere Darstellung sei auf [11,12] und die darin angegebenen
Referenzen verwiesen.

'Der Begriff der Hochtemperaturentwicklung ist der statistischen Mechanik entlehnt. Man bezieht sich
hierbei auf den engen Zusammenhang zwischen der Formulierung der euklidischen Quantenfeldtheorie und
der statistischen Mechanik in Form von Funktionalintegralen. Die Kopplungskonstante g> wird dabei mit
der Temperatur identifizert. Eine Hochtemperaturentwicklung meint in unserem Zusammenhang also eine
Entwicklung in 1/¢% bzw. .
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1.1.1 Eichtheorie im Kontinuum

Fundamentaler Bestandteil der heutigen Quantenfeldtheorie ist das Prinzip der Eichinvari-
anz, welches aufgrund des Noether-Theorems die Existenz von erhaltenen Strémen und den
davon abgeleiteten physikalischen Gréflen garantiert. Insbesondere das lokale Eichprinzip
erlaubt es schliellich, mit Hilfe von lokalen Eichfeldern und kovarianten Ableitungen lokal-
eichinvariante Wirkungen aufzubauen.

Ausgangspunkt lokal eichinvarianter Theorien ist hierbei die Forderung nach Invarianz der
Wirkung beziiglich Transformationen der Form

d(z) — A H(z)p(x) fiir alle  A(z) € SU(N). (1.1)

Die Invarianzforderung unter diesen lokalen Eichtransformationen macht die Einfiihrung
von kovarianten Ableitungen in der Lagrangedichte notig, die sich wiederum aus dem Kon-
zept des Paralleltransports —um Felder an verschiedenen Orten der Raumzeit vergleichen
zu konnen— ergeben. Hierbei fiihrt man Paralleltransporter U(C) € SU(N) entlang eines
Weges C ein, die dann mit dem Eichfeld A, {iber das pfadgeordnete Integral

U(C) = Pe Jed="Au (1.2)

verbunden werden. Das Eichfeld ist ein Element der Lie-Algebra su(N) der Gruppe SU(N)
und transformiert sich geméif

Au(x) — A7 (@) (B + Au(2)) Ale) . (L3)
Die kovariante Ableitung erhilt die Form
D, =0,+ Au(z) . (1.4)
Damit definiert man den Feldstérketensor F),, der Theorie via
By i= Dy Dy) = 8, A, (2) — 8, Au(@) + [Au(2), A, (2)] . (L5)

Betrachtet man nun den Paralleltransport entlang infinitesimal kleiner, geschlossener Kur-
ven Cgy 4y, die durch dz und dy aufgespannt werden, etwa durch Polygonziige der Form

A

y \ y \ dy
> )
T dx
so ist dieser mit dem Feldstérketensor F),, iiber
U(Cag,dy) = 1 — Fpdatdy” (1.6)

verbunden. Er transformiert sich nach

Fu(z) — A (2)F,, (2)A(x) - (1.7)
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Fiir die Komponentenfelder von A, und F),, setzt man

Au(z) = —igAj(z)T, (1.8)
Fm/(x) = _igF;:lu(x)Ta ) (1'9)
wobei T, die spurlosen, hermiteschen Generatoren der su(N) bezeichnet. Sie erfiillen die
Relationen
1
Tr(ToTy) = 50ab (1.10)
[To,T] = ifacTe (1.11)

mit den vollkommen antisymmetrischen, reellen Strukturkonstanten f,;. der su(N). Die
Komponenten des Feldstérketensors sind mit denen des Eichfeldes iiber die Beziehung

Fp,(2) = 0,45 () — 8, A5 () + gfare A} () A7 () (1.12)

verkniipft, wobei g die Selbstkopplung der Eichfelder bezeichnet.

Durch Einfiihren eines Terms in die eichinvariante Wirkung nimmt das Eichfeld selbst an
der Dynamik teil. Man bezeichnet ihn als Yang-Mills- Wirkung:

Sym =

1
d*z TvF,, F,, = 1 / d‘z F2,F2, . (1.13)

_ b
2g2
1.1.2 Eichtheorie auf dem Gitter

Man gelangt nun zu einer Diskretisierung der Theorie, indem man sich bei seiner Betrach-
tung auf Raum-Zeitpunkte beschrinkt, die auf einem vierdimensionalen, hyperkubischen
Gitter A = aZ* = {z|z, € aZ, p = 1,2,3,4} angeordnet sind. Die Richtung der Gitter-
achsen werden dabei mit 4 = 1,2,3,4 gekennzeichnet. Die Materiefelder befinden sich
nunmehr nur noch auf den Gitterpunkten. Der Paralleltransporter als Mittler zwischen
diesen Feldern wird mit den Gitterkanten (Links) identifiziert und im Falle der benach-
barten Punkte z und = + afi mit U, bezeichnet. Der Paralleltransport in umgekehrter
Richtung schreibt sich demnach als Uz4qp; n = U;lll und ist im Falle der SU(N) gleich
UacT;u . Fiir kleine Gitterabsténde a ist er mit dem Eichfeld iiber die Beziehung

2
—a xr a
Upp = e 4@ =1 —ad,z + ?Ai(a;) +... (1.14)

)

verkniipft.

Das Konzept des Paralleltransports fithrt wie bereits im Kontinuumsfall in natiirlicher
Weise zu einer Wirkung der Gittertheorie. Dabei betrachtet man wie in (1.6) mdglichst
kleine geschlossene Kurven. In der diskretisierten Beschreibung der Theorie sind infinite-
simal kleine Wegstiicke aufgrund des endlichen Gitterabstandes a gar nicht definiert, und
als kleinste geschlossene Wege findet man gerade Quadrate mit der Kantenléinge a. Sie
bilden die sog. Plaquettenvariablen Uy,,, mit den Eckenpunkten

z, T+aft, r+ai+ar und z+ ad w,v=1,234; u#v. (1.15)

Diese lassen sich folgendermaflen graphisch veranschaulichen:
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x+av ct+atip |z 4 aft + av

A

t
v Um;;w Um—l—aﬂ;u

T Usis r+ap
. [

a Gitterabstand a

K. WILSON schlug nun vor, aus solchen Plaquetten eine eichinvariante Wirkung fiir das
Eichfeld zu konstruieren [13,14]. Dabei wird der Paralleltransport um eine solche Plaquette

durch die Plaquettenvariable
Up=Ugyw = Ul Ut Uztapw Uz (1.16)

v~ xtav;u

beschrieben. Die Wilson-Wirkung fiir das SU(N)-Eichfeld schreibt sich dann als

Sta(@) =3 Y B [1 - —'I‘r {Uair + U, W}] , (1.17)

T 1<p<v<4
wobei wegen
Ul =Ushy  wnd  Tr{Usp + UL, } = 2Re {TrUp} (1.18)
auch
Stat(z)=>_ Y B [1 - —Re {Tr U, ,,w}] (1.19)
r 1<p<v<4
gilt.

In (1.17) beachte man, dafl sich U;;,w auch durch Uy, ausdriicken ld8t und somit die
Plaquette Uy, umgekehrt durchlauft.

Setzt man in (1.16) die entsprechenden Paralleltransporter gemaf (1.14) ein und entwickelt
das Eichfeld A,(z) nach dem Taylorschen Lehrsatz, ergibt sich unter Verwendung der
Baker-Campell-Hausdorff-Formel fiir die Plaquettenvariable Uy.,,, auf dem Gitter

Uppw = 1 — a®F,, + O(a®) (1.20)
mit dem Feldstiarketensor
Fyu = M A (@) — ALA(2) + [Au(2), A, (2) (L.21)

der Gittereichtheorie, der analog zu (1.12) ist. Hierbei wurden wegen des endlichen Git-
terabstandes die partiellen Ableitungen des Kontinuum-Feldstarketensors aus (1.5) durch
Gitterableitungen ersetzt. Die Vorwirtsableitung ist dabei durch

ALf(@) =~ (f(z +ai) - £(z) (122
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definiert. Entsprechend 148t sich auch eine Riickwéartsableitung durch

ALf(@) =~ (f(z) - f(x — ap) (1.23)

erkliren.

Insgesamt erhilt man unter Auslassung konstanter Terme fiir die Gitter-Wirkung (1.17)
[12]

Srat = —% > o' Tr Fyy (x) P (z) + O(d°) . (1.24)
T
Damit wird die Wilson-Wirkung im Kontinuumslimes ¢ — 0 mit

atd — /d4x (1.25)

in die Yang-Mills Wirkung (1.13) iiberfiihrt, wobei fiir die Eichkopplung

2N

B = e (1.26)

zu setzen ist.

1.2 Glueball- und Spinzustinde auf dem Gitter

1.2.1 Awusgangslage

Seit Anfang der siebziger Jahre H. FRITZSCH und M. GELL-MANN [15] im Rahmen der
QCD die Existenz von Teilchen vorhersagten, die aus farblosen Kombinationen von Gluo-
nen aufgebaut sein sollten (sog. ,glueballs®), dauerte es immerhin noch einige Jahre bis
diese Glueball-Hypothese durch theoretische Arbeiten im Rahmen der Gittereichfeldtheo-
rien bestétigt und gesichert werden konnte. Erst gegen Ende des Jahrzehnts konnten K.
OSTERWALDER und E. SEILER [16] zeigen, da8 in (nicht-abelschen) Gittereichtheorien mit
starker Kopplung ein Massensprung auftritt, der mit solchen Glueballzustidnden im Spek-
trum der Theorie identifizierbar ist.

An dieser Stelle scheint es zweckméfBig, in einem kleinen Einschub zunfchst zu umreifien,
wie {iberhaupt eine Massenskala in die skaleninvariante Eichtheorie gelangt.

Natiirliche Massenskala in der Gittereichtheorie

Da Massenterme in der Lagrangedichte die Eichinvarianz verletzen, besitzt die reine Eich-
theorie a priori keine intrinsische Massenskala und ist daher skaleninvariant. Der Prozef
der Gitterregularisierung, der der Einfiihrung eines Impulsraum-Cutoff der Ordnung 1/a
entspricht, erzeugt eine Massenskala in der quantisierten Theorie. Dieser zugrunde liegende
Formalismus ist aus der Theorie der Renormierungsgruppe bekannt (vgl. dazu z.B. [17]);
er soll am Beispiel der Gitterregularisierung hier nur kurz skizziert werden:
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Da die renormierte Kopplungskonstante gr als mit physikalischen Groflen identifizierbar
interpretiert werden kann, fordert man von ihr die Unabhéngigkeit vom Regularisierungs-

parameter a

adigR = { 0 — Brat(g ) 0 }QR(Q,mRa) 0, (1.27)
a Jg
wobei Brq: durch
9g
IBLat(gamRa) = _aa (128)
9R

bei festem gr gegeben ist2. Eine stérungstheoretische Behandlung der Funktion Brq:(g)
zeigt die Unabhéngigkeit der ersten beiden nicht-verschwindenden Ordnungen in der nack-
ten Kopplung g vom Renormierungsschema. In der reinen SU(N)-Eichtheorie findet man

Brat(9) = —Bog® — Big® + ... (1.29)

mit den universellen Groflen

11/ 3 34/ 3 \?
== d == (2 .
bo=73 (16772> ud - fr =g (16772>

Es 148t sich zeigen, dafl ¢ = 0 die Rolle eines ultravioletten Fixpunktes spielt [12], und
man somit den Kontinuumslimes fiir fixiertes g durch Ubergang von g nach Null erhilt.
Durch Separation der Variablen und Einsetzen der Entwicklung von (1.29) ergibt sich die
Lésung der partiellen Differentialgleichung (1.28) zu

—B1

a=AZ§t(ﬂog2)Wexp< o >{ +0(¢°)} (1.30)

mit einer Integrationskonstanten Ap,:. Da der Term rechts von Ai;t dimensionslos ist
und die Gitterkonstante a die Dimension einer Linge tragt, hat Ap,; die Dimension einer
Masse. Man bezeichnet

—B1 1
Apat = llm (ﬁog ) %6 exp ( 2ﬂ092> (1.31)

als Gitter-A-Parameter. Er ist somit nach Grenziibergang unabhingig von der unrenor-
mierten Kopplung g.

Mit Ajg tritt nun in der reinen Gitter-Eichtheorie eine massenbehaftete Skala auf, so dafl
massive physikalische Groflen der Proportionalitdtsbeziehung

m = CppALat (1.32)

geniigen miissen. Demnach verhalten sich Massen, die aus Gitterrechnungen bestimmt
werden, in der Ndhe des Kontinuumslimes geméif

zﬁ 1 2
am( ) (Bog ) 85 emp( 2,3092> {1 + 0O (g )} ) (1.33)

2Da eine allgemeine Theorie schon auf der Ebene der Lagrangedichte gewShnlich eine Massenskala be-

sitzen kann, hingt die renormierte Kopplung i.a. auch von mpg ab. Daher fiihre ich die Massenabhéngigkeit
mpg auch hier mit.
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oder in anderen Worten, sie erfiillen die Renormierungsgruppengleichung

0 0
{a% — IBLat(Q)a—g} m=0 (azmz) . (1.34)
In der Literatur findet man dieses Verhalten in der Nihe des Kontinuumslimes auch unter
der Bezeichnung ,,asymptotic scaling®.

Fiihrt man den Grenzwertproze 8 — oo (bzw. a — 0) aus, so ergibt sich durch Quotien-
tenbildung von (1.33) ein Massenverhéltnis m;/mg zweier physikalischer Zusténde (in der
SU(N) z.B. gerade Gluebille) welches dann im Kontinuumslimes wie

my

W 2140 (@) (1.35)

gegen einen konstanten Wert skalieren sollte.

Anfang der achtziger Jahre haben B. BERG und A. BILLOIRE begonnen, mit Hilfe von
Monte-Carlo-Simulationen auf dem Gitter das massive Spektrum von Glueball-Zustinden
zu berechnen [18,19]. Dazu benutzten sie moglichst einfache, eichinvariante Gitteroperato-
ren (sog. Wilson-Loops), die sich in geeigneter Weise unter den irreduziblen Darstellungen
der unterliegenden Symmetriegruppe eines kubischen Gitters transformieren. Im folgenden
soll daher auf den Zusammenhang zwischen der Rotationssymmetrie des dreidimensionalen
Raumes und der Symmetriegruppe eines rdumlichen Gitters ndher eingegangen werden.

1.2.2 Spinzustinde und kubische Gruppe

Im Kontinuum werden bosonische Zustdnde durch Tensordarstellungen der Drehgruppe
SO(3) charakterisiert, wobei die SO(3) aus der Menge aller Rotationen um beliebige Ach-
sen und WinkelmaBe im dreidimensionalen Raum besteht®. Durch die Gitterdiskretisierung
wird die Rotationssymmetrie gebrochen, da ein kubisches Gitter nicht rotationsinvariant
ist und demnach Gitterzustdnde unter beliebigen Drehungen nicht invariant und somit
als unphysikalisch anzusehen sind. Man kann nun mit Hilfe der kubischen Gruppe O die
Rotationsinvarianz des physikalischen Raumes (Gitters) wiederherstellen, indem man die
Rotationsymmetrie der kontinuierlichen Theorie durch die untergeordnete kubische Sym-
metrie eines Gitters ersetzt. Die kubische Gruppe dient dabei als Symmetriegruppe der
Theorie, so dafl die Eigenzustinde des Gitter-Hamiltonoperators nach den irreduziblen
Darstellungen von O klassifiziert werden.

Es stellt sich aber auch umgekehrt die Frage, welche Auswirkungen die Gitteregularisie-
rung auf Spinzustéinde im Kontinuum hat. Betrachten wir dazu eine irreduzible Darstel-
lung R’ der SO(3), wobei j den Spinzustand fiir 7 = 0,1,2,... bezeichnen soll. Da die
kubische Gruppe O eine Untergruppe der SO(3) ist, kénnen ihre Elemente ebenfalls durch

3Im allgemeinen zieht man die unitéren irreduziblen Darstellungen der Gruppe SU(2) zur Klassifikation
von Spinzustinde heran, wobei zwischen den Darstellungen mit ganzzahligem Spin (Tensordarstellung)
und halbzahligem Spin (Spinordarstellung) zu unterscheiden ist. Im bosonischen Sektor stimmen aber die
irreduziblen Darstellungen von SU(2) und SO(3) iiberein, so daf eine Beschreibung durch die ,kleinere®
Gruppe SO(3) ausreicht (vgl. [20] und auch Anhang D).
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R’ dargestellt werden. Insofern 148t sich R’ als eine Darstellung Ri) von O auffassen (,,re-
duced representation“), die im allgemeinen aber reduzibel ist. Man kann sie dann in ihre
irreduziblen Anteile zerlegen und erhilt fiir j = 0,1,...,12 [21]:

Spin Zerlegung in irreduzible
J Darstellungen von O
0 A1
1 T
2 EoT
3 AT & T
4 Al OEDT, T
5 Eg2l1 T,
6 A1®A2®E@T1@2T2
7 Ay @ E @ 2T & 2T>
8 A1 ©2FE 2T & 2T5
9 Ai0A0FEe3 02D
10 AL ® Ay ®2FE © 2T & 3T
11 Ay ®2E 3T & 315
12 241 @ Ay ®2F @ 3T @ 3T,

Wie die Tabelle zeigt, sind lediglich die Darstellungen fiir Spin-0- und Spin-1-Teilchen
irreduzibel, d.h. ihr Darstellungsraum besitzt auch nach der Gitterdiskretisierung keine
(nicht-trivialen) invarianten Unterrdume. Im Falle eines Spin-2-Teilchens zerfillt dagegen
der von den 25+ 1 = 5 Zustidnden aufgespannte Darstellungsraum in einen zwei- und einen
dreidimensionalen invarianten Unterraum. Dadurch spaltet das von den fiinf Zustinden
gleicher Energie im Kontinuum gebildete Multiplett in ein Dublett E und ein Triplett 7%
mit unterschiedlichen Energien auf. Die Zustinde des Dubletts transformieren sich dabei
unter der irreduziblen Darstellung E der kubischen Gruppe, die des Tripletts unter der
Darstellung T5. Fiir einen massiven Zustand mit Spin 2 bedeutet dies, dal man in der Git-
tersimulation zunichst zwei Massen m(E) und m(T%) miit, deren Verhiltnis m(E)/m(T5)
im Kontinuumslimes (¢ — 0) dann gem&8 der Restauration der vollen Rotationssymmetrie
gegen 1 konvergiert.

Gehen wir nun kurz auf das inverse Problem ein: Sei | 1) ein physikalischer Zustand im
Kontinuum, der sich aus Eigenzusténden | ¢,,) des Hamiltonoperators entwickeln 148t

| ¢> = ch | ¢n>, (136)

n

wobei n = (j, m; «) die iiblichen Quantenzahlen der Spin-j-Darstellung und einen zusitz-
lichen Index fiir z.B. angeregte Zustdnde mit identischem Spin bezeichnet. Jeder Eigen-
zustand | ¢,) gehort damit zu einem Multiplett mit eindeutig bestimmtem Spin j. Be-
trachtet sei nun ein Gitteroperator, der sich unter der irreduziblen Darstellung R mit
R = Ay, Ay, E, T1,T> der kubischen Gruppe transformiert. Durch Anwendung auf das Va-
kuum erzeugt man einen physikalischen (Gitter-)Zustand, der sich im Kontinuumslimes
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gemif (1.36) in die Form
| ) =Y R | thn) (1.37)

bringen 148t. | ¢ ) besitzt demnach verschiedene Spinanteile mit der Einschrinkung, daf
deren Entsprechungen auf dem Gitter alle die Darstellung R enthalten miissen
Rl C DY (1.38)

Unter Beriicksichtigung dieser Bedingung ergeben sich aus der vorherigen Tabelle die fol-
genden Auswahlregeln

Darstellung R Spinanteile j
der kubischen Gruppe im Kontinuumslimes

Ay 0, 4, 6, 8,
A, 3,6,7,9,
E 2, 4, 5, 6,
T 1,3,4,5,.
T 2,3, 4, 5,

Fiir die Berechnung von Glueballmassen ist der niedrigste Spinanteil von entscheidender
Bedeutung, da er i.a. der niedrigsten Glueballmasse zugeordnet werden kann, die dann ih-
rerseits aus dem Abfallverhalten von geeigneten Korrelationsfunktionen —als grundlegende
Observablen einer Feldtheorie— extrahierbar sind.

1.2.3 Glueballzustinde auf dem Gitter

Wie aus der Quantenmechanik hervorgeht, erhélt man einen physikalischen Zustand
durch Anwendung der Linearkombinationen eines vollstdndigen Satzes geeigneter Opera-
toren O;, i = 1,2,3,..., auf den Vakuumzustand 2. Dabei haben diese die Bedingung
(| O; | ) =0 zu erfiillen. Auch in der Gittereichtheorie stellt man an die Operatoren die
zusétzliche Forderung nach Eichinvarianz. Als Kandidaten eignen sich also insbesondere
Linkprodukte entlang geschlossener, raumartiger Polygonziige C; = C;(%,t) auf dem Gitter
(Wilson-Loops), wobei & = (x1, 2, z3) den Startpunkt des Polygonzuges bezeichnet. Ein
physikalischer Zustand ist dann durch

Y(E 1) =D cOiFt) Q) mit ¢eC (1.39)

mit den Multiplikationsoperatoren
O; (&,t) = T U (C;) — (Tr U (C:)) (1.40)

gegeben, wobei U der Paralleltransporter der Gittertheorie ist. Hierbei hat man nicht nur
alle raumartigen Wilson-Loops zu beriicksichtigen, sondern im Prinzip auch alle irredu-
ziblen Darstellungen der Eichgruppe SU(N), also alle Operatoren der Form

O} (Z,t) = x* (U (C))) — (x" (U (C3))) - (1.41)
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Man beschrinkt sich allerdings bei Berechnungen auf einem endlichen Gitter zumeist
auf die Fundamentaldarstellung (x = 1/2), da héhere Darstellungen in der Simulation
unterdriickt sind (vgl. [19] und die darin angegebenen Referenzen). Wir wollen den Index
u daher im folgenden vernachlissigen.

Um die zugehorigen Eigenzustinde eines Operators O;(Z,t) im Impulsraum zu erhalten,
projiziert man auf Zustéinde mit raumartigen Gitter-Impulsen mittels einer Fouriertrans-
formation der Form

0:(7:1) 0 (L12)

Y
Fiir das Massenspektrum der Gluebélle hat man Zustéinde mit verschwindendem Impuls
P = 0 zu betrachten. Der Satz von Operatoren beschrinkt sich demnach auf

O; (t) = (1.43)

1
— ) 0 (#,t
VL3
Fiir Simulationen schrinkt man nun die Anzahl der zu beriicksichtigenden Operatoren
erheblich ein. Im einfachsten Fall verwendet man in (1.41) ausschlieBlich Wilson-Loops der

Lange 4 in einer ¢t = 0-Zeitschicht, also gerade die Plaquettenvariablen U, aus (1.16) mit
p = (Z;pv) und p,v € {1,2,3}. Man erhélt somit insgesamt die sechs Einfach-Plaquetten

wobei zu beachten ist, daBl Uz, .y = U(m ) Yu,v = 1,2,3, gilt. Aus ihnen lassen sich

gemif (1.41), (1.39) und (1.43) sechs physikalische Zusténde
Vv =Y (0) = — = Z {x (U, Up))} | ) (1.44)

erzeugen. Man bildet aus ihnen in geeigneter Weise Linearkombinationen, die sich unter
irreduziblen Darstellungen der kubischen Gruppe transformieren, und man findet [12]:

irreduzible Darstellung R* Linearkombinationen

der kubischen Gruppe der
AT Re {12 + 931 + 9a3}
EtT Re {931 — 923} ,
Re {—2112 + 31 + 23}
T~ Im s,
Im s ,
Im ¢)o3

Sie beschreiben einen Skalar-, einen Tensor- und einen Axial-Vektor-Glueball. Letzterer
existiert nur in Eichgruppen mit echt komplexen Darstellungen, wie z.B. in der SU(3).
Die Eichgruppe SU(2) besitzt dagegen nur reelle Darstellungen.
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Die Berechnung von Glueballmassen geschieht unter Benutzung der Zeitscheiben-Mittel-
werte (festes t) aus (1.43) mit Hilfe von zusammenhingenden Korrelationsfunktionen der
Form

(O(to +t)O(to))c - (1.45)
Im Falle der Einfach-Plaquetten bildet man aus den Observablen

1
S;w(t) = \/? Z Tr U(i',t);;w (146)

geeignete Linearkombinationen Sz (t), die sich unter einer irreduziblen Darstellung R der
kubischen Gruppe transformieren. So erhilt man fiir die Korrelationsfunktionen mit der
Wahl ty = 0:

(SRSRO)e = (Wr e T yr) =3 |R|" Whn | e T | )
" N———

e~tmnyn)

= (Cpe tmo {1 + Oy e tmi—mo) 4 .. } , Co,Cy = const .
(1.47)

Fiir t = oo dominiert offenbar der erste Term, so dafl aus der Korrelationsfunktion in der
Tat die niedrigste Glueballmasse m; eines Spin-j-Glueballs extrahiert werden kann. In der
Praxis geschieht dies durch entsprechende Exponentialfits der Resultate der numerischen
Simulation an das theoretisch erwartete Abfallverhalten.

Abschlielend noch zwei Erliuterungen zu obiger Tabelle:

e Eine gruppentheoretische Behandlung von Loop-Operatoren wird im nichsten Kapi-
tel erfolgen. Dabei wird sich zeigen, dafl neben den Transformationen unter der kubi-
schen Gruppe zusétzlich zwei weitere diskrete Symmetrietransformationen benétigt
werden: Raumspiegelung und Ladungskonjugation. Ihre Eigenwerte +1 werden dabei
mit P- und C-Paritét bezeichnet. Die irreduziblen Darstellungen der Gittersymme-
triegruppe erhalten daher spiter die Bezeichnung RFC, wie sie der Richtigkeit halber
bereits in obiger Tabelle verwendet wird.

e Der Ladungskonjugationsoperator C kehrt per Definition die Orientierung von Wilson-
Loops um. Betrachtet man Loop-Kombinationen der Form (Up +U, 1), so gilt

Tr{Up, + U, "'} = 2Re{Tr Uy} (vgl. (1.18)) (1.48)

und damit

Tr {C[U, + U; ']} = 2Re {Tx U, } . (1.49)
Fiir (Up -U, 1) gilt dagegen
Tr{Up, - U, '} =2 Im {Tr Uy} (1.50)

und deshalb
1
Tr{C[U, - U, ']} = —2iIm {Tr U} , (1.51)
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also insgesamt

Tr {CUp} = (Tx Up)* . (1.52)
Der C-Operator wirkt also auf die Spur von Wilson-Loops komplex konjugierend.

Da fiir die in (1.44) verwandten Einfach-Plaquetten der Zusammenhang
Uz = CUgz) Uzis) = CUzz) Uza2) = CU(z,3)

gilt, wird der sich unter Af“ transformierende Zustand 1 beispielsweise gerade im
wesentlichen durch die Operatoren

Re {Tr[U(z,12) + Uiza1) + Ugz2s)) }
= const - Tr {[U(z,12) + CUz12)] + [Uzs1) + CUzan)] + [Ugz2s) + CUz3)]}

= const - Tr {U(g12) + Uza1) + Uggst) + Uas) + Ugzes) + Usaz) (1.53)

gebildet.

Analoge Betrachtungen lassen sich fiir die Darstellungen E** und 7"~ in obiger
Tabelle durchfiihren.



Kapitel 2

Irreduzible Darstellungen der
kubischen Gruppe iiber
Wilson-Loops der Lange 4, 6 und 8

Das vorherige Kapitel beschéftigte sich mit der Existenz und Bestimmung von Glueball-
massen, die auf Grundlage der reinen Eichtheorie in der Gitterregularisierung auftraten.
Dabei zog man fiir die Berechnung der Massen durch Monte-Carlo-Simulationen mdéglichst
einfache eichinvariante Gitteroperatoren (Wilson-Loops) heran, die sich unter gewissen ir-
reduziblen Darstellungen der kubischen Gruppe transformieren.

In diesem Kapitel erfolgt nun die gruppentheoretische Behandlung der Wilson-Loops, die
die Bildung geeigneter Kombinationen fiir die Simulation ermdoglicht. Ziel dabei ist es,
das Transformationsverhalten von Wilson-Loops unter der vollen kubischen Gruppe Oy
zu untersuchen. Dazu wird nach einigen Vorbereitungen zunichst eine Darstellung der
kubischen Gruppe iiber Wilson-Loops konstruiert und diese anschliefend fiir einige Loop-
Operatoren in ihre irreduziblen Faktoren zerlegt. Dariiber hinaus wird dann fiir jede dieser
Darstellungen explizit eine Orthonormalbasis aus Loop-Operatoren bestimmt. In Idee und
Vorgehensweise bin ich vornehmlich zwei Artikeln von B. BERG und A. BILLOIRE [18,19]
gefolgt, in denen die wesentlichen Resultate dieses Kapitels bereits angegeben, Zwischen-
schritte und -rechnungen allerdings meist ausgelassen worden sind. Zun&chst aber ein
kurzer Riickblick.

2.1 Erinnerungen an Kapitel 0

Wie aus Unterabschnitt 0.3.1 bereits bekannt ist, besitzt die kubische Gruppe 24 Elemente,
die als Rotationen um die 13 Symmetrieachsen eines Wiirfels verstanden werden kénnen.

Man unterscheidet die Rotationsachsen nach ihren Ordnungen und bezeichnet sie gemé&f
Abb. 1 bzw. Abb. 2 mit

® Iy, 2 (C4-Achsen)
e Oa, O8, Oy, O6 (Cs-Achsen)
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und
e Oa, Ob, Oc, Od, Oe, Of (C2-Achsen) .

Die 24 moglichen (verschiedenen) Rotationen werden dabei mit Cj; (¢) gekennzeichnet,
wobei j € {4,3,2}, i € {z,y,2,,...,7,a,...,f} und ¢ € {ﬂ:%,i%’r,iw} passend zu
wéhlen sind.

Da wir fiir die Konstruktion von Darstellungen der Gruppe O iiber Wilson-Loops im fol-
genden des 6fteren ihre Gruppenelemente explizit angeben miissen, wollen wir den Schreib-
aufwand ein wenig einschrinken, indem wir fiir ¢ > 0

Cji(—p) =Cj' . (2.1)

festlegen. Man beachte, dal wir die Winkelargumente ¢ zur eindeutigen Festlegung der
Rotationen von nun an nicht mehr benétigen, und die blofle Indizierung jedes Elements
von O dieses bereits eindeutig bestimmt; mit einer Aufnahme: Tatséchlich ist fiir C;;, j =
4; i € {z,y, z} sowohl eine Rotation um ¢ = ¥ als auch eine um 7 erlaubt, die Bezeichnung
wire demnach nicht eindeutig. Da die Elemente Cy; (1), i € {z,y, z}, eine eigene Klasse
C?% bilden, wollen wir sie ab nun mit Cy;, i € {z,y, 2}, bezeichnen!.

Unter Verwendung der neuen Notation seien hier noch einmal alle 24 Elemente der kubi-
schen Gruppe klassenweise zusammengefaflt.

Um die z-, y- und 2-Achse sind je vier Rotationen um jeweils =%, 7 und 27 mdoglich;
letztere fiihren fiir alle drei Achsen in die Identitit und werden daher mit einem, ndmlich
dem neutralen Element von O

e id

identifiziert. Es bildet eine eigene Klasse F.
Die iibrigen Drehungen zerfallen in 2 konjugierte Klassen Cy und C%. Thre Elemente sind

o Cug, Cay, Caz, Cot Ct Cyt fiir die +7-Drehungen

4z 4y
und
o Cyy, Cay, Ca, fiir die w-Drehungen.
Um die Symmetrieachsen Oq, ..., 0§ sind je 3 Rotationen um jeweils :E%” und 27 erlaubt.

Letztere stimmen wieder mit id iiberein (s.o.), die acht restlichen fait man in der Klasse
C3 zusammen:

L4 C3av C3ﬂ, C3’ya 035, go}a ngglv C?;yl’ C?Tﬁl‘

Die Drehungen um die Achsen Oa,...,Of haben als Rotationmafle 7 und 27. Unter
Vernachlissigung der 2w-Drehungen hat die fiinfte und letzte Klasse Cy sechs Elemente.

'Die Bezeichnung ist deshalb so gewihlt, weil fiir die Elemente der Klasse C; die Koordinatenachsen
z,y, 2z die Ordnung 2 haben.
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o Coq, Cop, Cze, Caq, Cae, Cof

Zum Schlufl eine weitere Erinnerung: Alle Rotationen werden aktiv ausgefiihrt, d.h. das
Koordinatensystem bleibt starr und der Wiirfel wird linkshéndig gedreht. Eine Rotati-
on der Form (2.1) ist also gerade gleichbedeutend mit einer rechtshindigen Drehung um
+¢. Man beachte, dafl durch die Festlegung einer Orientierung der Symmetrieachsen des
Wiirfels in Kapitel 0 —Unterabschnitt 0.3.1— links- bzw. rechtshindige Drehungen wohlde-
finiert sind.

2.2 Allgemeine Vorbereitungen

Wir wollen zunéchst eine einheitliche und fiir unsere Zwecke sinnvolle Notation fiir Wilson-
Loops einfithren und danach kurz das prinzipielle Vorgehen bei der Konstruktion einer
Darstellung der kubischen Gruppe erlautern. In den spdteren Abschnitten soll diese Dar-
stellung dann fiir je einen Wilson-Loop der Lange 4, 6 und 8 in seine irreduziblen Anteile
zerlegt werden.

2.2.1 Wilson-Loops und ihre Bezeichnungen

Ein Wilson-Loop der Léinge L ist durch Angabe eines L-Tupels

L
(w1,--opr) mit Y ;=0 (2.2)
i=1

eindeutig festgelegt, wobei ji; die Einheitsvektoren in Richtung der Gitterachsen y = 1,2,3

eines riumlichen Gitter bezeichnen. Fiir die drei Wilson-Loops der Linge vier?

AV =0 o

*Im vorigen Kapitel wurden diese Operatoren als Plaquettenvariablen U, = U,,,. eingefiihrt, um die
eichinvariante (Wilson-)Wirkung auf dem Gitter zu formulieren. Sie wurden dariiberhinaus im Zusammen-
hang mit Gittersimulationen zur Berechnung von Glueballmassen genannt (vgl. Unterabbschnitt 1.2.3).
Fiir den Ort z an dem ein Wilson-Loop definiert ist, wollen wir uns im folgenden nicht interessieren. Wir
identifizieren daher Operatoren gleicher Gestalt an unterschiedlichem Ort, also Uzypw = Uztorjuw bzw.
allgemein (u1,...,p1), = (H1,...,4L), 0 mit z,2" € A.
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schreibt man mit der Achsenkonvention

demnach
0,=(,2,-1,-2), O;=(3,1,-3,—-1) und O3=(2,3,-2,-3) . (2.3)

Entsprechend ist z.B. mit (2,2,3,-2,3, -2, -3, —3) der Wilson-Loop

<
<

gemeint. Der Umlaufsinn der Loops wird dabei durch kleine Pfeile auf den Links kenntlich
gemacht.

Wir sind bei unseren weiteren Uberlegungen nur an Lage und Form der Wilson-Loops
interessiert, diese bleiben aber bei zyklischer Permutation der L-Tupel invariant. Man
erhilt also auf ganz natiirliche Weise eine Aquivalenzrelation und faBt dquivalente Tupel
zu Aquivalenzklassen [u1, ..., pp] zusammen. Beispielsweise ist damit O3 = (2,3, -2, —3)
dquivalent zum Tupel (—3,2,3, —2), und man schreibt fiir den Operator O3 in eindeutiger
Weise (2,3, -2, —3].

Es stellt sich nun die Frage, wieviele solcher Aquivalenzklassen es gibt. Im Falle von
Wilson-Loops der Léinge 4 ist die Anzahl noch sehr iiberschaubar. Es gibt von ihnen
unter Vernachlédssigung des Umlaufsinns genau drei, und man bezeichnet sie allesamt als
Einfach-Plaquetten. Sie unterscheiden sich lediglich durch ihre Ebene, in der sie liegen
(und nicht in ihrer Form) und sind bereits oben als Operatoren O1, 02,03 eingefiihrt
worden.

Geht man zu Wilson-Loops der Linge 6 iiber, so hat man im folgenden zwischen drei
Formen von Loops zu unterscheiden:
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1. Doppel-Plaquetten

Die Doppel-Plaquetten liegen wie die Einfachplaquetten jeweils in der Koordinaten-

ebene, es gibt sie in insgesamt sechs verschieden Lagen:

LT

2. Winkel-Plaquetten

01

A

A

Die Winkel-Plaquetten haben die Form einer ,, Buchstiitze“, man kann sie auf zwolf

verschiedene Weisen auf ein dreidimensionales Gitter bringen:

=0s3
= Op

>

1
)
-

A

f = O12
Y
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3. verdrehte Loops

Thre Form ist weniger anschaulich, ihre Lagen seien daher hier einfach angegeben:

I~ e e (e

Wilson-Loops der Linge acht lassen sich auf vielfaltige Weise konstruieren. Man unter-
scheidet dabei 18 Formen, die alle in [19] nachgeschlagen werden kénnen. Wir wollen an
dieser Stelle nicht ndher auf sie eingehen, werden aber spiter auf einen speziellen Loop
der Liange acht beispielhaft zuriickgreifen und die von ihm erzeugte Darstellung genauer

untersuchen.

2.2.2 Orientierung und C-Paritét

Neben Lage und Form eines Wilson-Loops unterscheidet man zusétzlich nun auch noch
deren Orientierung, d.h. die Richtung, in der dieser durchlaufen wird. Mit Hilfe des in
Kapitel 1 bereits eingefiihrten Ladungskonjugationsoperators C kann man die Orientierung
eines Loops dndern. Wir wollen im folgenden den Operator C' als C-Parititsoperators
bezeichnen und definieren fiir beliebige Loops

Clut,pas - ospr] = [—poy oy —pz, —pa] - (2.4)
Fiir die Einfachplaquette O3 gilt damit beispielsweise
COs=C12,3,-2,-3]=[3,2,-3,-2] . (2.5)
Definiert man nun zwei Linearkombinationen von Wilson-Loops geméfy
1y ospr)e = o1y pp] £[=pr, -y —p], (26)
so haben beide eindeutig festgelegte C-Parititseigenwerte +1, denn

Clty sl = O [y pn) & [piny oy =) ) = oty ol 5 (27)

und fiir unser Beispiel O3 ist dann

c :C< - ): +
+

A
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oder kiirzer
CO34+ = +034. (2.8)

Der Index =+ versteht sich nunmehr von selbst.

An dieser Stelle will ich noch anmerken, dafl wir von nun an nur noch Wilson-Loops mit
wohldefinierter C-Paritét betrachten wollen, also Linearkombinationen der Form (2.6).

2.2.3 Konstruktion der Darstellung

Wir haben nun alle Vorbereitungen getroffen, um eine Darstellung der kubischen Grup-
pe iiber Wilson-Loops zu konstruieren. Dabei verwenden wir folgende Vorgehensweise:
Zunichst wird das Transformationsverhalten von Wilson-Loops unter der kubischen Grup-
pe untersucht, um dann anschlieflend daraus eine Darstellung —sie sei mit R bezeichnet—
von O zu generieren.

Transformationsverhalten

Beginnen wir mit den denkbar einfachsten Wilson-Loops, den Einfach-Plaquetten

A

S o =0 o

bei denen wir eine Orientierung fest vorgeben wollen. Fait man sie als Seitenflichen eines
dreidimensionalen Wiirfels auf und dreht diesen gemifl der in Abschnitt 2.1 festgeleg-
ten Rotationsmafle um eine seiner 13 Symmetrieachsen, so werden alle seine Seitenflichen
01, O3, O3 in Seitenflichen des nunmehr gedrehten Wiirfels iiberfiithrt. Welche Seitenfliche
dabei in welche iibergehen, héngt einzig und allein von der gew&hlten Drehung, d.h. von
dem zugehorigen Element der kubischen Gruppe O ab. Betrachtet seien einige Beispiele.

Wenden wir z.B. auf O3 = [2,3,—2,—3] eine linkshidndige 90°-Drehung um die y-Achse
an, so erhilt man den Operator Oy = [1,2, —1, —2] bzw. bildlich
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) Cay

— L

Fiihren wir die Drehung dagegen rechtshéndig (bzw. linkshindig um —¢) aus, d.h. wenden
wir das Element Czyl € O auf O3 an, so bekommt man als Ergebnis CO, also

~1
Cyy

— L

A

Das letzte Beispiel zeigt, daf} sich die Orientierung der Loops unter Transformationen der
kubischen Gruppe umkehren kann, also nicht invariant ist. Man verwendet daher sinn-
vollerweise die in (2.6) eingefithrten Linearkombinationen von Wilson-Loops. In unserem
letzten Beispiel wird dann Og 4+ mittels CZyl in COq + = £0q 4 iiberfiihrt, anschaulich

C—l
< 4y
_
N L7,
bzw. gleich (1)
< CZyl
— > +
s e

Fiir das erste Beispiel ergibt sich dann entsprechend

Cay

LT LT

A
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Analoge Uberlegungen lassen sich auch fiir die beiden verbleibenden Operatoren O; und
O3 und die 22 restlichen Rotationen von O anstellen. Man hat also insgesamt 3 x 24 = 72
Drehungen auszufiihren und dabei noch zwischen beiden C-Paridten £1 zu unterscheiden.
Betrachten wir als nichstes Wilson-Loops der Linge 6. Auch sie lassen sich als Ober-
flichensegmente eines Wiirfels auffassen und ihr Transformationsverhalten 148t sich vollig
analog zu den Einfachplaquetten untersuchen. Wichtig dabei ist, daf eine Rotation ledig-
lich die Lage, nicht aber die Form einer Plaquette verindern kann, man hat also fiir die
drei unterschiedlichen Formen der Loops jeweils einzeln zu transformieren. Entsprechendes
gilt selbstversténdlich auch fiir Loops der Lénge 8.

Darstellung

Wir wollen nun aus dem Transformationsverhalten von Wilson-Loops unter der kubischen
Gruppe eine Darstellung ableiten. Dazu definieren wir eine Darstellung R der kubischen
Gruppe iiber Wilson-Loops durch

7%(9) ([u’la v ’H’L]j;) = [T(g) p’lv s ’T(g) p’L]j; (29)

wobei g € O und T'(g) die darstellende Matrix bzgl. der kanonischen Einheitsvektoren der
Vektordarstellung 77 zu g ist.

Auch hier dienen uns die Einfachplaquetten als Beispiel. Betrachten wir noch einmal den
Operator O3 = [2,3,—-2,—3], und das Element C4, € O. Mit der zugehorigen Darstel-
lungsmatrix® der dreidimensionalen irreduziblen Darstellung 77 von O

-1
T (Cay) = 1 (2.10)
1

(vgl. Anhang C.1) ergibt sich aus (2.9) unter Benutzung der Invarianzeigenschaft der Tupel
beziiglich der zyklischen Permutiation ihrer Elemente

R(Cay) ([2,3,-2,-3]1) = [T(Cyy)2,...,T(Cyy) (-3)]
[2,—-1,-2,1],
= [1,2,-1,-2],
= Or+. (2.11)

(2.9) liefert uns also prinzipiell nicht Neues, sondern reproduziert gerade unsere intuitive
Anschauung, dafl C4y den Loop O3 gerade um 90° linkshindig um die y-Achse dreht.
Entsprechend rechnet man fiir die beiden anderen Operatoren O1 und O,

R(Cyy) (O1+) = R(Cyy)([1,2,-1,-2].) (2.12)
= C0s4+, (2.13)

bzw.
R(Cay) (022) = Oax (2.14)

3Die unbesetzten Felder der Darstellungsmatrix sind mit Nullen zu belegen.
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nach.

Die Darstellung R ist in diesem Fall dreidimensional und kann fiir jedes g € O durch ihre
Darstellungsmatrix D (g) in der geordneten Basis {O1 +, O3 +, O3 + } beschrieben werden.
Sie ergibt sich fiir fest vorgewihlte C-Paritit +1 zu?

Djer (Cay) = 1 (2.15)

bzw. fiir negative C-Paritit zu

Dge (Cay) = 1 . (2.16)
-1

Die Vorgehensweise fiir beliebige Wilson-Loops fest vorgegebener Linge und Form ist
nun analog, ihr Transformationsverhalten ist durch (2.9) bestimmt und die Darstellungs-
matrizen Dj(g) lassen sich dann leicht bzgl. einer Basis aus Loop-Operatoren angeben.
Fiir Wilson-Loops der Linge 6 ist ihre Dimension bei fixierter C-Paridt fiir die Doppel-
Plaquetten gerade d = 6, fiir die Winkel-Plaquetten ergibt sich d = 12 und fiir die verdreh-
ten Plaquetten d = 4. Zum Schluf8 noch zwei Bemerkungen: Wie oben bereits angemerkt,
148t sich das Transformationsverhalten der Loops unter der kubischen Gruppe auch geome-
trisch (d.h. anschaulich) durch entsprechendes Rotieren der Loops ermitteln, die Kenntnis
der Drehmatrizen M (g) aus (2.9) ist dafiir nicht explizit erforderlich, trotzdem ist Formel
(2.9) nichts anderes als die Ausfithrung dieser Drehungen. Desweiteren kénnen alle Dar-
stellungsmatrizen M (g) der dreidimensionalen Vektordarstellung T} der kubischen Gruppe
unter Anhang C.1 nachgeschlagen werden.

2.2.4 Weiteres Vorgehen

Die soeben konstruierte Darstellung R wird im allgemeinen nicht irreduzibel sein, und
ihr zugrundeliegender Vektorraum kann somit invariante Unterrdume besitzen, die sich
wie gewisse irreduzible Darstellungen der kubischen Gruppe transformieren. Mit Hilfe der
Darstellungsmatrizen D (g) 1a8t sich die gewonnene Darstellung R in ihre irreduziblen
Anteile zerlegen und anschlielend eine zugehorige Orthonormalbasis aus Loop-Operatoren
bestimmen. Dies soll nun exemplarisch fiir je einen Wilson-Loop der Linge 4, 6 und 8
durchgefithrt werden. Dabei werden wir im ersten Fall recht ausfiihrlich vorgehen und im
weiteren Verlauf der Ubersichtlichkeit halber auf einige Zwischenschritte verzichten. Mit
dem dritten Beispiel (ein Wilson-Loop der Linge 8) werden wir unseren Blick auch auf
das Transformationsverhalten von Loops unter der vollen kubischen Gruppe Oy lenken,
was dann die Einfithrung des Begriffs der P-Paritdt notig machen wird. Zunéchst aber
betrachten wir das denkbar einfachste Beispiel, die Einfach-Plaquetten.

“Man hat die Darstellungsmatrizen Dy nach der unterschiedlichen Wahl von C' zu unterscheiden. Dies
wollen wir durch ein & oberhalb von R kenntlich machen. Falls keine Verwechslungsgefahr besteht, schrei-
ben wir allerdings nach wie vor R. Der o vor dem = ist dabei fiir eine weitere diskrete Symmetrietransfor-
mation reserviert (vgl. niichster Abschnitt).
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2.3 Wilson-Loops der Léinge 4: Erstes Beispiel

2.3.1 Transformationsverhalten

Die Wilson-Loops der Linge 4 dienten uns bereits als Beispiel, insbesondere in Abschnitt
2.2.3, in dem ihr Transformationsverhalten unter Rotationen der kubischen Gruppe an-
hand von zwei ausgew#hlten Beispielen erldutert wurde. Man unterschied dabei zwischen
Operatoren mit positiver und negativer C-Paridt, erhielt somit insgesamt 2 x 3 = 6 Ope-
ratoren O; 4, 7 € {1,2,3}, und hat 2 x 3 x 24 = 144 Drehungen auszufiihren.

Der nachfolgenden Tabelle entnimmt man, in welche Loop-Operatoren die Elemente von
O die Operatoren O1 1,03 1, O3 1 iiberfithren. Die Drehungen sind dabei nach ihren kon-
jugierten Klassen geordnet.

o Klasse F/

Id:
O14++ 014
O+ 024
O3+ +— O3+

e Klasse Cy
Coq: Cap: Cae:
O14++— CO1 + O14++—CO1 ¢ O14++— O34
O2+ — O3 4 O2+ — CO3 + O24+ — CO2 4
O3+ — Oz 4 O3+ — CO2 + O3+ — O1 4
Czd: Cze: Cgf:
O1++—CO3+ O1+— 024 O1++—CO24
024 +— CO2+ O24 — O1 4 024 — CO1 4+
Ogil—>001:|: Ogib—>003i Ogib—>003i
e Klasse Cs
Cgal 035: 037:
O14++— CO2+ O14++—CO2+¢ O14++— 024
O24 +— O3+ O24 — CO3 ¢ 024+ — CO3 4+
O34+ +— CO1 + O34 — O1 4 O34+ +— CO1 4+
Css Cal: Cys
O14++— 02+ O14++—CO3+ O14++— O3+

O24 +— O3+ O+ — COq & Oy — COq 1
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O34 +— O1 ¢ O34 — Oz O34+ +— CO2 4+

Cyy: Css
O14++— CO3+ O1++— 034
Ogif—>01i OZi’—>Oli
O3+ — CO9 4+ O34+ +— 024

e Klasse Cy

Caz: Cay: Cys:
O1++— 024 O1++— CO3 + O1+ 014
Oy + — CO1 + O2+ — Oz 4 Oz 4+ — O34
O3+ — O3 4 O3+ — O1 + O34+ — CO2 4

Cot Cyy': C.l
O1++—CO2 4+ O1++— 034 O1+ 014
O24 +— O1 ¢ O24 — Oz 4 024+ — CO3 4+
O34+ O34 O34+ +— CO1 4 O3+ Oz 4

e Klasse C?

CQ;L-: Czy: sz:
O14++—CO1 ¢ O14++—CO1 ¢ O14++— O1 4
O24 +— CO2 ¢ O24 — Oz 4 024 — COz 4
Ogil—>03i Ogib—>003i Ogib—>C03:|:.

Man beachte dabei zusétzlich die Regel CO; + = £0; 4, i € {1,2,3}.

Die Ergebnisse fiir C4y und Czyl sind uns im iibrigen bereits aus Abschnitt 2.2.3 bekannt.

2.3.2 Darstellungsmatrizen und ihre irreduzible Zerlegung

Die Konstruktion der Darstellungsmatrizen D erfolgt jetzt wie in 2.2.3 angegeben. Ihre

Eintréige bestehen aus jeweils einer 1 bzw. —1 in jeder Spalte und Zeile und Nullen sonst.

Fiir die Transformationen Cy4, und CZyl ergibt sich

o (C-Paritiat = +1:

_D,"éo+ (C4y) ==
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o (C-Paritiat = —1:

Dge (Cay) = 1 Dy (C3)=| 1
-1 1

Alle 2 x 24 = 48 Darstellungsmatrizen Dj; kénnen im Anhang C.2 klassenweise nachge-
schlagen werden.

Die Zerlegung der Darstellung R in ihre irreduziblen Anteile gelingt mit der Formel (12)
aus Kapitel 0. Sie lautet in geeigneter Formulierung

ap=— ni x* (C)XR(Cy) (2.17)

wobei hier speziell (x* (C;))* = x* (C;) € R ist, wie ein Blick in die Charaktertabelle von
O aus Unterabschnitt 0.3.3 zeigt.

Die Summe erstreckt sich iiber alle fiinf Klassen von O. Da der Charakter einer Darstellung
eine Klassenfunktion ist, geniigt es, aus jeder Klasse einen (beliebigen) Repriisentanten
D3 (g) von R auszuwihlen und seine Spur zu bilden. Diese ergibt sich fiir fixierte positive
C-Paritiit fiir die Klassen E, C, C3, C4y und C? zu 3, 1, 0, 1 und 3 (bzw. zu 3, -1, 0, 1
und -1 fiir C-Paritdt = —1). Man findet sie aber auch in Anhang C.2. Die Méchtigkeit der
Klassen und ihre irreduziblen Charaktere x* (C;) liest man aus der oben bereits erwdhnten
Charaktertabelle ab, ng ist gleich 24.

Die Anwendung von (2.17) auf die Darstellung der Einfach-Plaquetten ergibt also:

erster Fall: C = +1

o 2_14(1-1-3+6-1-1+8-1-o+6-1-1+3-1-3):1
o 2—14(1-1-3+6-(—1)-1+8-1-o+6-(—1)-1+3-1-3):o
S 2—2(1-2-3+6-o-1+8-(—1)-o+6-o-1+3-2-3):1
— 2—14(1-3-3+6-(_1).1+8-o-o+6-1-1+3-(—1)-3)=o
— 2—14(1-3-3+6-1.1+8-o-o+6-(_1)-1+3-(—1)-3)=o.

Fiir die Darstellung R schreibt man also gemi$ Gleichung (5) aus Kapitel 0
R=A0F (2.18)

oder anders ausgedriickt: Der dreidimensionale Darstellungsraum besitzt zwei invariante
Unterrdume, die sich nach den irreduziblen Darstellungen A1 und FE der kubischen Gruppe
transformieren.
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zweiter Fall: C = —1

Man erhélt:
an = 2_14(1.1.3+6-1-(—1)+8-1-0+6-1-1+3-1'(—1)):0
an, = iCL13+64_Q(_U+84-u+004y1+31-kﬂ)=0
oy = i(l.g.3+6-0-(—1)+8-(—1)-0+6-0-1+3-2'(—1))=0
o %H13.3+64_n4—D+8-00+6-L1+3%—D-F4D=1
S i(l-3-3+6-1-(—1)+8-0-0+6-(—1)-1+3-(—1)-(—1)):0,
also

R=T, (2.19)

d.h. R ist irreduzibel, und der Darstellungsraum transformiert sich nach der Vektordar-
stellung 77 .

Das Ergebnis ist noch einmal in einer Tabelle zusammengefaft:

irred. Darst. von O A1 A2 E T1 T2 A1 A2 FE T1 T2
Dim. der Darstellung | 1 1 2 3 3|1 1 2 3 3

Dimension von R: C=+1 C=-1
3

2.3.3 Konstruktion einer Orthonormalbasis

Als letzten Schritt wollen wir nun fiir jeden invarianten Teilraum des dreidimensiona-
len Darstellungsraums eine Orthonormalbasis aus Loop-Operatoren bestimmen. Die Kon-
struktion sei in der Terminologie der Darstellungsmatrizen formuliert. Sie beruht auf einer
direkten

Folgerung des Lemmas von Schur: Sei C eine diagonalisierbare Matrix, die mit allen
Darstellungsmatrizen D3 von R kommutiert, d.h. CDz(9) = Ds(9)C fiir alle g € O,
und A die Matrix, die C' diagonalisiert, also ACA~! = A. Dann reduziert A die Darstel-
lung R (nicht notwendigerweise vollstindig) in dem Sinne, daf§ die Darstellungsmatrizen
ADj(g)A ! in Blockdiagonalgestalt zerfallen, und man im néchsten Schritt mit der ,re-
duzierten“ Darstellung

ADsA™' = {AD;(9)A7" | g € G} (2.20)

fortfahren kann. Auf diese Weise kann fiir jeden irreduziblen Teilraum des Darstellungs-
raumes von R iterativ eine ONB explizit angegeben werden.
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Die Matrix C' ergibt sich, indem man alle Matrizen einer konjugierten Klasse addiert®.
Beweis: Ein Beweis der obigen Aussage findet sich in [22] bzw. [23].

Auch hier unterscheiden wir wieder die Fille positiver und negativer C-Paritit:

erster Fall: C = +1

Addiert man die Darstellungsmatrizen Dj der Einfach-Plaquetten klassenweise auf, so
ergibt sich:

1 2 2 2
C(E) = 1 C(Cy)=|2 2 2
1 2 2 2
0 4 4 2 2 2
C(Cs)=| 40 4 CCy)=|2 2 2
440 2 2 2
3
C(C?) = 3
3

Man sieht, dal nur C (Cs),C (Cy) bzw. C (C3) diagonalisiert werden miissen. Fiir C (Cs)
und C (Cj) liest man einen Eigenvektor direkt ab, ndmlich (1,1,1). Er spannt einen eindi-
mensionalen invarianten Teilraum auf, der zugehorige Eigenwert ist offensichtlich 6. Das
dazu orthogonale Komplement wird von den Vektoren (-2,1,1) und (0,1,-1) erzeugt, und
ist, wie man schnell nachrechnet, ebenfalls Eigenraum mit dem Eigenwert 0. Die Zerlegung
ist demnach abgeschlossen. Die Matrix A~! ergibt sich also zu

1 -2 0
Al=11 1 : (2.21)
1 1 -
und damit ist
1 2 2 2
A=c| -2 1 1|, (2.22)
0 3 -3

Die Begriindung liegt in der Eigenschaft der Konjugationsklasse verborgen. Sei {k1,...,km} die ge-
ordnete Menge aller zueinander konjugierten Elemente einer Gruppe G, d.h. k; = gk:;g™* () fiir ein g € G
und beliebige k;,k; aus der Menge, und bilden diese die Konjugationsklasse (. Betrachtet man nun die
Menge der Elemente {gkig™*, gk2g"",...,gkmg '} mit g € G, so bildet diese nach (*) und modulo Per-
mutationen ebenfalls die Klasse (.

Soll nun C = Dj(ki) + -+ + Dp(km) mit Dj(g;) vertauschen, dann schreibe C' als Summe von
Dy (9:) D (k1) D (97 1), - -, Dy (9:) Dt (k) D (9; ") und beachte Dyg (9; ') = D' (g:) - o
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Selbstverstidndlich zerfdllt C' (C3) in die gleichen invarianten Teilriume. Die Eigenwerte
sind hier 8 und -4.

C 148t sich somit auf folgende Diagonalgestalt bringen:

Ac(cy) = 0 bzw.  Ac(cy) = —4 . (2.23)
0 —4

Das Ergebnis stimmt mit unseren bisherigen Uberlegungen iiberein, denn wir wuften be-
reits, daf die Darstellung von R in eine eindimensionale und eine zweidimensionale irredu-
zible Darstellung zerfillt, nimlich in 4; und E. Wir sind aber jetzt in der Lage, zusétzlich
eine ONB aus Loop-Operatoren anzugeben, wobei die Koeffizienten der Basisvektoren die
Spalten von A~ ! sind (vgl. a. Ende Kapitel 1):

Darstellung R Linearkombinationen
von O der Einfach-Plaquetten
Ay O14+024 +034
E —2014+02,+034
Oz — 03 4

Zum SchluB sei angemerkt, da$$ auf Normierungskonstanten der Ubersichtlichkeit halber
verzichtet wurde.

zweiter Fall: C = —1

Fiir negative C-Paritét ist ein 3-dimensionaler Eigenraum zu erwarten. Er transformiert
sich unter T7. Nach klassenweiser Summation der Darstellungsmatrizen erhélt man:

1 —2
C(E) = 1 C(Cy) = 2
1 -2
0 2
O (Cy) = 0 C(Cy) = 2
0 2
-1
c(c3) = 1
-1

Alle C-Matrizen haben bereits Diagonalgestalt. Die Zerlegung von R in invariante Teilriume
ist somit abgeschlossen. Dieses Ergebnis verwundert nicht, da wir R bereits als irreduzibel
bestimmt haben. Als ONB-Basis bietet sich demnach an (vgl. a. Kapitel 1):
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Darstellung R~ Linearkombinationen

von O der Einfach-Plaquetten
Ty O14+

O2+

O3 +

2.4 Wilson-Loops der Linge 6: Zweites Beispiel

Wir wollen nun Wilson-Loops der Linge 6 betrachten. Wie bereits oben erwidhnt, unter-
scheidet man drei verschiedene Formen von Loop-Operatoren:

e Doppel-Plaquetten,
e Winkel-Plaquetten,

e verdrehte Loops.

Letztere haben die Gestalt:

I~ e g

Thre Darstellung R ist aufgrund der Anzahl der Operatoren 4-dimensional und soll in die-
sem Abschnitt exemplarisch fiir die Wilson-Loops der Linge 6 explizit untersucht werden.

Unsere Vorgehensweise wird dabei analog zum vorherigen Abschnitt verlaufen.

2.4.1 Transformationsverhalten der verdrehten Loops

Im ersten Schritt miissen wir die Darstellungsmatrizen D (g) fiir die verdrehten Plaquet-
ten explizit ausrechnen. Dazu untersuchen wir zunéchst das Transformationsverhalten der
Operatoren Oy 4,...,04 1+ unter der kubischen Gruppe. Man definiert

01 + = [2’37 _]-7 _27 _37 ]-]jz ) 02:|: = [2’37 ]-’ _2a _3a _1]jz
O34 = [1,2, -3,—1, _273]ﬂ: , O+ = [3, -1,2,-3,1, —Z]i . (2.24)

Nun kann man mit Hilfe von (2.9) und den Drehmatrizen aus [C.1] jeden Loop-Operator
unter der kubischen Gruppe transformieren, indem man die Einheitsvektoren mit der
jeweiligen Drehmatrix multipliziert oder indem man die Drehung des gesamten Operators
»,in Gedanken“ direkt ausfithrt. Wir geben hier das vollstindige Ergebnis an. Die 2 x
4 x 24 = 192 Drehungen der verdrehten Loops O; 1, ¢ € {l,...,4}, sind nach ihren
konjugierten Klassen geordnet:
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o Klasse E:

Id

O14++ 014
O+ 024
O3+ +—— O3+
O4+ > Ogq4

e Klasse Cy:

O1++—CO1 4+
Ogi I—)CO4:|:
Ogi I—)COgi
04:|: I—)COzi

O1++—CO1 4+
Oy 4+ — CO3 4+
O34+ +— COq 4
O44+ — CO4 4+

e Klasse Cj:

O1++— 04+
O2++— Oz
O3+ 01+
O4++—— O3+

O1++— O3+
O2++— 0O1+
O3+ 02+
O4+ O+

O1+ 04+
O2++— 0O1 4+
O3+ +—— O3+
O4++— Oz

O14+—CO3+
02:{: b—)COzi
Ogi b—)Coli
04:|: b—>004:|:

O1+—CO1 4+
Oy4 — COq 4+
O34+ — CO4+
Oy4+ — CO3 4+

O1++— 01+
Oz2+ — O3 4
O3+ +— 04+
O4+ — Oz 1

O1++—— O3+
O2+ — Oz
O3+ 04+
O4+— O1+

O1+— 02+
O2+— O3+
O3+ +— O1 4
O4+ — Og+

O1+ =+ CO4+
02:|: b—>002:|:
03:|: b—>003:|:
04:|: b—>001:|:

Oli ’—>002i
Ogi ’—>001i
O3+ — CO3 4
O4+ = CO4+

O1++— Oz 4
O2+ — Oq 1
O3+ O3+
O4+ —— O1+

O1++— 01+
O2+ — O4+
O3+ 02+
O4+ — O3+
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e Klasse Cy:

C4af:

Ol:i: — CO4;|:
Ogi — COgi
Ogi — C’Oli
O44+ — COy 4

O14++— CO3+
Oy 4+ — COy4+
O34+ +— COy 4
04:|: — C’Oli

e Klasse C3:

CZw

O1+ 02+
O2++— 0O1+
O3+ 04+
O4++—— O3+

Cay

—1
Cyy

Ol:i: b—)COzi
02:{: b—>004:|:
Ogi b—)Coli
Oy4+ — CO3 4+

O14+—CO3+
O+ — CO1 4+
O34+ — CO4+
04:|: b—)COzi

O1++—— 04+
O2+— O3+
O3+ +— Oz 4
O4++— O1 4

Man beachte wieder CO; + = £0; 1, i € {1,...,4}.

C4z

C2z

Ol:l: b—>002:|:
02:|: b—>003:|:
03:|: b—>CO4:|:
O4+ — CO1 4+

O14++—CO4+
Oy 4+ — COq 4+
O3+ — COy 4
04:|: b—>003:|:

O1+ O3+
O2+ — O4+
O3+ +— 01+
04:|: i—>02:|: .

Die resultierenden Darstellungsmatrizen Dj(g) werden beziiglich der geordneten Basis
{O14,...,04+} (bzw. {O1_,...,04_}) angegeben und sind im Anhang C.3 zu finden.
Ein Reprisentant pro Klasse sei auch hier angegeben, man ersetzte das C' in den Matrizen
durch £1 je nach Wahl der C-Paritét.

Klasse: E Klasse: Cs
1 C
. 1 C
M (id) = 1 M (Cyq) = o
1 C
Klasse: C3 Klasse: Cy
1 C
1 C
M(C?)a) = 1 M(C4m) = C
1 C

Klasse: C?
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2.4.2 Irreduzible Zerlegung der Darstellungsmatrizen

Im nichsten Schritt ist nun der irreduzible Inhalt der Darstellung R zu bestimmen. Hier
hilft uns ein weiteres Mal die Formel (2.17). Die Méchtigkeit der konjugierten Klassen der
24-elementigen Gruppe O kann mit 1, 6, 8, 6 und 3 aus 2.3.2 iibernommen werden. Die
Spur der Darstellungsmatrizen ist an den Reprisentanten einer jeden Klasse abzulesen
und hier fiir C = +1 durch 4, 2, 1, 0 und 0 (bzw. 4, -2, 1, 0, 0 fiir negative C-Paritit)
gegeben. Die Charaktere der irreduziblen Darstellungen der Gruppe O sind bereits aus
unserem ersten Beispiel bekannt. Auf die Ausfithrung der Rechnung sei an dieser Stelle
verzichtet. Als Ergebnis findet man:

irred. Darst. von O Al A2 E T1 T2 Al A2 E T1 T2
Dim. der Darstellung 1 1 2 3 3|1 1 2 3 3
Dimension von R: C=+1 C=-1
4
Anzahl der irred. Faktoren | 1 0O 0 O 1 0 1 0 1 0

2.4.3 Konstruktion einer Orthonormalbasis

Der letzte Schritt liefert uns nunmehr fiir jeden irreduziblen Anteil von R eine Orthonor-
malbasis aus Loop-Operatoren. Addiert man die Matrizen ﬁ(g) jeder Klasse auf, so ergibt

sich im

ersten Fall: C = +1

1 311 1
1 1311
C(E) = . Ce)=1, 1, 3
1 111 3
2 2 2 2 02 2 2
2 2 2 2 20 2 2

C (C3) = C(Cy) =
(Cs) 2 2 2 2 (C1) 2 2 0 2
2 2 2 2 2 2 2 0
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c(cp) =

o = O
_= = O
—_= O = =
O =

An C (Cj) liest man sofort einen Eigenvektor ab, es ist (1,1,1,1), der zugehorige Eigenwert
ist 8. Dazu orthogonal ist der Raum, der von den Vektoren (1,-1,1,-1), (-1,1,1,-1) und
(1,1,-1,-1) aufgespannt wird. Da R = A; & T und Ty dreidimensional sind, mu$f das
orthogonale Komplement bereits ein Eigenraum sein. Dies ist in der Tat der Fall. Alle
drei Vektoren sind Eigenvektoren zum gleichen Eigenwert 0, sie spannen also einen nicht
weiter zerlegbaren invarianten Teilraum auf. Wie man leicht nachpriift, liefern die Matrizen
C (C3), C (Cy4) und C (C3) selbstverstindlich das gleiche Resultat. Die Orthonormalbasen
der invarianten Teilrdume von R lauten damit fiir positive C-Paritit

Darstellung R Linearkombinationen

von O der verdrehten Loops

Ay O14++02, +034 +044
T, O14+—-024+034—044

014+ +024+034—044
O14+ 024 =034 —O4 4

zweiter Fall: C = —1

1 ~3 -1 -1 -1
1 -1 -3 -1 -1
C (E) = C (Cy) =
(E) . (Cs) 1 1 3 1
1 -1 -1 -1 -3
2 2 2 2 0 —2 -2 -2
2 2 2 2 2 0 -2 -2
C (C3) = C(Cy) =
(Cs) 2 2 2 2 (C4) 2 2 0 -2
2 2 2 2 2 —2 -2 0
011 1
101 1
C(c) = 110 1
1110

Die Matrizen sind mit denen aus dem ersten Fall identisch bzw. unterscheiden sich lediglich
durch ein Minuszeichen in allen Eintrédgen. Eigenrdume und Eigenvektoren dndern sich
damit nicht, und man erhélt analog
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Darstellung R Linearkombinationen

von O der verdrehten Loops

A, O1-4+03_+03_+04_
T O —0y_+03_—04_

—01_4+03_+03_—-—04_
01—+02_—03_—04_

2.5 Spiegelung und P -Paritét

An dieser Stelle scheint es mir besonders giinstig, auf das Transformationsverhalten von
Loops unter der vollen kubischen Gruppe Oy einzugehen und dabei einen weiteren Pa-
ritdtsbegriff einzufiihren. In unseren beiden bisherigen Beispielen haben wir nur Trans-
formationen unter der kubischen Gruppe O betrachtet, insbesondere erfolgten alle Un-
tersuchungen in 2.3 und 2.4 unter Verwendung dieser im Vergleich zur Gruppe Oy, etwas
kleineren Gruppe. Wir wollen ab hier aber auch Transformationen unter der vollen kubi-
schen Gruppe zulassen und haben dabei u.a. zu kliren, ob sich fiir die Darstellungen R
der bisher behandelten Beispiele etwas Wesentliches dndern wird.

Wie in Unterabschnitt 0.3.4 bereits erwdhnt, schlieft die Gruppe Oy zusitzlich zu den
Rotationen der kubischen Gruppe noch eine optionale Punktspiegelung am Koordina-
tenursprung mit ein. Eine solche Inversion I wird bei beliebigen Wilson-Loops durch den
Paritdtsoperator P vermittelt. Man definiert ihn durch

Plut, iz, 1r) = [~y —pn, - —H) - (2.25)

Er iiberfiihrt gerade den vollstéindigen Loop in sein Spiegelbild (Punktspiegelung!)®, also
z.B.

A
A

bzw. gemif (2.25)
P[2,2,3,-2,3,-2,-3, 3] = [-2,-2,-3,2,-3,2,3,3] . (2.26)

Man unterscheidet nun zwischen Loops, die unter der P-Paritédtsoperation invariant blei-
ben und solchen, die es nicht tun. Ist (2.26) fiir letztere ein Beispiel, so sind die Operatoren

8Man beachte, daB wir auch hier Translationen nicht beriicksichtigen wollen. Eine Plaquettenvariable
U, wiirde beispielsweise bei Spiegelung am Gitterpunkt  gem&f P Uy = Uz;—p,—. in eine Plaquette mit
gleicher Orientierung iiberfiihrt, allerdings (drei) neue Gitterpunkte besetzten.
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aus Abschnitt 2.3 dagegen spiegelsymmetrisch, z.B. gilt fiir den Operator O3 unter Aus-
nutzung der zyklischen Permutation der L-Tupel

A
A

POS:E =P = P[273’_25_3]i = [_27 _372’3]i = = O3:|: .
+ +

Ebenso verhilt es sich bei den Operatoren aus Abschnitt 2.4. Beispielsweise ergibt sich
fiir den Operator Os 1

POy =P =P[2,3,1,...,-1], =[-2,-3,...,1], =

P-invariante Operatoren haben stets positive P-Parititseigenwerte (P = +1) und trans-
formieren sich demnach unter der vollen kubischen Gruppe Oy genauso, wie unter der
kubischen Gruppe O. Die aus ihnen erzeugten Darstellungen bestehen ausschliellich aus
den fiinf irreduziblen Darstellungen A}, A, E*,T;", T,F (vgl. Charaktertabelle von Oy).
Irreduzible Anteile mit negativer P-Paritdt (z.B. T} ) kénnen nicht vorkommen.

Die in Abschnitt 2.3 und 2.4 betrachteten Operatoren sind alle spiegelinvariant. Die dort
konstruierten Darstellungen lassen sich also leicht auf den Fall der vollen kubischen Grup-
pe iibertragen, man hat lediglich die irreduziblen Anteile mit einem (zusétzlichen) * zu
indizieren, also ist z.B. in Abschnitt 2.3 fiir den Fall positiver C-Paritit die erzeugte Dar-
stellung RY = A @ E™ anstatt R = A; ® E fiir die kubische Gruppe. Beriicktsichtigt
man zudem noch die Indizierung fiir die gew#hlte C-Paritit, so schreibt man vollstindig
RFC = A7 @ E**. Das Auslassungszeichen e ist also nun iiberfliissig geworden.

Fiir Operatoren, die keine P-Invarianz aufweisen, bildet man analog zum Fall des C-
Paritatsoperators die Linearkombinationen

[ty ] = [pn, oy pr] £ [—pa, o, —pr] - (2.27)

Diese haben je nach Wahl des Vorzeichens eindeutig bestimmte P-Paritétseigenwerte (P =
+1 bzw. P = —1).

Zur Verdeutlichung sei der Operator aus (2.26) noch etwas genauer betrachtet. Dariiber
hinaus werden uns dann im néchsten Abschnitt Wilson-Loops dieser Gestalt als Beispiel fiir
das Transformationsverhalten P-varianter Operatoren unter der vollen kubischen Gruppe
Oy, und der daraus generierten Darstellung dienen. Zuvor aber noch eine Notationsverein-
barung: Der Loop-Operator (2.26) hat die Form eines ,,gestutzten® L und soll im folgenden
durch eine Einfach-Plaquette mit einem an einer Ecke befindlichen nicht-ausgefiillten Kreis
kenntlich gemacht werden. Der Kreisring markiert dabei die beiden ldngeren Kanten des
Loops. Graphisch liest sich die Abkiirzung fiir (2.26) so:
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A
A
O

= und =

Die Anwendung des Paritdtsoperators P ergibt fiir (2.26) somit

Das T kennzeichnet demnach Operatoren mit positiver P-Paritit, das ~ entsprechend
Operatoren negativer P-Paritét.

2.6 Wilson-Loops der Linge 8: Drittes Beispiel

Insgesamt lassen sich nun unter Beriicksichtigung der Tatsache, dafl sich in allen drei
Koordinatenebenen jeweils insgesamt vier einzelnde Eckpunkte auszeichnen lassen, 3 x
4 = 12 unterschiedliche Loops obiger Form konstruieren. Man fafit sie aufgrund ihrer
Inversionseigenschaft gemifl (2.27) zu P-invarianten Operatoren zusammen und erhilt:
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- <0 - p—= .
C) O

Berticksichtigt man zusétzlich noch die C-Parititsinvarianz, so erhdlt man insgesamt die
Operatoren OZ-C = (Oiiji) (i =1,2,3,j = 1,2), die nun fiir fixiertes P und C einen
sechs-dimensionalen Raum aufspannen.

2.6.1 Transformationsverhalten der Uber-Eck-Plaquetten

Die Konstruktion P-invarianter Loop-Operatoren vereinfacht uns die Arbeit erheblich.
Wollte man alle zwolf Uber-Eck-Plaquetten -man beachte, daf man dabei vorher €' schon
fest gewahlt haben mufi— unter der vollen kubischen Gruppe Oy, transformieren, héitte man
12 x 2 x 24 = 576 Drehungen zu untersuchen. Kennt man dagegen das Verhalten eines
Operators unter Inversion, wie es bei der Verwendung von Linearkombinationen Oiij der
Fall ist, reduzieren sich diese bereits auf 6 x 24 = 144. Das Transformationsverhalten unter
O bestimmt also in diesem Fall das Verhalten unter der vollen Gruppe Oy. Grund dafiir ist
die Tatsache, dal Operatoren mit P = +1 ihre Lage unter Punktspiegelung unverdndert
lassen und im Falle von P = —1 nur ein Minuszeichen vor den Operator hinzugefiigt werden
muB. Es geniigt demnach, die Uber-Eck-Operatoren Oz-ij 4 unter der kubischen Gruppe zu
drehen. Selbstverstindlich hat man dabei zusitzlich wiederum zwischen positiver und
negativer C-Paritit zu unterscheiden, insgesamt sind also vier Fille P = +1 und C' = +1
zu unterscheiden. Man findet:

o Klasse E:

Id
Oiu Hoiu
O1i2¢ HO?Ei
O2i1¢ ’—>O2ili
Ogp 1 = Ogp



+
011 +

— CO3; .

+ +
011 + ’ 032 +
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O?zl + O?zl +
O3y 4 — O3y 4
e Klasse Cs:

Caq Cap Caec
Oyy . — PCO;yy Oy 4 — COy 4 Or1+ — POy .
Oliz L CO? n Og L — PCOliz n Oliz L — POsjy 4
0211 L PO%} n 011 L — PCO?’f n 0211 4L — PCiOm n
O2i2 L — PO:12 n O2i2 L PCO‘?& n O2i2 L > CO0y 4
0‘11 L PO2i1 n O:11 L PCO2i2 n 0‘11 L — POy 4
O3y —> POy O3y —> PCOy; 4 O3y 4 — POy 4

Cagq Cae Coy
0111 + C03i2ﬂ: 01i1 + Oziﬁt Of} + PCiO; +
Oiz + CO::’,& + 0;2 + P03E1 + Oiz + > 00y 4
OiliHCOmf 02i1i'—>Pi012i O2ili’—>PCi011i
023 + PC?22 + 02i2 + Ouf 023 + > CO0qy 4
0:11 + —> 0094 03;1 + Coslf O?il + PCiO31 +
O3y 4 —> COqq 4 O3y 4 —> PCO3y 4 O3y 4 — COgy 4

e Klasse Cj:

Csa Csg Cs,
Olil + Cogtzi 0121 + PCOthi Olil + 02i1 +
O19 4 —> COy 4 O194 —> PCOy; 4 O1p 4 — O ¢
0;;1 + O:fzit Ozil £+ PCiO; + 0;;1 + 6’0;3
023 + 0031ii 02i2 + 0932 + 023 + PCQ32 +
011 + PC?H + 03;1 + Ouf 011 + 00113
O35 —> COqp 4 O3y —> POy 4 O3y 4 — PCOqp 4

Css Cat c;

+ + + + + +
OiliHPOili O1i1i'—>PCi031i Olili’—>P032i
O1i2¢ — Pogg + O]f + CO%?i OliZi — Og; £,
0111 '_>P932i Oili'_>00£:2:t Oili '_>PCOIi2i
Ogﬁzi — 0313 02i2 + Colil + Oizi — PCOlil +
011¢HP912i Oi1i'—>PO22i OiliHPCiOQIi
Osp 4 — Oq1 4 Ozy 4 — Oy 4 Ozp 4 — COyy

Cyy Cas
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+ + + +
O1i2¢'—>P5032¢ O]i2i'—>Pi031i
0111'—>0i1i Oilﬂ:'_>013it
O2i2:|:’—>012i|: 02i2ﬂ:'—>Pi012ﬂ:
011 + Comf 0:11 4+ 022f
Os9 4 —> PCOyy 4 O —> POy 4
e Klasse Cy:
C4$ + + C4y + + C4Z + +
O1i1¢'—>Pi022i Olili'—>PCO§tZi O1i1i'—>PiO12¢
Oizi '—>O21f Oi2ﬂ:'—>PCiO31ﬂ: Olizi'—>0£i
0111HCO11E Oa:lﬂ:'—>P922:i: O2ili'—>031i
O2iZi HPCiOui 02i2i — O 4 O2iZi '—>032ii
Oili '—>P932i Oiili'—>01ili Oili'—>002i2i
O304 —> O3y 4 Osz04 —> Opp 4 Os9 4 —> COy 4.
-1 -1 -1
Ciz + + C4y + + Ca + +
OE + = CO21f Oil + 03;1 + OE + 012f
O1i2¢HP0922¢ Olﬁi'—)O&Ei OliZi'—>P01i1i
O2il + 0013 + 02i1 4+ 022f O2il 4+ 00:12 +
OgﬁZi'—>Pi011i 012{—*130213 OgﬁZi'—>Ci031i
01111 '—>O32it 03;1i'—>PCO5E2i O3i1i'_>03:1i
O35 —> POgy 4 O35 — PCOyy 4 O304 > Oy 4.
e Klasse C%:
sz + + C2y + + C2Z + +
Olili’—>001i2i OliliHPCOIizﬂ: Olilif—>P01i1:|:
01i2¢HCO113 Olﬁi'—)PCiOlli OliZi'—>P01i2i
Ogtli — PC’OEE2i O?t1 L POgtli Ogtli — C’O?t2i
Ogﬁzi '—>P0i021:t Oiwc »—>PO22$ Ogﬁzi '—>003:1:t
O"?’tl:t }—>P0§tli O?ilﬂ:HPCO?)izﬂ: OiliHCO:fi
O34 — POsy 4 O3y —> PCO3; 4 Oz54 — CO3 .
Man beachte dabei z.B. PO;ji = —I-O;;i bzw.COiij = —O%_ und insbesondere auch
PCO;; _=—(-0; )=+0; ,ie€{1,2,3}, j €{1,2}.

Die Darstellungsmatrizen D (g) unterscheiden sich nun fiir jeden der vier Sektoren (P =
C = +1, P = +1,C = —1, etc.) in den Vorzeichen der Eintrdge und sind bzgl. der
zugehorigen geordneten Basis {Ofl i,Olizi . .,O;;i} angegeben. Da wir nur an ihren
Klassencharakteren interessiert sind, geniigt es, einen Repriasentanten pro Klasse anzuge-
geben. Man ersetze dazu P und C durch +1 je nach Wahl der P- bzw. C-Paritét.
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Klasse: E Klasse: Cs
1 pPC
1 C
1 P
M (id) = 1 M (Cy) = P
1 P
1 P
Klasse: Cs Klasse: Cy
pPC ¢
- ¢ pPC
M (Cs3q) = o M (C4z) = 1
P
L 1
1 P
Klasse: C?
C
C
pPC
M (Cyz) =
PC
P
P

Die Charaktere ergeben sich zu +6 fiir die Klasse F in allen 4 Sektoren. Fiir die Klasse
C erhilt man +2/ — 2 fiir positive P-Paritdt und positive/negative C-Paritit bzw. 0 im
Fall von P = —1, die Klassen (5 und C4 haben immer verschwindende Spuren. Im Falle
der Klasse C7 hat man +2 fiir positive P-Paritéit und andernfalls —2.

Die Darstellungsmatrizen fiir die zusétzlichen Klassen IE,... I Cf der vollen kubischen
Gruppe Oy, sind im Fall P = +1 mit obigen identisch, fiir P = —1 ist in allen Eintrégen
ein Minuszeichen zu setzen. Die Spuren dndern sich dann ebenfalls entsprechend.

2.6.2 Irreduzible Zerlegung der Darstellung

Die Zerlegung der Darstellung R erfolgt mit Hilfe der Formel (2.17). Man beachte, da8 sich
die Summe (bei fixierter C-Paritit) nun zunéchst einmal {iber alle zehn konjugierten Klas-
sen von Oy, erstreckt und sich damit auch die Anzahl irreduzibler Darstellungen von fiinf
auf zehn erh6ht. Wie aber bereits oben erwihnt, vereinfacht sich die Situation aufgrund
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der Verwendung von P-invarianten Operatoren wieder, da sich das Transformationsverhal-
ten unter der vollen kubischen Gruppe aus dem unter der Gruppe O ableiten 148t. Konkret
hat man also doch nur iiber die fiinf Klassen der kubischen Gruppe zu summieren und
indiziert die gew#hlte P-Paritit durch ein * bzw. ~ an der irreduziblen Darstellung .
Dabei darf nicht vergessen werden, daB man R zusitzlich auch noch fiir beide C-Paritéten
getrennt zu zerlegen hat. Die irreduziblen Anteile werden also mit x”¢ kenntlich gemacht.
Die Rechnungen sind in Anhang C.4.1 zu finden, woraus man abschlieflend erhalt:

erster Fall: P = 41

irred. Darst. von O, | AT AT Ett Tt TSt A Ay BT T T,

Dim. der Darstellung 1 1 2 3 3 1 1 2 3
Dimension von R: P=+1 C=+1 P=+1 Cc=-1
6

zweiter Fall: P = —1

irred. Darst. von Oy, | A7t AT E-+Y 17t TN | AT Ay ETT Ty Ty

Dim. der Darstellung 1 1 2 3 3 1 1 2 3

Dimension von R: P=-1 C=+1 P=-1 C=-1
6

2.6.3 Konstruktion einer Orthonormalbasis (Teil I)

Die Konstruktion einer Orthonormalbasis aus Loop-Operatoren haben wir bereits an zwei
Beispielen vorgenommen. Es stellte sich dabei heraus, dafl es geniigt, die Darstellungs-
matrizen D3 einer (geeigneten) Klasse C; aufzusummieren und zu diagonalisieren. Wir
wéhlen in diesem Fall beispielsweise die Klasse (5. Man erhélt nach Summation fiir den

ersten Fall: P =C = +1

(2.28)

o = = N
o = =N O
= o= O N =
= o= NN O =
O N = = e
N O R ==

Durch Diagonalisierung findet man
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e die Eigenwerte: 6, 0, 0, 2, 2, 2

e und die zugehorigen Eigenvektoren:

([ 1 -1 -1 0 0 -1\)
1 -1 -1 0 0 1
£ = 1 , 0 , 1 , 0 , -1 , 0 (2.29)
1 0 1 0 1 0
1 1 0 -1 0 0
1 1 0 1 0 0/)

Der Darstellungsraum der Darstellungsmatrizen D zerféllt in drei invariante Unterrdume
der Dimensionen 1, 2 und 3. Da fiir die Darstellung R

R=ATeETTaoT, " (2.30)

gilt und die Dimensionen der irreduziblen Darstellungen mit denen der invarianten Teil-
rdume iibereinstimmen, ist die Zerlegung damit abgeschlossen. & bildet also eine Basis
aus Loop-Operatoren fiir A7, E** baw. T, .

zweiter Fall: P = +1,C = —1

Dieser Fall verlduft vollig analog zum ersten, und die Details kénnen in Anhang C.4.2
nachgelesen werden.

dritter Fall: P = —1,C = +1

0 0 -1 1 -1 1
0 0 -1 1 1 -1
-1 -1 0 0o -1 -1
C(Csy) = 2.31
(C2) 1 1 0 0 -1 -1 (2:31)
-1 1 -1 -1 0 0
1 -1 -1 -1 0 0
Durch Diagonalisierung findet man
e die Eigenwerte: -2, -2, -2, 2, 2, 2
e und die zugehorigen Eigenvektoren:
(/0 1 -1 1 0 1\)
1 0 -1 0 1 1
1 1 -1 -1 -1 -1
53 = ) ) 9 ) ) (232)
0 0 1 0 0 1
0 1 0 0 1 0
L\ 1 0 0 1 0 0
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Der Darstellungsraum der Dj zerféllt in zwei invariante Unterrdume der Dimension 3.
Fiir die Darstellung R gilt
R=T7"eT, . (2.33)

Da sowohl Tf+ als auch T{Jr dreidimensionale, irreduzible Darstellungen sind, ist die
Zerlegung somit ebenfalls abgeschlossen. Fraglich dagegen ist aber noch, wie die beiden
invarianten Unterrdume den Darstellungen zuzuordnen sind. Hierfiir hat man nun die
in (2.20) erklirte reduzierte Darstellung ARA~! zu betrachten. Zunichst fiigt man die
in der geordneten Menge &3 befindlichen Basisvektoren zu einer Matrix E3 zusammen
(Spaltenvektor=Matrixspalte) und identifiziert E3 mit A~!. Betrachtet man nun fiir die
Darstellungsmatrizen der Klasse Cs ihre ,,reduzierten” Partner ADﬁ(g)A_l, so haben diese
nach Konstruktion von (2.20) Blockdiagonalgestalt, bestehen also aus zwei 3 x 3-Matrizen.
Fiir g = Cy, € C> ergibt sich beispielsweise

0 0 -1
-1 -1 1
-1 0 0
AD5 (Co) AL = 2.34
% (Caa) 00 —1 (2.34)
11 1
-1 0 0

Hierbei haben oberer und unterer Block die Spur —1 bzw. +1.

Da wir nun einerseits wissen, daf} sich die zu den beiden Blockmatrizen gehérenden Un-
terrdume unter T1_+ bzw. T2_+ transformieren und andererseits an Hand der Charakter-
tabelle xT1 (Cy) = —1 bzw. x’2 (C3) = +1 finden, bilden die ersten drei Vektoren aus €3
in der Tat eine Basis der Darstellung TfJr aus Loop-Operatoren und die restlichen drei
entsprechend eine Basis fiir T2*+.

vierter Fall: P = —1,C = —1

Wiederum verlduft dieser Fall vollig analog zum letzten und ist ebenfalls in Anhang C.4.2
nachzulesen.

SchluBbemerkung: Eine vollstindige Ubersicht aller Orthonormalbasen aus Uber-Eck-
Plaquetten fiir die irreduziblen Faktoren der betrachteten Darstellungen R sei im folgenden
Abschnitt zusammengestellt.

2.7 Zusammenfassung

An dieser Stelle méchte ich noch einmal eine Ubersicht iiber die bisher erzielten Resultate
geben. Ausgangspunkt war die kubische Gruppe, unter der wir das Transformationsverhal-
ten von Wilson-Loops untersucht haben. Aus diesem konnten wir anschliefend Darstellun-
gen iiber Loop-Operatoren ableiten. Dabei zeigte sich, dal durch geeignete Kombination
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der Loops paritidtsinvariante Operatoren erzeugt werden konnten, die uns Aussagen iiber
das Transformationsverhalten unter der vollen kubischen Gruppe erméglichten. Mit Hilfe
der Gruppentheorie wurde daraufhin ein Verfahren vorgestellt, die i.a. reduziblen Darstel-
lungen in irreduzible Darstellungen der (vollen) kubischen Gruppe zu zerlegen und eine
Orthonormalbasis aus Loop-Operatoren fiir jeden invarianten Teilraum des Darstellungs-
raumes anzugeben. Die Dimension der Darstellung ist dabei durch die Anzahl méglicher
Ausrichtungen der Loops im dreidimensionalen Raum festgelegt und wéchst in jedem Falle
mit deren Lange.

Es wurden drei Beispiele behandelt. Die Einfach-Plaquetten und verdrehten Loops wa-
ren beide invariant gegeniiber Raumspiegelungen, eine Untersuchung unter der kubischen
Gruppe reichte hier aus. Die Ergebnisse werden in Tabelle 2.1 (irred. Inhalt) und Tabelle
2.3 bzw. Tabelle 2.6 (ONB) zusammengefat. Die Uber-Eck-Plaquetten waren nicht spie-
gelinvariant. Die Folge waren irreduzible Anteile mit negativer P-Paritét (vgl. Tabelle 2.2,
Tabelle 2.7).

In 2.2.1 wurden dariiber hinaus zwei weitere Wilson-Loops der Linge 6 vorgestellt: Doppel-
Plaquetten und Winkel-Plaquetten. Fiir beide lassen sich mit dem gleichen Verfahren
ebenfalls Darstellungen finden, deren Ergebnisse aus [19] entnommen und in Tabelle 2.1
(Doppel-Plaquetten) bzw. 2.2 (Winkel-Plaquetten) und Tabelle 2.4 bzw. 2.5 dargestellt
werden.

In Tabelle 2.1 und 2.2 ist die Reihenfolge der betrachteten Loop-Operatoren unterhalb
der Tabelle angegeben, die irreduziblen Darstellungen der (vollen) kubischen Gruppe sind
nach Wahl der Paritdt geordnet. Die ONB in den Tabellen 2.3 — 2.7 ist zeilenweise in Form
von Koordinatenvektoren bzgl. der Basisoperatoren der entsprechenden Wilson-Loops an-
gegeben.
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Irreduzibler Inhalt der Darstellungen der kubischen Gruppe iiber
Wilson-Loops der Linge 4 und 6 (I)

irred. Darst. von O, | Af" AT Ett Tt TSt A Ay BT T T,

Dim. der Darstellung 1 1 2 3 3 1 1 2 3 3
P=+1 C=+1 P=+1 Cc=-1
Dimension von R:
3 1 0 1 0 0 0 0 0 1 0
Dimension von R:
6 1 1 2 0 0 0 0 0 1 1
Dimension von R:
4 1 0 0 0 1 0 1 0 1 0

Tabelle 2.1: Operatoren (von oben nach unten): Einfach-Plaquetten; Doppel-Plaquetten,
verdrehte Loops

Irreduzibler Inhalt der Darstellungen der kubischen Gruppe iiber
Wilson-Loops der Linge 6 (IT) und iiber die Uber-Eck-Plagetten der Linge 8

irred. Darst. von O, | AT AT EtF Tt TSt A Ay BT T T,

Dim. der Darstellung 1 1 2 3 3 1 1 2 3 3
P=+1 C=+1 P=+1 Cc=-1
Dimension von R:
12 1 0 1 0 1 0 0 0 1 1
Dimension von R:

6 1 0 1 0 1 0 1 1 1 0
Fortsetzung AT AT Bt Tt T, AT A, ETT Ty T,
der Tabelle 1 1 2 3 3 1 1 2 3 3

P=-1 C=+1 pP=-1 Cc=-1

Tabelle 2.2: Operatoren (von oben nach unten): Winkel-Plaquetten; Uber-Eck-Plaquetten
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Operatoren der Einfach-Plaquetten

Loop-Op. Olii Ozii O;i
RPC AfH 1 1
EtT -2 1
-1
T~ 1
1
1

Tabelle 2.3: ONB aus Loop-Operatoren fiir die irreduziblen Anteile von R
(Die freien Plitze sind mit Nullen zu belegen.)

Operatoren der Doppel-Plaquetten

Loop-Op. | O1+ O2+ O3+ Os4+ Osi+ O+
RPC A7t 1 1 1 1
AST 1 -1 -1 -1
Et+ 1 -1 1 -1
-2 1 -2 1 1
Ett | -2 1 2 -1 -1
-1 1 -1
T 1 1
1 1
1 1
T, 1 -1
1 -1
1 -1

Tabelle 2.4: ONB aus Loop-Operatoren fiir die irreduziblen Anteile von R
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Operatoren der Winkel-Plaquetten

Loop-Op. | O1+ O2+ O31+ Os+ Os+ O+ Orx Ogx+ Ogxr Oppx Ot Or2+
ATt AT 1 1 1 1 1 1 1 1 1
Ett E~~ -1 1 -1 -1 -1

S S| 2 -1 -1 2 -1 -1 2 -1 -1 2

T, ", T -1 1 1 -1 -1 1 -1
-1 1 -1 -1 1 -1
-1 1 -1 -1 -1 1

T, *, Ty 1 1 -1 1 1 -1 -1 -1
-1 1 | -1 -1
1 1 1 -1 1 -1 -1
Ty, Ty~ -1 -1 1

1 -1 -1 1
1 -1 -1 1

Tabelle 2.5: ONB aus Loop-Operatoren fiir die irreduziblen Anteile von R

Operatoren der verdrehten Loops

Loop-Op.

+ + + +
Ol:l: 02:I: O3:|: 04:I:

RPC AT, AS
T, T

1 1 1 1
1 -1 1 -1
-1 1 -1
1 -1 -1

Tabelle 2.6: ONB aus Loop-Operatoren fiir die irreduziblen Anteile von R
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Operatoren der Uber-Eck-Plaquetten

Loop-Op. | Ofi 4 Oy Opy Oy Oy Ofy
ﬁPC AIrJr 1 1 1
AS~ -1 -1 -1
Ett -1 -1 1
-1 -1 1 1
Et- -1 1 -1 1
1 -1 -1 1
T~ 1 1
1 1
1
T, " 1 1
1 1 1
-1 -1 -1 1
T, 1 -1 1
1
-1 1
T, -1 1
-1 1
-1 1
T, " 1 -1 1
-1 1
1 -1 1
T, -1 1 1
-1 -1 1
1 -1 1 1

Tabelle 2.7: ONB aus Loop-Operatoren fiir die irreduziblen Anteile von R




Kapitel 3

Einfithrung in die Supersymmetrie

In diesem Kapitel gebe ich eine kurze Darstellung der supersymmetrischen Erweiterung
der relativistischen Quantenfeldtheorie. Dabei wird in erster Linie auf die zur Theorie
hinzukommenden Supermultipletts und die in ihnen enthaltenen neuen Elementarteil-
chen eingegangen. Ausgehend von den irreduziblen Darstellungen der Symmetriegrup-
pe der Raum-Zeit, beschrieben durch die Poincaré-Gruppe, wird zunichst das Prinzip
der Zo-Graduierung der Poincaré-Algebra angegeben, welches auf direktem Wege zu ei-
ner Verallgemeinerung des Lie-Algebra-Konzeptes fiihren wird. Mit dieser werden dann
irreduzible Darstellungen verkniipft sein, die mit den Elementarteilchen der supersymme-
trischen Theorie identifiziert werden konnen. Anschlielend wird der Superfeldformalismus
eingefiihrt, mit dessen Hilfe sich supersymmetrisch-invariante Wirkungen konstruieren las-
sen. Nach diesen Vorbereitungen sollen dann schliefilich zwei supersymmetrische Modelle
behandelt werden. Als Referenzen zu dem Inhalt dieses Kapitels seien stellvertretend fiir
die umfangreiche Literatur [24-28] genannt.

3.1 Graduierung und Poincaré-Superalgebra

Auf der Suche nach einer endgiiltigen Theorie der Elementarteilchen sind viele Versuche
unternommen worden, das Standardmodell zu erweitern und es als niederenergetischen
Grenzfall in eine weitreichendere Theorie einzubetten. Einen vielversprechenden Weg da-
hin, bietet das Konzept der Supersymmetrie. Bevor wir darauf genauer eingehen, wollen
wir uns dem Elementarteilchenspektrum des Standardmodells iiber sein Transformations-
verhalten unter der vollen Lorentzgruppe ndhern.

3.1.1 Poincaré-Gruppe und ihre irreduziblen Darstellungen

Elementarteilchen sind in der Sprache des theoretischen Teilchenphysikers irreduzible
Darstellungen der Poincaré-Gruppe P, die als Symmetriegruppe der vierdimensionalen
Raum-Zeit grundlegend fiir jede relativistische Quantenfeldtheorie ist. Sie beinhaltet Lor-
entztransformationen und Verschiebungen im Minkowski-Raum und beschreibt damit die
Struktur unserer Raum-Zeit. Thre Lie-Algebra wird von den 6 Generatoren der Lorentz-
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gruppe M* = —MY"" und den 4 Generatoren der Translationsgruppe P* erzeugt und
wird durch die Vertauschungsrelationen

[P*,P"] = 0
(PP, M¥) = i(gP" ~ g P¥)
[MP, M) = i (gH MY — g7 MYP — "M 4 g7 M) (3.1)

festgelegt, wobei g, = diag(1,—1,—1,—1) = g die Metrik im Minkowski-Raum ist.

In der Quantenfeldtheorie spielen sog. Casimir-Operatoren eine wesentliche Rolle, da nach
ihren Eigenwerten alle physikalischen Zusténde (Felder,Teilchen) klassifiziert werden kén-
nen. Sie sind dabei iiber die Eigenschaft definiert, mit allen Generatoren zu vertauschen.

Als Casimir-Operatoren der Poincaré-Gruppe erhélt man
2
p* = P,PH
w? = wW,WwH, (3.2)
wobei W, = %e,“,paP”M P9 als Pauli-Lubanski-Vektor bezeichnet wird. Weiter ist €, 5
der total antisymmetrische Tensor vierter Stufe mit der Normierung €1234 = 1. Aus diesen

Casimir-Operatoren geben wir nun die irreduziblen Darstellungen der Poincaré-Gruppe
an. Man unterscheidet hierbei verschiedene Klassen:

1. Massive Darstellung: P? = m2¢c? > 0

Im Ruhesystem findet man fiir die Generatoren W, im Minkowski-Raum und die
Generatoren S* der inneren Drehung die Proportionalitit

W2 =-m??8?. (3.3)

Da W? ein Lorentzskalar ist, stimmen seine Eigenwerte im Ruhesystem mit denen
in einem gleichférmig bewegten System {iberein, und man erhilt

P2 = m?&,

) 1.3

W? = —m2c?s(s+1) mit meRund3=0,§,1,§,.... (3.4)

Offensichtlich wird die Darstellung durch die Masse m und den Spin s charakteri-
siert. Dies macht die Identifikation mit Eigenschaften von Elementarteilchen sug-
gestiv. Man beachte, da8 sich Teilchen innerhalb einer Darstellung in ihren konti-
nuierlichen Impulseigenwerten und der z-Komponente s3 ihres Spins unterscheiden
konnen. Massive Teilchen mit Impuls p haben demnach 2s + 1 Freiheitsgrade.

2. Massenlose Darstellung: P? = 0 und W2 =0

Hier gilt
13
WH =hP* mit h=:|:sund3=0,§,1,§,... ,

wobei h = W/ Py ebenfalls ein Casimir-Operator ist. Die Poincaré-Invariante h wird

(3.5)

als Helizitdt bezeichnet. Sie ,ersetzt“ bei massenlosen Teilchen den Spinbegriff, da
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diese eine verschwindende Ruhemasse besitzen und somit eine Spincharakterisierung
(verstanden als innerer Drehimpuls im Ruhesystem) fiir sie keinen Sinn ergibt. Fiir
die Anzahl ihrer Freiheitsgrade bei fixierten Impulseigenwerten erhélt man mit s # 0
genau zwei.

3. Neben den beiden oben genannten irreduziblen Darstellungen existieren noch zwei
weitere: zum einen Darstellungen P, P¥ = 0 mit s € R und zum anderen Darstellun-
gen der Form P, P* < 0, die Teilchen beschreiben, die sich mit Uberlichtgeschwindig-
keit bewegen (Tachyonen). Beide Teilchenklassen sind allerdings in der Natur noch
nicht gemessen worden und sind daher physikalisch irrelevant.

3.1.2 Zs-Graduierung der Poincaré-Algebra

Auf der Suche nach Moglichkeiten, das Standardmodell in eine umfassendere Theorie zu
integrieren, bieten sich in erster Linie zwei Ansatzpunkte:

Das Standardmodell ist eine Eichtheorie, die zugehorige Eichgruppe besteht dabei aus
einem Produkt von 3 Symmetriegruppen (s. Einleitung). Dies mag etwas konstruiert wir-
ken. Daher liegt zum einen der Gedanke nahe, nach einer einzigen (weitreichenderen)
Symmetriegruppe zu suchen (z.B. SU(5)), in der die Produktgruppe des Standardmodells
dann aufzugehen hitte. Dabei wire es sinnvoll, an das zu der Gruppe gehoérende erwei-
terte Modell die zusétzliche Forderung zu stellen, den energetischen Giiltigkeitsbereich
des Standardmodells zu erweitern. Eine andere Uberlegung ist die folgende: Offensichtlich
sind die Eigenschaften der Elementarteilchen eng mit der Poincaré-Invarianz der Theo-
rie des Standardmodells verbunden. Daher wiirde eine Verdnderung (z.B. Erweiterung)
der Poincaré-Gruppe direkte Folgen fiir das Spektrum der Elementarteilchen haben. Hier
st68t man aber schnell an mathematische Grenzen. So konnten S. COLEMAN und J. MAN-
DULA im Jahre 1967 zeigen, daf} sich die Lie-Algebra der Poincaré-Gruppe P nicht mit
einer weiteren Lie-Algebra Q sinnvoll vereinigen 1d8t [29]. Dabei stellten sie fest, daf} ei-
ne Erweiterung der Poincaré-Gruppe P um eine nicht-trivialen Lie-Gruppe Q entweder
zu einer trivialen Streumatrix (Einheitsmatrix) fithren wiirde, oder daf alle Kommuta-
toren zwischen den Generatoren von P und Q verschwinden wiirden. Erst 1971 fanden
Y. GOLFAND und E. LIKHTMAN eine Moglichkeit, den engen Rahmen des Lie-Algebra-
Konzepts zu sprengen [30], indem sie neben den bekannten Kommutatorrelationen nun
auch Antivertauschungsrelationen zwischen den Generatoren zuliefen, was auf den Begriff
der Zo-graduierten Algebra fithrte. Hierzu eine kurze Erlduterung.

Eine Zo-graduierten Algebra besteht aus einer Algebra G, die in eine direkte Summe zweier
Unterrdume Gy und Gy zerfillt, d.h.

G=00)® 90, (3.6)
und einer Verkniipfung o mit folgender Eigenschaft
Tioy; € g(z’—i—jmodz) mit 4,5 € {0,1} und z; € g(i), Y; € g(]-). (3.7)

Auf dhnliche Weise lassen sich auch Z,-graduierte Algebren aufbauen. Im Jahr 1975 zeigte
sich allerdings durch eine Arbeit von R. HAAG, J.T. LorPuszANSkI und M. SOHNIUS [31],
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daBl der Zo-Graduierung eine exponierte Stellung zukommt, da sie die einzige Graduierung
ist, die sich mit der relativistischen Quantenfeldtheorie vereinbaren 14fit. Es ist somit
sinnvoll und ausreichend, sich auf diese einfache Graduierung zu beschranken.

Im n#chsten Schritt konstruiert man nun eine graduierte Zo-Lie-Algebra, indem man
zusitzlich zu (3.7) noch zwei weitere Eigenschaften fordert:

Supersymmetrie : z;0y; = —(—1)"7y; 0 x; (3.8)
Jacobi-Identitit : zj o (y;0 zp) (=1)F™
+yr 0 (2m 0 m) (=1 + 2 0 (g 0 1) (1) (3.9)

Man beachte, dafl wegen (3.8) nur der Unterraum G wirklich eine Lie-Algebra definiert;
G(1) ist nicht einmal eine Algebra, da sie beziiglich o nicht abgeschlossen ist. Wir wollen
daher ab sofort korrekter von der Lie-Superalgebra (kurz: SUSY-Algebra) sprechen. Da-
mit verbirgt sich hinter dem physikalisch geprigten Begriff der Supersymmetrie im Prinzip
das mathematische Konzept der Graduierung. Desweiteren beinhaltet die Supersymmetrie-
forderung (3.8) gerade die bereits oben erwihnte Erweiterung des Lie-Algebra-Konzepts
durch Einfiihrung von Antivertauschungsrelationen. Je nach Wahl von z; und y; ist das
Produkt z; o y; symmetrisch oder antisymmetrisch, und die Generatoren aus G lassen sich
nach gerade und ungerade Generatoren klassifizieren, die die —in den ersten beiden Fillen
sogar definierenden— Eigenschaften besitzen

[gerade,gerade] = gerade
{ungerade,ungerade} = gerade
[gerade, ungerade] = wungerade . (3.10)

Die neu hinzugekommenen, antikommutierenden Generatoren werden nun mit fermioni-
schen Freiheitsgraden identifiziert und haben demnach Spinorcharakter. Die geraden Gene-
ratoren reprisentieren bosonische Freiheitsgrade. Da man an einer Erweiterung der Poin-
caré-Symmetrie interessiert ist, identifiziert man den Gg)-Sektor als die von den zehn Ge-
neratoren P* und M* erzeugte Poincaré-Algebra und fiigt der Theorie im fermionischen
Sektor nach Belieben sog. SUSY-Generatoren Q4, a = 1,...,4N, hinzu. Wir beschrianken
uns im folgenden auf den Fall mit N = 1 und interpretieren die vier SUSY-Generatoren
Q. als Majorana-Spinor (vgl. Anhang F). Man hat schlielich fiir die insgesamt 14 Gene-
ratoren

Pt MM und Q, (3.11)

neben den bekannten Kommutatorrelationen (3.1) der Poincaré-Algebra die zusétzlichen
Vertauschungsrelationen

[P*,Qa) = 0 (3.12)
[lev Qa] = _(%Ulw)abe (3.13)
{Qaa Qb} = _2(7”C)abpu y (3'14)

wobei o#” = £ [y*,4"] mit den Dirac-Matrizen v* und C der Ladungskonjugationsopera-
tor sind.
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Am Ende dieses Abschnitts ist noch kurz auf zwei wichtige Folgerungen einzugehen, die
sich direkt aus der Erweiterung der Poincaré-Gruppe ergeben. Zum einen stellt man mit
Hilfe von (3.14) fest, da8 die Anzahl bosonischer und fermionischer Freiheitsgrade bzw.
Komponenten der Felder in supersymmetrischen Theorien stets identisch sein muf} [28].
Physikalisch sinnvolle, supersymmetrische Modelle haben demnach der Boson-Fermion-
Regel zu geniigen. Zum anderen ist zu erwarten, dafl die Erweiterung der Symmetriegruppe
direkte Auswirkung auf das in der Theorie erfaite Elementarteilchenspektrum haben wird.
Auf diesen Zusammenhang soll im nichsten Abschnitt ndher eingegangen werden.

3.2 SUSY-Teilchen und Supermultipletts

3.2.1 Irreduzible Darstellungen der SUSY-Algebra

Um das Teilchenspektrum der SUSY-Algebra zu klassifizieren, lassen wir uns von den
Uberlegungen im Falle der Poincaré-Gruppe in Abschnitt 3.1.1 leiten. Wie wir uns erin-
nern, war dort die Kenntnis der beiden Casimir-Operatoren wesentlich. Thre Eigenwer-
te lieferten uns die irreduziblen Darstellungen der zugehérigen Lie-Algebra. Im Fall der
SUSY-Algebra bleibt P? ein Casimir-Operator, das Quadrat des Pauli-Lubanski-Vektors
W, dagegen nicht mehr, da wegen (3.13)

[W2,Qa) #0 (3.15)

gilt. Dies hat weitreichende Konsequenzen, da die irreduziblen Darstellungen der SUSY-
Algebra nunmehr Teilchen mit unterschiedlichem Spin enthalten kénnen.

Als zweiten Casimir-Operator findet man den Lorentzskalar

C? = C,, 0", (3.16)
der iiber die Beziehungen
Cw = Y,P,-Y,P, (3.17)
1
Y, = W,+ ZX” (3.18)
1_
X, = 5QunQ (3.19)

gegeben ist. Dabei sind die @’s in (3.19) als sog. Weyl-Spinoren zu lesen.

Es 148t sich zeigen, da8 der Vierervektor Y, aus (3.19) die relativistische Drehimpuls-
algebra
[YmYV] = iﬁ/.ulpO'PpYU (3.20)

erfiillt, die sich im Ruhesystem auf die Form
[Yi,Y;] = imej Y (3.21)

reduziert, wobei m? den Eigenwert des Casimir-Operators P? bezeichnet. %17 stellt somit
eine Verallgemeinerung des Drehimpulses dar (Superspin), und seine Eigenwerte ergeben
sich zu

) 17

N w

el (3.22)

DN | =

Y/m)?=yly+1) mit y=0,
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Der Casimir-Operator C? ist im Ruhesystem mit dem Superspin iiber C? = —2m?2Y?
verkniipft, und sein Eigenwertspektrum ergibt sich demnach zu

1.3
C? = —2miy(y+1) mit 0,3,1,

= ... 3.23
L3 (323)

Im massiven Fall wird somit jede irreduzible Darstellung der SUSY-Algebra durch das
Paar (m,y) charakterisiert, wobei man die Zustdnde innerhalb eines solchen Supermulti-
pletts zum einen nach

e den Eigenwerten y3 der z-Komponente des Superspins %? mit —y <ys <y,
und zum anderen wegen [W3, C,,,, C*'] = [W3,Y3] = 0 nach

e den Eigenwerten s3 der z-Komponente des Spins %W mit s3 € {yg,yg + %, Y3 — %}
und nochmals zweifach entartetem s3 = ys,

klassifiziert.

Graphisch stellt sich das wie folgt dar:

83 =1Y3
s53= Y3+ 3
Yys =y 1
83 =Y3 — 3
ys=y—1 83 = U3
Yys=y — 2
(m,y)
Ys = Y

Eine weitere Klassifizierung erfolgt —genau wie bei der Poincaré-Algebra auch— durch
e den kontinuierlichen Dreierimpuls p.

Wie bei der Poincaré-Algebra ist die Darstellung also unendlich-dimensional.

Im massenlosen Fall, P2 = 0 und W2 = 0, tritt die Helizitit h wieder an die Stelle
der z-Komponente des Spins s, und man erhilt zwei Zustinde, die mit h und h = h + %

bezeichnet sind. Fiir C PT-invariante Theorien hat man den obigen Zustinden zwei weitere
hinzuzufiigen. Fiir ihre Helizit4ten ergibt sich dann h-pp = —h und hepr = —h = —h— %

3.2.2 Chirales und Vektor-Supermultiplett

In diesem Unterabschnitt sei kurz auf die zwei einfachsten Darstellungen der SUSY-
Algebra eingegangen.
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Chirales Supermultiplett

Fiir y = 0 erhdlt man das chirale Supermultiplett. Im massiven Sektor besteht es aus drei
Teilchen:

e einem Spin-3-Teilchen (Dublett mit s3 = +1)

e einem skalaren Teilchen (Boson mit Spin 0)

¢ einem pseudoskalaren Teilchen (Boson mit Spin 0) .

Mit Hilfe des (massiven) chiralen Supermultipletts lassen sich beispielsweise Quarks und
Leptonen sowie ihre Superpartner Squarks und Sleptonen beschreiben. Dariiber hinaus
ordnet man die Higgs-Teilchen und ihre SUSY-Partner dieser Darstellung zu. Das chirale
Supermultiplett ist im Wess-Zumino-Modell realisiert, auf das spéter noch eingegangen
wird.

Das massenlose chirale Supermultiplett gleicht seinem massiven Analogon. Es beinhaltet
ein skalares Teilchen (h = 0) und einen Weyl-Spinor (h = 1/2). Fiir eine Lorentz-invariante
Theorie hat man jetzt noch die beiden durch C'PT-Transformation zu bestimmenden
Partner zu beriicksichtigen. Man erhilt somit insgesamt

e ein Majorana-Spinor-Teilchen (h = +1/2)
und

e ein komplexwertiges, skalares Teilchen (h = 0) .

Vektor-Supermultiplett

Sollen auch Eichbosonen (z.B. die Gluonen der QCD, oder die Vektorbosonen des elek-

troschwachen Sektors) in die Theorie eingebaut werden, so hat man Darstellungen mit y =
1

5 zu betrachten. Das sich daraus ableitende Vektor-Supermultiplett enthélt im massiven Fall:

e 2 Spin-3-Teilchen (jeweils ein Dublett)
e ein Vektorteilchen (Boson Spin 1 / Triplett)
e ein pseudoskalares Teilchen (Boson Spin 0) .
Das massenlose Vektor-Supermultiplett mit h = 1/2 beinhaltet zuziiglich der C PT-Partner
e ein (massenloses) vektorielles Teilchen (h = +1)
und als fermionischen Partner der Eichbosonen

e ein Majorana-Spinor-Teilchen (h = +1) .
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3.3 Superfeldformalismus

3.3.1 Superraum, Superfelder und Poincaré-Supergruppe

In der vierdimensionalen Formulierung der Raum-Zeit wirken Poincaré-Transformationen
auf Felder des vierdimensionalen Minkowski-Raumes, wobei ein allgemeines Element der
Poincaré-Gruppe aus Drehungen und Boosts besteht und die durch die Generatoren M*?, PH
parametrisierte Form

(A(w), a) = exp {z <_%meW _ aﬂpﬂ> } (3.24)

hat. Im Falle der supersymmetrischen Algebra hat man ausgehend von ihren 14 Generato-
ren {P*, M",Q,Q} sowohl die Gruppe ihrer Symmetrietransformationen als auch einen
Darstellungsraum, auf den diese Elemente anschliefend wirken sollen, zu konstruieren.
Dabei liefern die SUSY-Generatoren @ und Q analog zu den Generatoren P*, welche via
exp {—ia, P*} Verschiebungen um einen konstanten Vierervektor a* im Minkowskiraum
erzeugen, eine Verschiebung um die Weyl-spinoriellen, Grassmann-wertigen Parameter ¢
und € geméif

exp{i(eQ+€Q)}  (SUSY-Translation) . (3.25)

Man erhilt letztendlich als supersymmetrische Erweiterung der Poincaré-Gruppe die Poin-
caré-Supergruppe. Ein allgemeines Gruppenelement (ohne Beriicksichtigung von Lorentz-
Boosts) hat dann die Form!

G (x“, 0, 9) = exp {z (—a“PM +eQ + €Q)} . (3.29)

Der zugehorige Darstellungsraum wird Superraum genannt und ist um zwei Grassmann-
wertige, fermionische Koordinaten 6 und 6 erweitert, wobei 6 und 6 als Weyl-Spinoren
aufzufassen sind. Er beinhaltet nicht nur die im Minkowski-Raum definierten Felder ®(z),
sondern auch solche, die zusétzlich von den neuen Koordinaten abhingen konnen. Diese
heiflen Superfelder und sind somit im allgemeinen von der Form & (a;, 0, 0_). Entwickelt man
ein Superfeld in eine Potenzreihe, so bricht die Reihe wegen der Grassmann-Eigenschaft
{6;,6;} = 0 der 6 und 6 nach endlich vielen Termen ab:

O(0,0,0) = f(x)+06(x)+0(x) + (00)M(2)

!Da (eQ + EQ) hermitesch ist, definiert die SUSY-Translation eine unitire Transformation. Man erhilt
eine unitire Darstellung im Superraum (m“, 0, 5) durch Anwenden eines Gruppenelements G (m“, 0, 5) auf

ein Superfeld ® (w“ ,0,5). Unter Ausnutzung der Baker-Campell-Hausdorff-Formel kann man dann die
gesuchten Operatoren fiir die SUSY-Algebra

P, = —id, (3.26)
iQ = % — "0, (3.27)
iQ = 8%_ —i5"608, (3.28)

durch Koeffizientenvergleich identifizieren, wobei o* = (1,0',02,0%) und 6* = (1, —0¢', —0?, —¢3) mit
den Paulimatrizen ¢ bezeichnen.
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(BO)N(z) + ot A,(z) + (60)0A(z)
(60)8a(z) + (90)(H8)d(z). (3.30)
(3.31)

_l’_
+

Die Felder ¢,&, M, N, ... auf der rechten Seite werden Komponentenfelder genannt. Dabei
enthalten die Superfelder die im vorherigen Abschnitt angesprochenen Supermultipletts in
Form eben dieser Komponentenfelder. Ihr Verhalten unter Lorentztransformationen ergibt
sich aus der Forderung, dal das Superfeld ® ein Lorentzskalar ist. Da Linearkombinatio-
nen von Superfeldern wieder Superfelder sind, ist der durch sie gegebene Darstellungsraum
linear. Er ist allerdings hochgradig reduzibel. Um zu irreduziblen Darstellungen der Su-
perfeldern zu gelangen, fordert man deren Invarianz gegeniiber SUSY-Transformationen.
Die beiden wichtigsten Typen von Feldern sind in diesem Zusammenhang

e das skalare Superfeld

e das Vektor-Superfeld.

Mit Hilfe des Erstgenannten werden Materiefelder dargestellt, Vektor-Superfelder dienen
dagegen zur Beschreibung von Eichfeldern.

3.3.2 Skalare Superfelder

Mit Hilfe der Einfithrung von kovarianten Ableitungen der Form

Dy = 0a+i(c"), 0, (3.32)
D; = -0;+i(5");0, (3.33)

wird
e ein chirales Superfeld ®(z,6,6) durch die Forderung DA@ =0 und
e ein antichirales Superfeld ®f(z,6,0) durch die Bedingung D 4®' = 0

definiert [28]. Man bezeichnet beide Feldtypen als skalare Superfelder. Durch Einfiithrung
der komplexen Raumkoordinate y* = z* + i#o*0 erhilt ein allgemeines chirales Superfeld

®(z,0,0) = ®(y,0) eine besonders einfache Form, da sich die Taylorreihe (3.30) auf
©(y,0) = $(y) + V204 (y) + (66) F (y) (3.34)

mit dem Skalarprodukt 86 = 6464 = 6'6; + 626, reduziert [28]. Das chirale Superfeld
beinhaltet damit:

e 1 komplexes Skalarfeld ¢
e 1 (linkshéndiges) Weyl-Spinorfeld 1

e 1 komplexes Skalarfeld F' als Hilfsfeld.



3.3 Superfeldformalismus 79

Da das Hilfsfeld durch Wahl einer geeigneten Darstellung (on-shell-Darstellung) redundant
wird, kann das chirale Superfeld dem chiralen Multiplett zugeordnet werden. Fafit man
den Weyl-Spinor 1 als 4-komponentigen Majorana-Spinor auf, so ergibt sich insbesondere
das weiter unten noch zu erwdhnende chirale Supermultiplett des Wess-Zumino-Modells.

Analoge Uberlegungen lassen sich auch fiir das antichirale Superfeld anstellen. Man fiihrt
dhnlich wie im chiralen Fall die komplexe Raumkoordinate

g =zt — ifa"h = (y*)* (3.35)
ein und erhilt fiir das allgemeinste antichirale Superfeld den Term
®'(7,6) = ¢* () + V204 (7) + (69) F* () (3.36)

An dieser Stelle sei kurz angemerkt, daf3 die Formeln (3.34) und (3.36) in analoger Weise
auch fiir einen reell gewihlten Superraum (z,6,0) angegeben werden kénnen (vgl. [28]).
Die Anzahl der Terme erhdht sich dabei um 3 auf 6, die Anzahl der Komponentenfelder
(¢, U, F) bleibt aber gleich.

Abschlieflend sei noch hinzugefiigt, dal man aus Produkten von (anti-)chiralen Super-
feldern ® wieder (anti-)chirale Superfelder erhélt. Erst das Produkt aus einem chiralen
und antichiralen Superfeld liefert eine qualitativ neue Form von Superfeldern, die Vektor-
Superfelder. Hierauf gehe ich im folgenden Unterabschnitt ein.

3.3.3 Vektor-Superfelder

Die SUSY-kovariante Bedingung fiir ein Vektor-Superfeld lautet
V(z,0,0) =Vi(z,0,0). (3.37)

Wie oben bereits angemerkt, lassen sich Vektor-Superfelder aus chiralen und antichiralen
Superfelder konstruieren. Als mogliche Beispiele seien hier

oo (<1> + cI»T) sowie (<1> - cI»T) : (3.38)

genannt.

Eine mogliche Zerlegung in Komponentenfelder ist dabei [28]
V(2,0,0) = f+ib— ifp+ %(OO)M _ %(ée)M*
© (60"9) A, +i(66) (x " gau,m)
_ i(80)0 <)\ + %wa&) + %(99)(59) (d - %m f) L (3.39)
Das Vektor-Superfeld besitzt als fermionische Freiheitsgrade zwei Weyl-Spinorfelder ¢ und

A, sowie als bosonischen Anteil zwei reelle Felder f und d, ein komplexes Feld M und
schliefllich ein reelles Vektorfeld A,,.
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Supersymmetrische Eichtransformation

Betrachtet sei analog zur nicht-supersymmetrischen Eichtheorie eine abelsche Eichtrans-
formation folgender Art
V—>V’:V+(<I>+<I>T) : (3.40)

wobei ® = (p,1), F') als chirales Superfeld zu lesen ist. Es zeigt sich, daf} die Felder A und
d invariant unter obiger Transformation bleiben und sich das reelle Vektorfeld A, wie in
der lokalen Eichtheorie gem&fl

Ay — A, —20,A mit A=Tmgp (3.41)

verhilt. Durch geschickte Wahl des chiralen Superfeldes ® lassen sich die Komponenten-
felder f,¢ und M in (3.39) wegeichen. Die Eichfixierung hat dabei die Gestalt

2Re¢p = ¢+¢" =—f, (3.42)
v = —£¢ und (3.43)
F = —%M (3.44)

und wird auch als Wess-Zumino-FEichung bezeichnet. Das Vektor-Superfeld ergibt sich
inklusive der konventionellen Eichung Ay = 0 zu

Vivz(z,0,0) = (05%8) A, +i(60)(6X) — i(69)(OX) + (06)(66)d . (3.45)
Sein Teilcheninhalt ist:
o 1 reelles (bosonisches) Vektorfeld A,

e 1 komplexes Weyl-Spinorfeld A

o 1 reelles Skalarfeld d als Hilfsfeld.

Der Vergleich mit dem in Unterabschnitt 3.2.2 beschriebenen Vektor-Supermultiplett zeigt,
da8 die Komponentenfelder des Vektor-Superfeldes Viyz gerade einem solchen Supermul-
tiplett zugeordnet werden kénnen. Das komplexe Weyl-Spinorfeld A ist hierbei der SUSY-
Partner des Eichfeldes A4,,.

3.4 Supersymmetrische Theorien

3.4.1 Konstruktion supersymmetrischer Lagrangedichten

Jetzt sind geniigend Voraussetzungen geschaffen, um supersymmetrische Lagrangedichten
konstruieren zu konnen. Die Grundidee dazu ist bereits aus der gew6hnlichen Feldtheorie
bekannt. Man sucht demnach Lagrangedichten, so daf} sich das Wirkungsfunktional

S = / d*z L(z) (3.46)
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unter den physikalisch sinnvollen Transformationen (hier SUSY-Transformationen) nicht
dndert, d.h. §S = 0 ist. Dabei lassen wir uns von folgender Uberlegung leiten:

Betrachtet man im Falle des skalaren Superfeldes nur die F- bzw. F*-Komponente bzw.
im Falle von Vektor-Superfeldern in der Wess-Zumino-Eichung ausschliefilich die d-Feld-
komponente, so stellt man fest, dafl diese sich wie Viererdivergenzen transformieren. In-
tegriert man nun iiber die gesamte Raum-Zeit, so liefert das Integral iiber die Viererdi-
vergenz nach dessen Transformation in Oberflichenterme mittels des Gaufischen Satzes
gerade Null. Supersymmetrische Lagrangedichten kénnen daher in der Form

L = (Superfelder) ‘00§§7K0mponente + (chirale Superfelder) |99- Komponente (3.47)

angegeben werden. Um zu einer reellen Lagrangedichte zu gelangen, addiert man zu (3.47)
stets alle hermitesch konjugierten Terme hinzu. Diese seien im folgenden mit h.c. ab-
gekiirzt. Dariiberhinaus ist darauf zu achten, dafl im Falle von chiralen Superfeldern noch
von der iiber Gleichung (3.34) eingefiihrten komplexen Koordinaten y zur reellen Koordi-
naten z iiberzugehen ist.

3.4.2 SUSY-Lagrangedichten aus chiralen Superfeldern

Im allgemeinen setzt sich eine Lagrangedichte £ aus drei Termen zusammen

e einem kinetischen Term Ly
e cinem Masseterm L,

e einem Wechselwirkungsterm Lww .

Will man jetzt eine Lagrangedichte aus chiralen Superfeldern ®(¢, v, F') zusammenbauen,
so bekommt sie die Gestalt

L = & (2,0,6) (,0,0) |pess
_%@2(3,,9) |0 + hc.

_%@3(3/, 0) o + hoc. (3.48)

wobei m die Masse, g die Kopplungskonstante und h.c. den korrespondierenden hermitesch
konjugierten Term meint. Multipliziert man die Produkte der chiralen Superfelder aus, so
ergibt sich fiir die Lagrangedichte ausgedriickt durch die Komponentenfelder

L= (@) (@"9) 5 (B5"00) + 90,9)
5 (Y3 + 99) +9 (o0 + ")
+F*F — (myp + g¢®) F — (mgo* + g(p*z) F*. (3.49)

Diese wird auch als off-shell-Lagrangedichte bezeichnet. Zu einer weiteren Darstellung der
Lagrangedichte gelangt man, indem man das Hilfsfeld F’ aus der Lagrangedichte eliminiert.
Dazu bestimmt man mit Hilfe der Euler-Lagrange-Gleichung die Bewegungsgleichung fiir
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F zu F = my* + ggo*z. Sie ist demnach rein algebraisch, d.h. sie entilt keine Ableitung,
und man kann in der untersten Zeile von (3.49) das Hilfsfeld F' vollstindig ersetzen. So
ergibt sich die on-shell-Lagrangedichte zu

L= (9u0") (9"p) —m?|pl’
— 5 (B39 + ¥ 0,5) + 7 (¥ + 97
+9 (¥ + ") —mg lol® (9 + ¢*) — g% |o|*. (3.50)

Durch ¢ und v werden die Superpartner aus dem chiralen Supermultiplett beschrieben.
Die ersten beiden Zeilen von (3.50) beinhalten die freie Bewegung des bosonischen bzw.
fermionischen Feldes ¢ bzw. 1 mit gleicher Masse m. In der unteren Zeile steht der Wech-

selwirkungsanteil.

3.4.3 Wess-Zumino-Modell

Das erste in sich geschlossene supersymmetrische Modell wurde Mitte der siebziger Jahre
von J. WESS und B. ZUMINO entwickelt und ist unter dem Namen Wess-Zumino-Modell
in der Literatur bekannt [32]. Seine Lagrangedichte ist von der Gestalt (3.50). Man findet
sie allerdings oftmals auch in einer anderen Formulierung. Die Umformung geschieht in
drei Schritten: Zunéchst spaltet man das komplexe Feld ¢(z) in zwei reelle Felder A(z)

und B(z) gemif

1 .
— E(A —iB) (3.51)

auf und geht gleichzeitig zu Majoranaspinoren

U= ( v > und U = (¢, %) (3.52)

iiber und whlt als neue Kopplungskonstante G = % . Man erhilt so die Lagrangedichte
des Wess-Zumino-Modells zu

L = % [[0,4) (8" A) — m>A%] + % [[0,B) (8*B) — m>B?|
1 -
—5\11 (ivF0, —m) ¥ + GY (A+ivsB) ¥
G2

~mGA(A*+B*) - — (4 + B*)’. (3.53)

Sie beinhaltet:
e ein reelles skalares Feld A(z) mit A = A*
e ein reelles pseudoskalares Feld B(z) mit B = B*
e ein Majorana-Spinorfeld ¥(z) mit ¥ = C¥7.

Die bosonischen Felder A und B beschreiben Teilchen mit Spin 0, das fermionische Ma-
joranaspinorfeld ¥ beschreibt Spin- %—Teilchen. Dabei ist zu beachten, dafl im Unterschied
zur kanonischen Feldtheorie alle Felder die gleiche Masse besitzen. Eine graphische Dar-
stellung des zugehorigen chiralen Supermultipletts ergibt
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s3 =20 skalares Teilchen

S3 = —i—% 1
(my=0) —— (y3=0) 1 > Spin-3-Teilchen
83 — -3
s3 =20 pseudoskalares Teilchen

3.4.4 Supersymmetrische Eichtheorie

Es soll hier das supersymmetrische Analogon zur konventionellen, nicht-abelschen Eich-
theorie konstruiert werden. Ausgangspunkt sind hierbei die nicht-abelschen Eichtransfor-
mationen fiir die Superfelder. Sie sind gew6hnlich durch
&(z,0,0) — e M=00) 5(z,0,0) (
o'(2,0,0) — a'(z,0,0) (@00 (

3.54)
3.55)
dargestellt. Man fiihrt nun ein Eichfeld in Form eines Vektor-Superfeldes V' = V(z,6,6)
in die Theorie ein. Dazu verallgemeinert man zunichst die abelsche Eichtransformation

(3.40) zu

eV — e iM Vil , (3.56)

wobei V' = TV, zur adjungierten Darstellung der Eichgruppe gehért, und kann dann
eichinvariante Terme der Form

L= (<I>TeV<I>) . (3.57)

zur Lagrangedichte hinzufiigen. Um dem Eichfeld wie im Yang-Mills Fall eine Dynamik zu
verleihen, definiert man die supersymmetrische Feldstidrke im nicht-abelschen Fall gem&f

1 - _
Wy = —Z(DD)e’VDAeV : (3.58)
Diese verhilt sich unter Eichtransformation wie

Wy — e AW et . (3.59)

Da W4 ein chirales Superfeld ist, 148t sich aus ihm eine eich- und SUSY-invariante, su-
persymmetrische Lagrangedichte der Gestalt

L=Tr{(WAWa4) |gg} + h.c. (3.60)

hinschreiben. Die allgemeinste Form der Lagrangedichte (inkl. der Materiefelder) ergibt
sich somit zu [25]

1 .
L = 4—g2Tr{(WAWA) oo + (W) Joo }
+ (‘I’TGV‘I’) looda
1 1

da aufgrund von Renormierbarkeitsargumenten keine zusitzlichen Kopplungen der Form
®; - ... ®; vorkommen diirfen.



84 Einfiihrung in die Supersymmetrie

3.4.5 N = 1Super-Yang-Mills-Theorie

Die N = 1 Super-Yang-Mills-Theorie ist die einfachste, nicht-abelsche, supersymmetrische
Eichtheorie. Wir bendtigen fiir sie keine Materiefelder, so da8 sich (3.61) auf

L=Tr{(WAW4) |es} + h.c. (3.62)

reduziert. Driickt man diese Lagrangedichte durch ihre Komponentenfelder aus, so ergibt
sich nach Ubergang zu einer euklidischen Formulierung inklusive Wess-Zumino-Eichung
mit dem gewOhnlichen nicht-abelschen Feldstirketensor

Fl = 0,4, — 0,4, + [Ay, A, (3.63)

und der kovarianten Ableitung in der adjungierten Darstellung

D = O ) + [A, ] (3.64)
die obige Lagrangedichte zu [33]
1 1 -
L= —@Tr (FuFu) + g—zTr (AMuDpA) — Tr(dd) , (3.65)

wobei A und A Spinoren und d ein Hilfsfeld sind. Da dieses keine kinetischen Anteile besitzt,
148t es sich durch Gauf-Integration aus der Lagrangedichte entfernen. Man geht dabei von
der off-shell- zur on-shell-Darstellung iiber. Mit der Zerlegung

A = AT
A, = —igAT*
Fu = —igk,T* (3.66)
und der Normierung
1
TeToT? = 5 0ab (3.67)

erhilt man als Lagrangedichte der N = 1 Super-Yang-Mills-Theorie im euklidischen, vier-
dimensionalen Kontinuum
1 1-
L(z) = —ZFS,,(QJ)FSV(QJ) + 5)\“(33)7“7)”)\“(33) . (3.68)
Formal &hnelt diese Lagrangedichte, bis auf einen Faktor % vor dem Fermionenteil, der-

jenigen der QCD. Man beachte aber, da8 die Fermionen A und X nicht Dirac-Spinoren,
sondern Majorana-Spinoren in der adjungierten Darstellung sind.

Zum Abschluf3 dieses Unterabschnitts sei noch kurz auf die Anzahl der Freiheitsgrade
in der SUSY-Yang-Mills Wirkung eingegangen. In der off-shell-Formulierung besitzt das
Spinorfeld vier fermionische Freiheitsgrade und das Eichfeld nur drei bosonische Freiheits-
grade. Das skalare (bosonische) Hilfsfeld d sichert also gerade die Einhaltung der Boson-
Fermion-Regel. Im on-shell-Darstellung haben Spinor- und Eichfeld je 2 Freiheitsgrade.
Das Hilfsfeld wird daher nicht weiter bendtigt.
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Bevor ich unter Einbringen der Ergebnisse aus Kapitel 2 Darstellungen der kubischen
Gruppe iiber Gitter-Operatoren der SUSY-Yang-Mills-Theorie konstruieren und unter-
suchen werde, sind noch einige gruppentheoretische Vorbereitungen bereitzustellen. Es
wird sich ndmlich zeigen, daf} einige der betrachteten Operatoren einen halbzahligen Spin
aufweisen, so daf} die zugrunde liegende diskrete Symmetriegruppe nunmehr nicht die ku-
bische Gruppe sein kann, sondern deren sog. doppelte Uberlagerung, d.h. die Gruppe 20.
Sie wird daher hier eingebracht. Desweiteren soll das Konzept der direkten (endlichen)
Produktgruppe vorgestellt und insbesondere deren Darstellungstheorie studiert werden.
Inhalt, Form und Numerierung wichtiger Aussagen folgen dabei dem Einfiihrungskapitel.
Fiir eine eingehendere Darstellung der Inhalte dieses Kapitels sei noch einmal auf die im
vorher genannten Kapitel angegebene umfangreiche Literatur iiber Gruppen- und Darstel-
lungstheorie verwiesen.

4.1 Produktgruppen und ihre Darstellungen

4.1.1 Direkte, endliche Produktgruppen

Es ist sinnvoll, mit folgendem Theorem zu beginnen:

Theorem und Definition 26 Seien G und G2 zwei beliebige, endliche Gruppen und ey
und ey ihre neutralen Elemente. Betrachtet man Paare (g1,g2) mit g1 € G1 und g2 € Go
und definiert die Verkniipfung zweier Paare (g1, g2) und (g, g5) durch die Vorschrift

(91,92) (91, 92) = (9191, 9295) (4.1)

fiir alle g1,9] € Gy und g2,g5 € Ga, so bildet dieMenge aller Paare (g1, g2) eine Gruppe
bzgl. der obigen Verkniipfung.

Diese Gruppe bezeichnet man mit G; ® G2 und nennt sie das direkte Produkt der Gruppen
G1 und G4.

Beweis: Es sind lediglich die Gruppenaxiome nachzupriifen.

Bemerkung 27 Sind G; und G5 (endliche) Gruppen der Ordnung ng, bzw. ng,, so ist
die Produktgruppe G1 ® G2 eine endliche Gruppe der Ordnung ng, - ng,-
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Fiir die Produktgruppe G; ® G ergeben sich folgende Eigenschaften:

(i) Sie besitzt zwei Untergruppen Hy und Hs, bestehend aus den Elementen (g;, e2) mit
g1 € Gy bzw. (e1,g2) mit go € Go, die beide isomorph! zu den Gruppen G; bzw. G
sind.

(ii) Beide Untergruppen haben nur das Element (eq,ez) gemeinsam, d.h. Hy N Hy =
{(e1,e2)}, und

(iii) jedes Element der einen Untergruppe kommutiert mit jedem Element der anderen
(g1,€2) (e1,92) = (e1,92) (g1, €2) (4.2)

fiir alle g1,e1 € G1 und go,e9 € Ga.

Andererseits gilt nach (4.1) und Gruppenaxiom Ey aus Definition 1

(91,€2) (e1,92) = (91,92) , (4.3)

so daf}

(iv) jedes Element von G; ® Go als Produkt von je einem Element der beiden Untergrup-
pen H; und Hy geschrieben werden kann.

Diese vier Eigenschaften, auf deren Nachweise hier verzichtet wird, geben Anlaf} zu einer
Umformulierung der Definition 26.

Definition 28 Eine (endliche) Gruppe G’ heifit direkte (endliche) Produktgruppe , falls
Gruppen G und G» existieren, so dafl G’ isomorph zur Gruppe G; ® G ist.

Nach Definition 28 miissen die Elemente von direkten Produktgruppen nicht mehr zwangs-
ldufig in Form von Paaren auftreten. Das folgende Theorem gibt ein Kriterium an die
Hand, mit der direkte Produktgruppen identifiziert werden kénnen. Genauer ist es die
Umkehrung der obigen Aussage.

Theorem 29 Sei G’ eine (endliche) Gruppe, die zwei Untergruppen H{ und H)} mit den
folgenden Eigeschaften besitze:

(i) Alle Elemente von Hj vertauschen mit allen Elementen von HJ,
(ii) Hj und H) haben nur das neutrale Element gemeinsam, und

(iii) jedes Element von G’ kann als Produkt von je einem Element aus H{ und H} ge-
schrieben werden.

Man sagt zwei Gruppen G und G’ sind isomorph zueinander (G =2 G"), wenn ein bijektiver Gruppen-
homomorphismus ¢ im Sinne von Definition 8 existiert. Die Isomorphismen lauten hier ® ((g1,e2)) = g1
bZW. P ((el,gz)) = g2.
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Dann ist G' eine direkte Produktgruppe und isomorph zu Hy ® Ho.
Beweis: Der Beweis findet sich z.B. in [1].

Beispiel: In Kapitel 0 haben wir die volle kubische Gruppe Oy, kennengelernt. Sie besteht
aus 48 Elementen, 24 von ihnen kénnen als eindeutig definierte Rotationen eines drei-
dimensionalen Wiirfel aufgefafit werden, diese bilden eine eigene Gruppe, die kubischen
Gruppe O. Die 24 restlichen Elemente der Gruppe Oy, sind Produkte aus Elementen von
O mit dem Inversionsoperator I. Da dieser mit allen Drehungen der kubischen Gruppe
vertauscht, ist die Gruppe Oy, isomorph zur direkten Produktgruppe O ® {e, I}, wie dort
bereits in einer Fufinote steht.

Am Ende dieses Abschnitts sei darauf verwiesen, dafl wir in Hinblick auf das nachfolgende
Kapitel insbesondere an dem Fall G; = G2 =: G (bzw. besser G; = G5 = @) interessiert
sind. Dabei beachte man, daf§ die resultierende direkte Produktgruppe G ® G neben den
beiden Untergruppen H; = {(g,e)} und Hy = {(e,g)} eine weitere sog. diagonale Unter-
gruppe besitzt, die aus den Paaren (g, g) mit g € G besteht und ebenfalls (wie H; und H>)
isomorph zur Gruppe G ist.

4.1.2 Direkte Produktdarstellung

Es ist zunédchst hilfreich, kurz auf das direkte Produkt A ® B einer m x m Matrix mit einer
n x n-Matrix einzugehen. Die Produkt-Matrix A ® B ist eine mn x mn Matrix, deren
Elemente Doppelindizes fiir Zeilen und Spalten tragen. Sie sind durch

ik,j
mit 1 <1¢,7 <m; 1 <k,l <n definiert.
Durch Vergleich der einzelnen Matrixelemente zeigt man, daf fiir zwei m x m Matrizen A
und A’ und zwei n x n Matrizen B und B’ gilt

(A® B) (A'® B') = (A4') ® (BB') . (4.5)

Als Folgerung notieren wir, dafl A ® B unitér ist, falls A und B es sind.
Beweis: Wegen Gleichung (4.4) ist (A ® B)' = AT ® B, so daf§ zusammen mit (4.5) letzt-
endlich (A ® B) (A® B)! = (441) ® (BB) = 1,, ® 1, = Ly, gilt.

Erinnern wir uns noch zusétzlich daran, dafl eine endlich-dimensionale Darstellung R be-
reits durch die Angabe ihrer Darstellungsmatrizen Dz (g), g € G, eindeutig bestimmt
ist, so haben wir nun alle Vorbereitungen getroffen, um die direkte Produktdarstellung
zweter Darstellungen anzugeben. Dabei wollen wir uns auf unitére, irreduzible Darstellun-
gen beschridnken, wobei darauf hingewiesen wird, da8 auf die Irreduzibilitdtsforderung im
néichsten Theorem auch verzichtet werden kann.

Theorem und Definition 30 Seien zwei unitiire, irreduzible Darstellungen R" und R”
der Dimension d, und d, einer Gruppe G durch ihre Darstellungsmatrizen D*(g) und
D¥(g) gegeben. Dann legen die Matrizen

DF®¥(g) := D*(g) ® D"(g) (4.6)
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fiir alle g € G in eindeutiger Weise eine unitéire Darstellung R” ® R” der Dimension d,, - d,
fest. Fiir den Charakter XR“ ®R (g) der Darstellung gilt dabei

v

XF R (g) = X% (9) XF (9) - (4.7)

Man bezeichnet die Darstellung R” ® R” als direktes Produkt der Darstellungen R" und
R" der Gruppe G.
Beweis: Ein Beweis findet sich in Anhang B.

Man beachte, da die Darstellung R” ® R” i.a. nicht irreduzibel sein wird, auch wenn R”
und R es sind. Als Beispiel nehme man die kubischen Gruppe O und die Produktdar-
stellung £ ® T;. Einzeln betrachtet sind beide Darstellungen irreduzibel, die Dimension
von £ ® T} ist 2 x 3 = 6. Die kubische Gruppe besitzt aber keine irreduzible Darstellung
der Dimension 6. £ ® T} ist demnach reduzibel, und der zugehéorige Darstellungsraum
besitzt invariante Unterrdume, die sich unter gewissen irreduziblen Darstellungen von O
transformieren.

4.1.3 Darstellungstheorie direkter, endlicher Produktgruppen

Nachdem im ersten Abschnitt das direkte Produkt zweier (endlicher) Gruppen erklért wur-
de, wollen wir in diesem Abschnitt kurz auf ihre Darstellungen eingehen. Dabei werden wir
auf die im vorigen Abschnitt eingefiithrten direkten Produktdarstellungen zuriickgreifen.
Dies zeigt sich schon im folgenden

Theorem 31 Seien die Darstellungen R1 der Gruppe G; und Ry der Gruppe G2 durch
ihre Darstellungsmatrizen Dg, (91), g1 € G1 und Dg,(g2), g2 € G2 gegeben. Dann bilden
die Matrizen Dg,oRr, ((91,92)) mit

Dr,er, ((91’92)) = Dg, (91) ® Dg, (92) (4'8)

fiir alle g1 € G1 und g2 € G4 eine Darstellung der Produktgruppe G1 ® G». Die Darstellung
von GG; ® G4 ist unitér, falls G; und Go unitir sind und treu, falls G; und G5 treu sind.
Beweis: Der Beweis findet sich in Anhang B.

Jetzt wird der wichtige Fall untersucht, bei dem G; = G2 =: G ist. Wie im ersten Ab-
schnitt 4.1.1 bereits erwdhnt, besitzt die Produktgruppe G® G eine diagonale Untergruppe
bestehend aus den Paaren (g,g) mit g € G, die isomorph zur Gruppe G ist. Falls R" und
R” zwei beliebige irreduzible Darstellungen von G sind, liest sich Formel (4.8) wie folgt? :

Dyrgrr ((91,92)) = D*(g91) ® D"(g2) - (4.9)

Man beachte, daf8 die Darstellungsmatrizen zu irreduziblen Darstellungen R" nach unserer
Konvention mit D#(g) bezeichnet werden. In Analogie zu (4.8) kénnte man in diesem Fall
auch Dgu(g) schreiben.

Man kann zeigen, daf die Darstellung (4.8) irreduzibel ist, falls Ry und R2 es sind, insbesondere
ist dann auch die Darstellung (4.9) irreduzibel. Umgekehrt ist jede irreduzible Darstellung von G1 ® G»
dquivalent zu einer Darstellung der Form (4.8).
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Fiir die diagonale Untergruppe ergibt sich dann entsprechend

Dyrgrv ((9,9)) = D*(g9) ® D"(g) - (4.10)

Diese Darstellung ist aber identisch zu der direkten Produktdarstellung R” @R~ der beiden
irreduziblen Darstellungen R” und R” aus dem vorangegangenen Abschnitt. Im allgemei-
nen ist die Darstellung (4.10) von G also nicht irreduzibel. Eine Plausibilitdtsbegriindung
anhand eines Beispiels wurde bereits im vorherigen Abschnitt angefiihrt.

4.2 Uberlagerungsgruppe 20

An dieser Stelle werden zum einen die doppelte Uberlagerungsgruppe der kubischen Grup-
pe eingefiihrt und anschlieflend ihre irreduziblen Darstellungen vorgestellt. Somit werden
wir mit Hilfe ihrer {ibergeordneten Symmetriegruppe, der SU(2), ihre Charaktertabelle
berechnen kénnen.

4.2.1 FElemente der Uberlagerungsgruppe 20

In Kapitel 1 haben wir gesehen, dafl die kubische Gruppe O eine endliche Untergruppe der
2m-periodischen, kontinuierlichen Drehgruppe SO(3) ist, die man erhilt, wenn man sich
auf die unterliegende Symmetriegruppe eines kubischen Gitters beschriankt. Deren doppel-
te Uberlagerungsgruppe ist die SU(2), die im Gegensatz zur SO(3) eine 4m-Periodizitit
aufweist (vgl. Anhang D). Durch Uberlagerung der kubischen Gruppe erhélt man demnach
eine 4m-periodische endliche Untergruppe der SU(2) und bezeichnet sie mit 20. Thre Ele-
mente lassen sich analog zur kubischen Gruppe den Symmetrieoperationen eines Wiirfels
zuordnen mit dem Unterschied, daf3 die 2m-Drehungen in eine negative Identitét fithren
und erst Rotationen um 47 die Wiirfelkonfiguration invariant lassen. Die Rotationsachsen
des Wiirfels verdoppeln also ihre Ordnung, und die Gruppe 20 besitzt damit 48 Elemente.
Anhand einer Verkniipfungstabelle zeigt man, dafl die Klassenkonfigurationen der kubi-
schen Gruppe in ihrer Struktur erhalten bleiben. Die Identitét bildet weiterhin eine eigene
Klasse, in den Klassen 6Cy und 3C? verdoppelt sich die Anzahl der Elemente, da man
aufgrund der 4r-Periodizitit von 20 nun zwischen Rotationen um +7 und —7 unterschei-
den muf}. Die Klassen werden daher mit 12C4 und 6082 bezeichnet. Die beiden restlichen
Klassen 8C5 und 6Cy bleiben unter dem Namen 8Cy und 6Cg erhalten, werden allerdings
durch zwei gleichméchtige Klassen 8C? und 6Cj ergiinzt, die die nun méglich gewordenen
Rotationen um i%” bzw. i%” als Elemente beinhalten. Eine weiter Klasse entsteht durch
Beriicksichtigung der negativen Identitdt. Insgesamt findet man somit acht konjugierte
Klassen, wobei die Zahl vor der Klassenbezeichnung ihrer Méchtigkeit entspricht, und die
Indizierung der Klassenelemente die Drehrichtung, die Rotationsachse und deren Ordnung
hinsichtlich der Klasse angibt:

o B ={id}

o J={—id}
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1204 = {C4a7 C4b7 C4ca C4d7 C467 C4fa Czala CZbla Czcla C4_d17 C4_el’ CZfl

+m-Rotationen um die Achsen Oa, Ob, Oc, Od, Oe, Of, insgesamt
zwolf Elemente;

80(% = {C3aa C?)ﬂa CS'ya 0357 C?)_;, ngl, Cg_'yla C?,_Jl

i%”—Rotationen um die vier Raumdiagonalen O«, OB, Oy, O4, insgesamt acht
Elemente;

b 806 = {Cﬁa7 CG,B’ Cﬁ’ya 06(57 Cﬁ?)}) C(;,Bl’ Cf;yla C(;sl

:l:%“—Rotationen um die vier Raumdiagonalen Oc«, O3, Oy, OJ, insgesamt acht
Elemente;

o 6C3 = {08/3maC8/3yv08/3zvCg/lz),macg/lgyvcg/lz),z}

:l:%“—Rotationen um die drei Koordinatenachsen x, y, z, insgesamt
sechs Elemente;

6Cé = {ng, CSy, CSZ) ngl7 C§y17 ngl

+3-Rotationen um die drei Koordinatenachsen z, y, z, insgesamt
sechs Elemente;

6C§ = {04:1:) C4y, C4Za CZ;’ CZyl’ CZZ]-}

+7-Rotationen um die drei Koordinatenachsen z, y, z, insgesamt
sechs Elemente.

4.2.2 Irreduzible Darstellungen und Charaktertabelle

Als endliche Gruppe besitzt 20 entsprechend der Anzahl ihrer konjugierten Klassen genau
acht irreduzible Darstellungen. Fiinf von ihnen stimmen aufgrund der Uberlagerungsei-
genschaft von 20 mit denen der kubischen Gruppe iiberein. Die drei restlichen bezeichnet
man mit Gy, Gy und H (vgl. [34]). Ihre Dimensionen lassen sich aus Formel (8), Kapitel 0
eindeutig zu (dg,,dg,,dg) = (2,2,4) bestimmen, da die Dimensionen der Darstellungen
Ay, Ag, ..., T bereits aus Unterabschnitt 0.3.2 bekannt sind.

Hierfiir greift jedoch noch zusétzlich das folgende Argument: Die irreduziblen Darstel-
lungen R’ der Lie-Gruppe SU(2) zerfallen in eindeutiger Weise in Tensordarstellungen
(j = 0,1,2,...) und Spinordarstellungen (j = 1/2,3/2,5/2,...)%. Da die Gruppe 20 ei-
ne Untergruppe der SU(2) ist, konnen deren Elemente ebenfalls durch Darstellungen R’
reprisentiert werden (vgl. dazu Kapitel 1, Unterabschnitt 1.2.2). Fa3t man nun R’ als Dar-
stellung R;O von 20 auf, so ist diese i.a. reduzibel und kann in irreduzible Darstellungen

3Die Unterscheidung von Tensor- und Spinordarstellungen erfolgt nach dem Verhalten beziiglich ihrer
Anwendung auf das Element der negativen Identitat. Falls D ; (—id) = 1 gilt, gehort R’ zur Tensordar-
stellung der SU(2), falls dagegen D_,; (—id) = —1 ist, zahlt sie zur Spinordarstellung.
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der 20 zerlegt werden. Da die Tensordarstellungen der SU(2) mit denen der SO(3) iiber-
einstimmen, zerfillt die Darstellung R;O fir j € {0,1,2,...} in irreduzible Darstellungen
der kubischen Gruppe O (vgl. Tabelle in 1.2.2) und fiir j € {1/2,3/2,5/2,...} in spino-
rielle irreduzible Darstellungen der 20. Letztere sind in nachfolgender Tabelle angegeben
[34]:

Spin  Zerlegung in irreduzible

J Darstellungen von 20
1/2 Gy
3/2 H
5/2 Gy ®H
7/2 GGy dH
9/2 Gi1®2H

11/2 G, ® Gy ®2H

Wir brauchen demnach nur noch die Charaktere fiir die Darstellungen Gy, Go» und H
anzugeben. Fiir die Spuren der irreduziblen SU(2)-Darstellungsmatrizen mit Spin j und
Rotationsmaf 6 gilt die Formel [12]

sin ((j +1)0)
sing ’

Xp = (4.11)
wobei unbestimmte Ausdriicke als Grenzwerte unter Anwendung der Regel von de 1'Héspital
gegeben sind. Mit Hilfe der Tabelle lassen sich die Charaktere fiir G; (j = 1/2) und H
(j = 3/2) direkt aus (4.11) bestimmen®. Die Charaktere der Darstellung G5 ergeben sich
ebenfalls aus obiger Tabelle, wenn man von den Ergebnissen, die man aus (4.11) fiir j = 5/2

erhilt, die entsprechenden Klassencharaktere von H subtrahiert. Insgesamt findet man
die folgende Tabelle [34]:

konj. Klassen E J C4 C? Cs Cs Cf C?
| konj. Klassen | 1 1 12 8 8 6 6 6
Darstellung Gi| 2 -2 0 -1 I -v2 V2 0
Go| 2 -2 0 -1 1 V2 V2 o0

H| 4 -4 0 1 -1 0 0 0

Rotationsmafle 0 der
acht Klassen von 20 6 |47 27 w 4rn/3 2n/3 3x/2 w/2 =

“Die Charaktere fiir die Darstellung G; erhilt man auch unter Benutzung der Pauli-Matrizen,
da fiir Drehungen von Spinoren mit dem Winkelmafl § um einen beliebigen Einheitsvektor n gilt:
U(n,6) =1 cos (0) — io - n sin (36) (vgl. Anhang D).

5Zerfillt eine reduzible Darstellung R in zwei irreduzible Anteile R" und ’R", so besitzt der Darstel-
lungsraum V von R genau zwei invariante Riume Vi und Vit =: Vs, und die Darstellungsmatrizen haben
(evtl. nach Ahnlichkeitstransformation) Blockdiagonalgestalt. Fiir ihre Charaktere gilt dann offensichtlich
X® =X+ X"
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4.3 Uberlagerungsgruppe 20 und Spinoren

Dieser Abschnitt ist dem Transformationsverhalten von Majorana-Spinoren unter der end-
lichen Uberlagerungsgruppe 20 von O gewidmet. Da Majorana-Spinoren spezielle Dirac-
Spinoren sind (vgl. Anhang F), nutzen wir die Kenntnisse aus der Dirac-Theorie und
erinnern an die folgenden Zusammenhinge: Betrachtet man endliche Lorentz-Drehungen
eines Dirac-Spinors mit dem Winkelma$l # um einen beliebigen Einheitsvektor n € R3, so
erhilt man fiir die Rotationsmatrix des Spinors [35]

SRot.(m,0) = exp (0% -n) (4.12)
= 14 cos (%9) +i¥ - n sin (%9) (4.13)
= 14 cos (36) +iX* - nF sin(36) , (4.14)

wobei 2* mit den Pauli-Matrizen iiber die Relation
. [ dF 0 P
o =eY 0 ok =Y (4.15)

mit 7,7,k = 1,2,3 und o*¥ = % [v*,~"] definiert ist. Dabei ergibt sich (4.13) durch Reihen-
entwicklung der Exponentialfunktion und anschlielender Einzelbetrachtung der geraden
und ungeraden Potenzen in o’ unter Ausnutzung der Beziehungen n? = 1 und (¢¢)2 = 1
bzw. {ot,0;} = 0 fiir i # j.

Um das Transformationsverhalten des Spinors unter der Gruppe 20 zu untersuchen, haben
wir uns auf die in Unterabschnitt 4.2.1 beschriebenen Drehungen zu beschrinken. Die
zugehorigen Rotationsmatrizen Sgo.(n,0) lassen sich dann als Darstellungsmatrizen D5
einer Darstellung R der Uberlagerungsgruppe 20 auffassen. Da wir an den irreduziblen
Anteilen der Darstellung R interessiert sind, bendtigen wir dabei lediglich die Spuren
(d.h. Charaktere) der Matrizen Sgot.(n2,6) und nicht ihre explizite Form. Aufgrund der
Spurfreiheit der Pauli-Matrizen ergibt sich fiir den zweiten Summanden der rechten Seite

von (4.14)
Tr {izk -nF sin <%9>} =0, (4.16)

so daf} insgesamt

Tr{Sgrot.(n,0)} = Tr{]l4 cos(%G)} (4.17)
= x® (Srot.(9)) (418)

gilt. Im Einzelnen erh&lt man unter Benutzung der in Unterabschnitt 4.2.2 angegeben
Winkelmafe fiir die konjugierten Klassen von 20:
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Klassen Rotationswinkel Spur der Rotations-

von 20 0 matrix Sgot.(0)
E 4 4
J 27 -4
Cy T 0
C? 47 /3 -2
Cs 27/3 2
Cs 3m/2 -2/2
o /2 2v/2
C? T 0

Die Zerlegung der Darstellung R in ihre irreduziblen Anteile erfolgt unter Verwendung
der Formel (12) aus Kapitel 0, die in passender Formulierung die folgende Gestalt hat:

a, = % i x* (C)xR () (4.19)

Dabei hat man iiber alle konjugierten Klassen C; der Uberlagerungsgruppe 20 zu summie-
ren, wobei die Charaktere x*(C;) der irreduziblen Darstellungen von 20 ihrer Charakter-
tabelle aus Unterabschnitt 4.2.2 zu entnehmen sind. Man erhilt die folgenden Resultate:

aGg, = %(1-2-44—1-(—2)-(—4)+12-0-0+8-(—1)-(—2)

+8-1-2+6-(—v2) - (—2v2) +6-v2-2/2+6-0-0) =2

0, = %(1-2-44—1-(—2)-(—4)+12-0-0+8-(—1)-(—2)
+8-1-246-V2-(=2v2) +6-(—v2)-2vV2+6-0-0) =0

ar = (14441 () (-0 +12:0-048-1-(-2)
+8-(=1)-246-0-(—2v2)+6-0-2v/2+6-0-0)=0.

Der Darstellungsraum von R zerfillt in zwei invariante, zweidimensionale Unterrdume, die
sich beide nach der Darstellung G; transformieren. Geméfl der Bezeichnungsweise (5) aus
Kapitel 0 schreibt sich R somit als

R=2Gi=G19G. (4.20)

Die Darstellung R der Uberlagerungsgruppe 20 ist demnach reduzibel.

Bemerkung: Ein Dirac-Spinor ist aus einem links- und einem rechtshindigen, zweikom-
ponentigen Weyl-Spinor zusammengesetzt, die sich jeweils unter der Uberlagerungsgruppe
SL(2,C) der eigentlichen orthochronen Lorentzgruppe [,1 transformieren. Da sich mit Hil-
fe der SL(2,C) —gleiches gilt damit auch fiir die SU(2), da SU(2) C SL(2,C) gilt— keine
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Raumspiegelungen beschreiben lassen, kann sie keine links- und rechtshindigen Syste-
me ineinander iiberfithren. In der relativistischen Feldtheorie ist man an Zustinden mit
eindeutig definierten P-Paritédtseigenzustinden interessiert, so dafl man diesen Umstand
durch Bildung von vierkomponentigen Dirac-Spinoren umgeht. Diese transformieren sich
aber dann unter SL(2,C) nach einer reduziblen Darstellung. Erst nach Ubergang zur or-
thochronen Lorentz-Gruppe LT = Ei U P[l, genauer zu deren Uberlagerung, die die
Raumspiegelungen I einschliefit, ist die Darstellung irreduzibel. Einzelheiten findet man
in [20]. Dieser Sachverhalt {ibertrégt sich auf die entsprechenden untergeordneten Gitter-
symmetriegruppen, so daf sich ein Dirac-Spinor, wie in (4.20) angegeben, unter der 20 als
Gittersymmetriegruppe der SU(2) nach einer reduziblen Darstellung transformiert. Unter
der vollen Uberlagerungsgruppe 2Oy, die analog zur vollen kubischen Gruppe O, Raum-
spiegelungen beriicksichtigt und durch 20, = 20 ® {e,I} definiert ist, stellt (4.20) aber
eine irreduzible Darstellung dar.

Es sei der Deutlichkeit halber hier noch einmal darauf hingewiesen, daB die volle Uberla-
gerungsgruppe 20y, die Uberlagerungsgruppe der vollen kubischen Gruppe Oy, ist.

C-Paritit und Majorana-Spinoren

Unsere bisherigen Uberlegungen haben wir fiir Dirac-Spinoren durchgefiihrt und die spezi-
elle Eigenschaft von Majorana-Spinoren vernachlissigt. Unter Einbeziehung der diskreten
Symmetrietransformation der C-Paritétsoperation schreibt sich die Darstellung (4.20) ex-
akter in der Form

R =2G]T =G} oGy, (4.21)

wobei e ein Platzhalter fiir die im nichsten Kapitel zu behandelnde P-Paritéit ist. Da
aufgrund der Majorana-Bedingung A = X\ (vgl. Anhang F) ein Majorana-Spinor bei
Ladungskonjugation in sich selbst {ibergeht, gilt fiir die Darstellung R mit vorgewéahlter
negativen C-Paritidt analog zum Fall C = +1

R =2G) =G @G . (4.22)



Kapitel 5

Darstellungen der
Uberlagerungsgruppe 20 iiber
Operatoren der

N = 1SUSY-Yang-Mills-Theorie

Die in Kapitel 2 gruppentheoretisch untersuchten Gitter-Operatoren kénnen im Rah-
men von numerischen Berechnungen von (massiven) Glueballzustinden der QCD mit-
tels Monte-Carlo-Simulationen verwendet werden. Dabei beschrankte man sich aufgrund
der Eichinvarianz-Forderung auf geeignete Kombinationen von Wilson-Loops, die sich
nach irreduziblen Darstellungen der unterliegenden Gitter-Symmetriegruppe zu transfor-
mieren haben. In diesem abschlieflenden Kapitel werde ich nun supersymmetrische Gitter-
Operatoren betrachten. In jiingsten Gitter-Simulations-Rechnungen dienen derartige Ope-
ratoren zur Bestimmung des Massenspektrums der in einer N = 1 SUSY-Yang-Mills-
Theorie auftretenden Zusténde [36].

Ziel meiner Untersuchungen soll es sein, das im zweiten Kapitel beschriebene Verfahren
zum Auffinden von Darstellungen iiber Gitter-Operatoren auf den supersymmetrischen
Fall auszuweiten und fiir einige der zu konstruierenden Darstellungen eine Orthonormal-
basis bestehend aus den betrachteten supersymmetrischen Gitter-Operatoren anzugege-
ben. Bei der Wahl eichinvarianter Operatoren fiir die Simulation hat man in supersymme-
trischen Theorien sowohl bosonische als auch fermionische Freiheitsgrade zu beriicksichti-
gen, so dafl neben Wilson-Loops nun auch Majorana-Fermionen fiir die Zusammensetzung
eines geeigneten Operators zur Verfiigung stehen. Unter Verwendung der Ergebnisse aus
dem vorherigen Kapitel (charakteristisches Transformationsverhalten von Spinoren) ist
einzusehen, daf} dieser Sachverhalt direkte Auswirkungen auf die zugrunde liegende Sym-
metriegruppe haben wird, die je nach Auswahl der Operatorkomponenten anstatt der
im Falle von Wilson-Loops betrachteten kubischen Gruppe nunmehr auch deren Uber-
lagerungsgruppe sein kann. Des weiteren wird sich zeigen, daf fiir die Diskussion des
Transformationsverhaltens der Operatoren vereinzelt auf das ebenfalls im vorangehenden
Kapitel bereitgestellte Konzept der direkten Produktdarstellung der diagonalen Unter-



96 Darstellungen der Uberlagerungsgruppe 20 iiber SUSY-Operatoren

gruppe einer direkten Produktgruppe zuriickgegriffen werden muf}. Insgesamt gehe ich auf
drei unterschiedliche supersymmetrische Gitter-Operatoren ein. Zuvor aber ein knapper
Uberblick iiber die in der N = 1 SUSY-Yang-Mills-Theorie erwarteten massiven, chiralen
Supermultipletts.

5.1 Motivation

Die N = 1 SUSY-Yang-Mills-Theorie ist die einfachste, supersymmetrische Eichtheorie
und enthélt im Falle der Eichruppe SU(N,) insgesamt (N2 — 1) Eichfelder (Gluonen) und
eine gleiche Anzahl an Majorana-Fermionen (Gauginos) in der adjungierten Darstellung.
Thre Dynamik weist in Bereichen starker Kopplung (d.h. niedriger Energien) Analogien
zur QCD auf; beispielsweise erwartet man auch in supersymmetrischen Eichtheorien die
aus der QCD bekannten Phinomene der spontanen Symmetriebrechung und des confine-
ment. Zudem sollte ihr Massespektrum auch einen stabilen Teilchenzustand oberhalb des
Vakuums aufweisen. Diese Folgerungen der nicht-perturbativen Dynamik kénnen mit Hilfe
einer effektiven Wirkung beschrieben werden, wie sie Anfang der achtziger Jahre von G.
VENEZIANO und YANKIELOWICZ im Rahmen einer N = 1 Yang-Mills-Theorie aufgestellt
wurde [33]. Sie fithrt auf ein Wess-Zumino-Supermultiplett, welches die folgenden massiven
Zustande enthilt:

e cinen 0~ Gluinoball (pseudoskalares Boson), als Analogon zum 7n’-Meson in der QCD

e cinen 0" Gluinoball (skalares Boson), welches nahezu dem fo-Meson der QCD ent-
spricht

e einen Spin—%—Gluino—Glueball als fermionischen Freiheitsgrad (Majorana-Fermion).
Hier gibt es aufgrund der fundamentalen Darstellung kein Analogon in der QCD.

Ende der neunziger Jahre wiesen G. R. FARRAR,G. GABADAZE und M. SCHWETZ aller-
dings darauf hin, daf} es a priori keine Griinde dafiir gibt, dafl in diesem Energiebereich
keine Glueballzusténde auftreten sollten und diese daher in Form eines zusétzlichen Super-
multipletts in die Formulierung der Theorie einbezogen werden sollten. Sie schlugen daher
vor, die effektive Veneziano-Yankielowicz-Wirkung um einen Zusatzterm zu ergidnzen, so
da mit Hilfe der erweiterten Wirkung nun auch Glueballzustdnde beschrieben werden
kénnen [37,38]. Das hinzugefiigte, leichtere, chirale Supermultiplett enthélt dabei

e einen 017 Glueball als skalares Meson
e einen pseudoskalaren 0~ Glueballzustand

e einen weiteren fermionischen Gluino-Glueball in Analogie zum Veneziano-Yankielowicz-
Supermultiplett.

Das Massenspektrum der leichtesten Zustinde kann in analoger Weise zur QCD mit Hilfe
von Monte-Carlo-Simulationen untersucht werden, wobei aufgrund der Struktur der effek-
tiven Wirkung Mischungen zwischen den einzelnen Zustinden zu erwarten sind. Solche
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numerischen Analysen werden derzeit in der Tat durchgefiihrt (vgl. beispielsweise [36])
und benétigen fiir die Simulation je nach Auswahl des zu untersuchenden Teilbereiches
des Massenspektrums u a. supersymmetrische Gitter-Operatoren. Dies geschieht unter
Einbeziehung fermionischer Freiheitsgrade, die gerade so aufgebaut sind, daf§ deren Ma-
trixelemente einen guten Uberlapp mit den in Frage stehenden Zustinden haben.

5.2 Majorana-Majorana-Operator

Zunichst wollen wir einen Operator betrachten, der aus zwei auf einem Gitterpunkt fi-
xierten Majorana-Feldern besteht und ein moglichst einfaches Transformationsverhalten
unter der Uberlagerungsgruppe 20 aufweisen soll. Wir schreiben ihn in der Form

A\ = A(z)\(z) mit rel. (5.1)

Aus der Theorie der Dirac-Gleichung im Kontinuum ist bekannt, daf} sich der aus zwei
Dirac-Spinoren gebildete Ausdruck ¢ im Minkowski-Raum unter Lorentztransformatio-
nen aufgrund der Relationen

Y'(2') = SyP(z) und  §'(2') =P(2)S7, (5.2)

wegen
P (@) (2') = p(2) 57 () = ()Y (x) (5.3)
wie ein Lorentzskalar transformiert.

Beim Ubergang zu euklidischen Majorana-Spinoren —die in unserem Fall zudem nur auf
Gitterplitzen erklirt sind— hat man zu beachten, dafl die Definition fiir die konjugierten
Spinoren ¢ = ¢!~y durch den Ausdruck

A= )\C (5.4)

zu ersetzen ist. Es zeigt sich allerdings, dafl trotzdem weiterhin

N(2') = Mz)§~! (5.5)

gilt (vgl. dazu Anhang G). Der Majorana-Majorana-Operator transformiert sich daher
analog zur minkowskischen Formulierung unter Lorentztransformationen wie ein Lorentz-
skalar

NN =871 A =X\, (5.6)

Da die Elemente der Uberlagerungsgruppe 20 als Lorentzdrehungen um gewisse Achsen
und Winkelmafle spezielle Lorentztransformationen sind, iibertréigt sich das Transformati-
onsverhalten des betrachteten Operators unter der Lorentzgruppe auf ihre diskrete Unter-
gruppe 20. Ein Lorentzskalar ist jedoch invariant unter Raumspiegelungen. Somit besitzt
er den P-Paritétseigenwert +1 und verhilt sich unter der vollen Uberlagerungsgruppe 20y,
identisch wie unter 20.
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Analoge Untersuchungen lieflen sich nun auch fiir den Operator
AysA (5.7)

durchfithren. Man erhilt dabei als Ergebnis, dafl sich obiger Operator analog zum Falle
der Dirac-Spinoren in der relativistischen Quantenfeldtheorie wie ein Pseudoskalar trans-
formiert, d.h. er wechselt unter Raumspiegelungen sein Vorzeichen.

5.3 Majorana-Link-Majorana-Operator

Als weiterer supersymmetrischer, eichinvarianter Gitter-Operator wird jetzt der Majorana-
Link-Majorana- Operator betrachtet, der aus zwei auf benachbarten Gitterpunkten befind-
lichen Majorana-Spinoren A und X\ besteht, die iiber die beiden Gitter-Links Uz, und
U;lll = U;rm miteinander verbunden sind. In analytischer Form schreibt er sich als

Te{A@)UL (@ + af)Us} (5.8)

wobei x, x + aji in ji-Richtung benachbarte Gitterpunkte mit Gitterabstand a sind. Gra-
phisch 148t er sich durch

veranschaulichen, wobei die Gitter-Links lediglich zur Visualisierung gekriimmt gezeichnet
sind. Man kann ihn aufgrund der drei unabhingigen Raumrichtungen eines dreidimensio-
nalen Gitternetzes in drei unterschiedlichen Ausrichtungen auf ein Gitter bringen. Die
Operatoren seien dabei mit

>

A
S =0 =0, Ae—— ) =0y

A

>~

bezeichnet.

Ich mo6chte zunéchst auf sein Verhalten unter der P- bzw. C-Paritdtsoperation eingehen,
um gegebenenfalls wie im Falle von Wilson-Loops Paritdt-invariante Operatoren zu kon-
struieren. Dabei hat man u.a. auf das unterschiedliche Wirken des P-Parititsoperators auf
Majorana-Spinoren und Link-Variablen zu achten.
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5.3.1 Verhalten unter P-Paritit

Im Minkowskiraum ist die P-Paritdtsoperation bei Anwendung auf einen Bispinor durch

Py = o9 = oF (5.9)
definiert [28]. Fiir den konjugierten Spinor ergibt sich damit
9" = P(§) = PWT0) = (o) = 4" A =4 (5.10)
~—
Yo

Im Falle von euklidischen Majorana-Spinoren hat man die Definition (5.9) zu modifizieren®,

indem man

PX = iy) (5.11)

setzt [39]. Damit gilt unter Verwendung der verinderten Definition des konjugierten Spi-
nors (vgl. Gleichung (5.4)) im Unterschied zu Gleichung (5.10)

P(X) = P(X'C) = (i%0N)'Cyo = i X 5C 70 = =i XCyo70 = —idy0 - (5.12)

—Cv

Spiegelt man den Majorana-Link-Majorana-Operator beispielsweise am Gitterpunkt z, so
erhilt man zunéchst

Pz{x(x)UzT,;L)‘(x + aﬂ)Uz;u} = -1 S‘(m)’YOUmT;—MZ‘ 70>‘(m - aﬁ’)Uz;fp
= A@)BU_uMe — ap)Usi
= M2)UL_ & — ap)Us_p (5.13)
also bildlich
UET?N UmT —u
o) <> Mo+ ai) Po, Az —ap) <> Aa)
Um;u Um;fu

Fiihrt man jetzt eine Translation in +ji-Richtung um einen Gitterplatz durch, so geht die
iiber Gleichung (5.13) gebildete Spur in den Ausdruck

Tr{X(z + af)Usyu M(2)UL,, } (5.14)

'Da der Parititsoperator P Raumsspiegelungen beschreibt, hat er die Gleichungen P~ '; P = —v; und
P~ 4P =~ zu erfiillen, und man findet P = e**+, mit einem Phasenfaktor e’*. Im Euklidischen gilt mit
yerink. — ~yeukl dann PX = (e¥%740)!C = e?XC ™ 14EC = —e'® Xv4. Fiir den Lorentzskalar A\ fordert man
PAP) = —ei“’j\’y4’y4)\ = —e%** )\ L ) und wihlt fiir den Phasenfaktor e!¥ = i. Im Minkowskischen ist
die Wahl des Phasenfaktors beliebig, da er durch die komplexe Konjugation in (5.4) herausfillt. Man setzt
daher e*? = 1.
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iiber, an deren Stelle wir wegen der Zwischenrechnung (%) auch den Term
Tr{UpyuM2)UL ANz +ap)}  bzw.  Tr{A(2)UL Az + ait)Us;p} (5.15)

verwenden konnen (fiir () s. unten).

Damit haben wir gezeigt, da unter Vernachlissigung von Translationen der Majorana-
Link-Majorana-Operator unter der P-Paritétsoperation in sich selbst iiberfithrt wird.

Daher kénnen wir uns dhnlich wie im Falle der Einfach-Plaquetten aus Kapitel 2 bei der
Untersuchung des Transformationsverhaltens der Operatoren auf Transformationen un-
ter der Uberlagerungsgruppe 20 beschrinken, anstatt die volle Uberlagerungsgruppe 20y,
heranzuziehen. Der Grund hierfiir liegt darin, dal die Operatoren wegen ihrer P-Paritit-
Invarianzeigenschaft die hinzukommenden Raumspiegelungen der vollen Uberlagerungs-
gruppe 20y, ignorieren, d.h. darunter invariant sind.

(¥*) Zwischenrechnung:

Tr {X(a; + aﬂ)Uz;“)\(a;)UzTW} - T {X“(a; + a,z)TaUW,\(m)”T”U;W}
= X%z + ap)A(z)"Tr {T“UmmTl’Ugm}
= Xz)°A%z + apt) Tr {TbU;mTaUmm}
= Tr {X(a;)bTbU;fmA“(a: + aﬂ)T“Uz;u}

- T {)\(m)U;WA(m + aﬂ)UW} (5.16)

Hierbei haben wir die Zerlegung A = \*T* ,T? € su(2) und die Rechenregel
¢ = ¢ fiir Majorana-Spinoren benutzt (vgl. Kapitel 3 Gleichung (3.66) bzw.
Anhang F).

5.3.2 Verhalten unter C-Paritit

Die Majorana-Spinoren verhalten sich gegeniiber C-Paritdtsoperationen per Definition

invariant

A-SA%=x bzw. 2S¢ =1, (5.17)
Die Gitter-Links dndern jeweils ihre Orientierung

Up 5 UL, baw. UL, -5 Usy, (5.18)

so dafl der Majorana-Link-Majorana-Operator insgesamt den C-Parititseigenwert +1 be-
sitzt.

5.3.3 Transformationsverhalten und Darstellung

Bei der Untersuchung des Transformationsverhaltens der Majorana-Link-Majorana-Operatoren

unter der Uberlagerungsgruppe 20y, hat man zu beachten, da sowohl die Links als auch
der Majorana-Spinor unabhingig voneinander zu transformieren sind.
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Im Majorana-Sektor konnen wir dabei auf die Ergebnisse aus Abschnitt (5.2) zuriickgrei-
fen. Es gilt

Mz +ap) — N((z+ap)) =Sz +apt) (5.19)
Xz) — N(')=Xz)S™! (5.20)

und wegen der Ortsunabhéngigkeit der Lorentztransformationsmatrix S damit analog zu
(5.6)

M)Az + ap) — N (N ((z +ap)) = XNz)S 1SNz + app) = ANz +air) . (5.21)

Die Majoranas transformieren sich demnach wie Lorentzskalare, wobei sie sich im Gegen-
satz zum Majorana-Majorana-Operator nicht auf dem gleichen Gitterplatz befinden.

Die Links der drei Operatoren Op, 0,03 kénnen unter Verwendung der Uberlegungen
aus Kapitel 2 mit den in den drei unterschiedlichen Koordinatenebenen liegenden Wiirfel-
kanten eines dreidimensionalen Wiirfels identifiziert werden. Wie bereits an fritherer Stelle
ausfiihrlich diskutiert, bestimmt dabei ihr Transformationsverhalten unter der kubischen
Gruppe O in eindeutiger Weise ihr Transformationsverhalten unter der Uberlagerungs-
gruppe 20 von O. Die Konstruktion einer Darstellung der kubischen Gruppe iiber eben-
solche Links bzw. Wiirfelkanten kann nun gemifl der Ausfithrungen in Kapitel 2 erfolgen.
Dabei sollte man beachten, dafl das Transformationsverhalten und die daraus generierte
Darstellung im Falle von Wiirfelkanten im Prinzip bereits bekannt sind, da die betrachte-
ten Wilson-Loops gerade , kantenweise“ mittels Gleichung (2.9) aus Unterabschnitt 2.2.3
durch die Drehmatrizen der Ti-Vektordarstellung der kubischen Gruppe transformiert
wurden. Die gesuchten Darstellungsmatrizen der Majorana-Link-Majorana-Operatoren im
Link-Sektor sind demnach oben genannte Drehmatrizen, die geméf ihrer Bezeichnung die
irreduzible Vektordarstellung T} von O représentieren (vgl. Anhang C.1).

Aufgrund der Lorentzskalar-Eigenschaft des Majorana-Link-Majorana-Operators im Majo-
rana-Sektor transformieren sich die drei Operatoren O;, O3, O3 unter der Uberlagerungs-
gruppe 20 nach deren irreduziblen Vektordarstellung Tj. Beriicksichtigt man zusétzlich
noch Raumspiegelungen, oder in anderen Worten, geht man zur vollen Uberlagerungs-
gruppe 20y, iiber, so erhilt man wegen des positiven P-(bzw. C-) Paritéitseigenwertes der
Operatoren als irreduzible Darstellung RFC der vollen Uberlagerungsgruppe 20y, iiber
Majorana-Link-Majorana-Operatoren

RPC =1 . (5.22)

Als eine

Orthonormalbasis

lassen sich analog zu den Ergebnissen aus Kapitel 2, die drei Operatoren O, 02 und Oj
wéahlen. Als Tabelle erhilt man:
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Operatoren der Majorana-Link-Majorana-Operatoren

Loop-Op. | O1 0O Oj

REC T | 1

Die Einfiithrung einer solchen Tabelle erfolgte ebenfalls bereits in Kapitel 2.

5.3.4 Betrachtungen im Kontinuum

Zum Ende dieses Abschnitts sei kurz ein Zusammenhang zwischen dem Ausdruck (5.8) und
der Vorwérts-Gitter-Version der kovarianten Ableitung in der adjungierten Darstellung
hergestellt, der uns zu einer niitzlichen Betrachtung eines zum Majorana-Link-Majorana-
Operartors analogen Objektes im Kontinuum fithren wird.

Wir beginnen mit dem Term (5.8), von dem wir den Beitrag A(z)\(z) subtrahieren. Zusétz-
lich multiplizieren wir mit dem Faktor % und erhalten

(AUt Az + @)Uy~ M)A (@) (5.23)
bzw. graphisch
Ul
Ma) <> Aetap) - A@A@).
Usip

Da A(z)\(z) ein Lorentzskalar ist, transformiert sich dieser Operator in gleicher Weise
unter Lorentztransformationen, wie der Majorana-Link-Majorana-Operator.

Wegen Uy, = e~%4u(®) und U;;u = ¢24u(?) ergibt sich fiir Gleichung (5.23)

1 (X(m)UE;MTA(l’ + afi)Usp;y — X(a;))\(m))

= % (5\(33)(1 +aA,(z)) (M) + aduA(z))(1 —ady(z)) — Az)\(z) + (’)(az))
— % (aS\(a:)au)\(m) + aS\(m)Au(m))\(a;) — aS\(m))\(m)A“(m) + (’)(a2))
= A@) (8uA(z) + [Au(2), A(@)]) + O(a) . (5.24)

Dieser Ausdruck 148t sich mit Hilfe der durch

L (Ud S+ @)U ()

-2 (f(2) + aduf(2) + adpu(z) f(2) - af (z)Au(z) - f(2) + O(a?))
= Ouf(z) +[Au(2), f(2)] + O(a), (5.25)

D f ()

e
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definierten Vorwdarts- Gitter- Version der kovarianten Ableitung in der adjungierten Dar-
stellung in die Form
A(z)DlbI N\ (z) + O(a) (5.26)

bringen, so daf} im naiven Kontinuumslimes fiir a — 0
X(x)DLat’f/\(m) + O0(a) — Az)Du\(z) (5.27)
gilt, wobei
Dy = A+ [A,, )] (5.28)

die kovariante Ableitung in der adjungierten Darstellung bezeichnet. Untersucht man nun
das Transformationsverhalten des Operators A(z)D,\(z) unter Lorentztransformationen,

so erhilt man in minkowskischer Formulierung wegen

AD, A = MO+ [Au,A\]} (5.29)
= XA+ —INA, (5.30)
S~ N

(%) (i2) (1d)
fiir die drei Summanden die Transformationseigenschaften
(2) Ao\ — 5\'(1")8;)\(1") = Xz)S™'a,”d,5\(z)
a,’Nz)S 1S9,\(z)
= a,"\z)d,\(z) (5.31)

(i) XAN)\—>5\'(93')A;‘)\(9:') = \=z)S 'a,"A,5\(z)
a,"Nz)S™ S A \(z)

= a,"Az)A\(z) (5.32)
(7i7) A4, — X'(m')A(m')AL = \z)S™'S\(z)a,” A,
= a,"ANz)\(7)4, , (5.33)

wobei a,” die in Anhang G erklirten Komponenten der Lorentztransformationsmatrix
sind. Das Ergebnis zeigt, dal sich alle drei Summanden — und somit auch der gesam-
ten Kontinuum-Operator XD,‘)\f als Vektoren transformieren, oder anders ausgedriickt,
sich wie ein Spin-1-Teilchen verhalten. Dieses Resultat stimmt mit den Uberlegungen aus
Kapitel 1 bzw. 4 {iberein, wonach ein Zustand, der sich unter der untergeordneten Gitter-
Symmetriegruppe O bzw. 20 nach der Vektordarstellung T transformiert, im Kontinu-
umslimes einem Spin-1-Zustand zugeordnet werden kann.
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5.4 Majorana-Plaquetten-Operator

An dieser Stelle wollen wir Majorana-Plaquetten-Operatoren der Form

mit dem algebraischen Ausdruck

Tr {Upipu A} = UL, (T (5.34)

;v

untersuchen, die aus einer Plaquettenvariablen U, und einem an einer beliebigen Ecke
befindlichem Majorana-Spinor gebildet werden. Die Spur wird dabei iiber die Eichgruppe
(z.B. SU(2)) gebildet, wobei T® ihre Generatoren bezeichnet.

Da dem Majorana-Teilchen in allen drei Koordinatenebenen jeweils vier Eckpunkte zur
Verfiigung stehen, lassen sich unter Vernachlissigung des Umlaufsinns der Einfach-Plaqu-
ette insgesamt 3 x 4 = 12 Operatoren diesen Typs bilden. Somit weisen sie eine geome-
trische Ubereinstimmung mit den Uber-Eck-Plaquetten aus Kapitel 2, Abschnitt 2.6 auf.
Bildet man in analoger Weise P-Paritét-invariante Operatoren OZ- = (Ozi]) mit i =1,2,3
und j = 1,2, so erhilt man

AP +
LS =L =0n L,\7 + [ =0
)\P
+ AP "
+ = O, + = Oy
A
A
< «—o)\P N < Ao— N
+ = Oy, + =03, ,
A A

wobei A durch AP = P = 4o\ definiert ist (s. nichster Unterabschnitt).

Aus ihnen lassen sich nun wie im Falle der Wilson-Loops durch geeignete Kombinationen
der Form

P P P
Operatoren OZ'C mit eindeutig bestimmter C- (und P-) Paritdt konstruieren. Der C-
Paritdtsoperator dndert dabei den Umlaufsinn der Plaquette und 148t die Bispinoren A

aufgrund ihrer Majorana-Eigenschaft (A = A®) invariant, also z.B.
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Fiir fixiertes P und C ist der Darstellungsraum der Majorana-Plaquetten-Operatoren so-
mit wegen der vier reellen Freiheitsgrade des Majorana-Teilchens 6 x 4 = 24-dimensional.

Hierbei ist zu beachten, daff die Uberlagerungsgruppe 20 als Untergruppe der S U(2) kei-
ne Raumspiegelungen enthilt. Somit haben wir aufgrund der P-Invarianz der Majorana-
Plaquetten-Operatoren wie im Falle der Uber-Eck-Plaquetten zur vollen Uberlagerungs-
gruppe 20}, = 20®{e, I'} iiberzugehen, um aus dem Transformationsverhalten der Opera-
toren OZ- ¢ unter 20y, anschlieBend eine Darstellung iiber die OZ- ¢ konstruieren zu kénnen.

Zuvor wollen wir aber, wie bereits am Ende des vorherigen Abschnitt am Beispiel des
Majorana-Link-Majorana-Operators geschehen, einen dquivalenten Ausdruck im Konti-
nuum betrachten und seinen Spingehalt bestimmen. Ziel dabei ist es, aus seinem Trans-
formationsverhalten unter Lorentztransformationen erste Riickschliisse auf die moglichen
invarianten Unterrdume des Darstellungsraumes bzw. auf die irreduziblen Anteile der zu-
gehorigen Darstellung iiber die Gitter-Operatoren zu erhalten. Dabei werden wir die Kon-
tinuumsbetrachtungen wieder im Minkowski-Raum ausfiihren.

5.4.1 Betrachtungen im Kontinuum

Im Kontinuum ist der Majorana-Plaquetten-Operator durch den Ausdruck
Or°™ = F,,(z)1\(z) (5.36)
gegeben, wobei F),,, der Feldstdrketensor ist. Wir wollen stattdessen den Operator
OXont. Fu(z)o" Xz) = x(x) (5.37)

betrachten, der sich aus obigem ergibt, indem man die Einheitsmatrix durch den Spintensor
ohV = Ly# "] ersetzt. Sowohl F),, als auch o#” sind antisymmetrische Tensoren 2. Stufe.
Unter Lorentztransformationen findet man fiir den Feldstirketensor [40]

Fu(z) — F;Iw(l") =a,"a,’Frp() , (5.38)

und fiir den Spintensor unter Verwendung der in Anhang G angegebenen Relationen und
einer Eins-Erginzung

i

M@)o A(z) — N (2o N (z') = X(m)s—l{ .

w,v"]}sw)

= %{X(m)Slfy“’y”S)\(m) - 5\(33)5’17"7“5’)\(33)}
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= 3{X(x) S~ IyrS STy S \(z)
2 S—_—
at oy a"ﬂ’)’B

~Xz) 871478 STIyHS )\(a:)}
—— ——
avgyP  atar®
= ataa’sA(2)0*P A(z) . (5.39)

Betrachtet man nun den Ausdruck

Az)x(@) = M) Fuy (z)0" N(z) (5.40)
so ergibt sich aufgrund seines Transformationsverhaltens unter Lorentztransformationen

AF,o" N — X’(m')FL,,(m')a“”)\'(x') =  F,(z) N (2o N (")
—_—
ataa? gN(z)o*B \(z)
=" a,"d"ya,ad" X(a:)FTp(m)aaﬂ)\(a;)
S—— N
9z 55
= \z)Fps(z)o®®X(z) , (5.41)

daf} dieser sich wie ein Lorentzskalar transformiert. Damit 148t sich x(z) als ein fermio-
nischer Operator interpretieren, der sich wie ein Majorana-Spinor (Spin 1/2-Teilchen)
transformiert. Eine entsprechende Analyse fiir den Operator OK°™ ist aufwendiger, und
wir wollen daher nur das Ergebnis angeben. Er transformiert sich nach einer Spinf% @ %*
Darstellung. Man sollte daher fiir den Majorana-Plaquetten-Operator erwarten, daf§ der
im niichsten Unterabschnitt zu konstruierende Darstellungsraum der vollen Uberlagerungs-
gruppe 20y, in invariante Unterrdume zerfillt, die sich ausschlieflich nach deren spinori-
ellen, irreduziblen Darstellungen Gy, Gy, H tranformiert. Fiir den Operator x(z) wiirde
man gemifl der Resultate aus Kapitel 4 die Zerlegung G1 @ G erwarten.

5.4.2 Transformationsverhalten und Darstellung

Ahnlich wie im Falle des Majorana-Link-Majorana-Operators a8t sich das Transforma-
tionsverhalten der Majorana-Plaquetten-Operatoren unter der Uberlagerungsgruppe 20y,
im Majorana- und Plaquetten-Sektor unabhingig voneinander untersuchen. Da im hier
betrachteten Fall aufgrund des einzelnen Majorana-Faktors kein — im Sinne von seinem
Transformationsverhalten— trivialer Lorentzskalar im Majorana-Sektor auftritt, transfor-
miert sich der Majorana-Spinor wie bereits in Kapitel 4, Abschnitt 4.3 beschrieben. Auf-
grund der Unabhénggigkeit von Majorana- und Plaquetten-Sektor konstruiert man eine
Darstellung des Majorana-Link-Majorana-Operators durch Bildung des direkten Produkts
der in den beiden Sektoren zu bestimmenden Darstellungen, wobei die zugrunde liegende
Symmetriegruppe 20y, als die in Unterabschnitt 4.1.3 definierte diagonale Untergruppe
der Produktgruppe 20y, x 20y, aufzufassen ist.
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Konstruktion einer Darstellung im Plaquetten-Sektor

Der Plaquetten-Sektor transformiert sich in der gleichen Weise wie die in Abschnitt 2.6 be-
handelten Uber-Eck-Plaquetten, da sowohl die Uber-Eck-Plaquetten als auch der Plaquet-
ten-Sektor der Majorana-Plaquetten-Operatoren geometrisch als Einfach-Plaquetten mit
einem ausgezeichneten Eckpunkt aufgefait werden konnen, so dal ihr Transformations-
verhalten unter der vollen kubischen Gruppe als auch unter der Uberlagerungsgruppe 20y,
identisch ist. Aufgrund der Uberlagerungseigenschaft der Gruppe 20y, beziiglich der vollen
kubischen Gruppe Oy, stellt die in Abschnitt 2.6 konstruierte Darstellung von Oy mittels
Uber-Eck-Plaquetten auch eine Darstellung ihrer Uberlagerungsgruppe 20y, dar. Wegen
der zusitzlichen, oben erwihnten, geometrischen Ubereinstimmung der Plaquettenkonfigu-
ration der Uber-Eck- und Majorana-Plaquetten-Operatoren kénnen die dort berechneten
Ergebnisse fiir den Plaquetten-Sektor géinzlich {ibernommen werden. Man erhilt somit
unter Beriicksichtigung vorher eindeutig festgelegter P- und C-Paritét fiir die Darstellung
Rps von 20 iiber die Majorana-Plaquetten-Operatoren im Plaquetten-Sektor im Einzelnen
gemifB Kapitel 2

Ri§ = AlteE T oTy", (5.42)
Ris = A @E" 0T, (5.43)
Rps = Ty Ty ", (5.44)
Rps = T7 @T, . (5.45)

Konstruktion einer Darstellung im Majorana-Sektor

Das Transformationsverhalten eines Majorana-Spinors A unter der Uberlagerungsgruppe
20 und die Konstruktion einer Darstellung R wurde im vorherigen Kapitel in Abschnitt
4.3 behandelt. Daher haben wir im wesentlichen die dortigen Resultate auf raumgespiegel-
te Majorana-Teilchen und die Gruppe 20y, zu erweitern. Die P-Parititsoperation, ange-
wandt auf einen euklidischen Majorana-Spinor, ist nach den Ausfithrungen des vorherigen
Abschnitts 5.3 durch

Pl =iypA =iy =P (5.46)

definiert, so dafl man in der Weyl-Darstellung

. AL . 0 1 AL [ Ar
P)\=270<)\R>=z<l 0>(AR>=1<)\L>=)\P (5.47)

findet. Eine Raumspiegelung vertauscht also im wesentlichen gerade die beiden zweikom-
ponentigen Weyl-Spinoren des Majorana-Spinors. Da wir nur an den Rotationen der Lor-
entzgruppe interessiert sind und deren Darstellungsmatrizen gemif (4.14) Blockdiagonal-
gestalt haben, vertauschen die Lorentzrotationen mit der P-Paritdtsoperation (vgl. dazu
auch [20]), d.h.

SRot)\P = SRot(P)‘) = P(SRot)‘) = P()‘Rot) = ()‘Rot)P (5'48)
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mit SgotA = ARot- Daher sind die Operatoren A + AP wegen

P{Srot(A £ A7)} = P{Arot + (Arot)"}
Mot £ (ARot)
£(Arot £ (Arot)T)
= £ {Srt(AEAF)} (5.49)

in der Tat P-invariant unter Lorentzrotationen. Mit Hilfe der Ergebnisse aus Abschnitt
4.3 des vorherigen Kapitels erhilt man fiir die irreduzible Darstellung Rys der Uberlage-
rungsgruppe 2Oy, iiber Majorana-Plaquetten-Operatoren im Majorana-Sektor

Ry = Gy ®Gf . (5.50)

Bemerkung: Im Falle der Uber-Eck-Plaquetten war es das Ziel, ihr Transformationsver-
halten unter der vollen kubische Gruppe Oy, zu untersuchen, wobei man sich durch die
Konstruktion P-invarianter Operatoren auf Transformationen unter der kubischen Gruppe
O beschrinken konnte, da diese das Verhalten unter der vollen kubischen Gruppe schon
eindeutig bestimmten (vgl. Abschnitt 2.6). In gleicher Weise legen die Transformationen
der P-invarianten Majorana-Operatoren unter der Uberlagerungsgruppe 20 die Transfor-
mationen unter der vollen Uberlagerungsgruppe 2Oy, eindeutig fest: Fiir Operatoren mit
positiver P-Paritdt &ndert sich durch die optional ausgefiihrte Raumspiegelung per De-
finition nichts. Im Falle negativer P-Paritdt unterscheiden sich aufgrund von (5.49) die
Rotationsmatrizen —oder besser Darstellungsmatrizen— Sgrot der Klassen F, .. .,082 von
ihren raumgespiegelten Partnerklassen IE,...,ICZ durch ein Minuszeichen, so daf sich
fiir ihre Charaktere Xﬁ (C;) = _X7'z (IC;) ergibt. Eine analoge Beziehung gilt aber auch
fiir die Charaktere x* (C;) der irreduziblen Darstellungen der vollen Uberlagerungsgruppe
20y, (fiir P = —1), so daB Formel (12) aus Kapitel 0 bei Summation iiber alle konjugierten
Klassen von 20y, das gleiche Resultat liefert, wie Formel (4.19) aus 4.3. Die Charaktertabel-
le der Gruppe 20y, erhilt man dabei aus 20 in gleicher Weise, wie sich die Charaktertabelle
von Oy, aus O ergibt (vgl. Kapitel 0).

Darstellung iiber Majorana-Plaquetten-Operatoren

Die Darstellung R der Uberlagerungsgruppe 20y, iiber Majorana-Plaquetten-Operatoren
erhalten wir, wie oben bereits erwdhnt, mit Hilfe des in Kapitel 4 bereitgestellten Konzep-
tes der Darstellungstheorie direkter endlicher Produktgruppen. Dabei bildet man bei fest
vorgewahlter P- und C-Paritit aus den irreduziblen Anteilen ﬁﬁs der Darstellungen Rpg
und aus der irreduziblen Darstellung Rys von 20y, gemiB (4.10) Produktdarstellungen

R = 7%’;,5 ® 7€MS ) (5.51)

der diagonalen Untergruppe 20y von 20} x 20y. Die Darstellung R wird i.a. reduzibel
sein.

Fiir die gesuchten Darstellungen R(= REC mit k € {1,2,3}) erhiilt man also

RIT = Afte{GiteciTY, (5.52)
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Ryt = EYfe{GiTedit}, (5.53)
RiT = T e{G/TeG "}, (5.54)
R = Af o{G] oG}, (5.55)
Ry~ = EV e{G oG}, (5.56)
R{™ = Ty ®{Gi &G}, (5.57)
Ryt = Tt e{Gitea "}, (5.58)
R," = T, e{G TeG "}, (5.59)
R, = T, ®{G &Gy }, (5.60)
R,™ = T, ®{Gi " ®Gy }. (5.61)

5.4.3 Irreduzible Zerlegung der Darstellung

Fiir die Zerlegung der Darstellungen 7?,5 € in ihre irreduziblen Anteile bedient man sich
ein weiteres Mal Formel (12) aus Kapitel 0, wobei zusétzlich die beiden Relationen

TR (9) =x® (9) X® (g9)  (vel. Theorem 30) (5.62)

und
X*OR () =x"(9) +x® (9)  (vgl Fufinote 5, Kap.4) (5.63)

Verwendung finden. Unter Vernachlissigung der Paritdtsindizes P,C' und des Numerie-
rungsindex k gilt

0 = g D (CNR ()
= % an X" (Ci) [x”i‘f’s (C;) xRt (CZ-)}
= 4l8 an x” (Cs) [sz'g.s (Ci) - (X (Ci) + x&* (Ci))] . (5.64)

Die Summe erstreckt sich iiber alle acht Klassen C; der 48-elementigen Gruppe 20 (und
nicht 20y, vgl. Bemerkung unter Gleichung (5.50)). Die Klassenstirken n; ihrer Klassen
E,J,Cy,...,C% und die zugehorigen Charaktere x” (C;) ihrer irreduziblen Darstellungen
entnimmt man den Charaktertabellen aus Unterabschnitt 4.2.2 bzw. 0.3.3. Fiir letztere
hat man aufgrund der Ausfithrungen in Abschnitt 4.2 die folgenden Entsprechungen zu
beachten?:

?Beim Ubergang von der kubischen Gruppe O zu deren Uberlagerungsgruppe >0 bleibt die Klassen-
struktur der kubischen Gruppe im Prinzip erhalten. Einige Klassen verdoppeln lediglich die Anzahl ihrer
Elemente, zwei Klassen spalten durch Hinzunahme der neuen Elemente in jeweils zwei Klassen auf. Hin-
sichtlich der gemeinsamen irreduziblen Darstellungen Ay, ..., T> der Gruppen O und 20 kann die Charak-
tertabelle der kubischen Gruppe iibernommen werden, wobei sich in geeigneter Weise die Klassen von O
mit denen von 2O identifizieren lassen (vgl. Tabelle).



110 Darstellungen der Uberlagerungsgruppe 20 iiber SUSY-Operatoren

konj. Klassen konj. Klassen

in 20 in O
E E
J
120, 6C,
8C?
8Cs 8Cs
6Cs
601 6C,
6C:  3C}

Beispielsweise gilt somit x” (803) =x" (8Cs) = x” (8C3) mit v = Ay,...,Th.

Die Charaktere Xﬁgs (C;) sind je nach Wahl von ﬁﬁs mit geeignetem u € {44,...,Th}
ebenfalls aus der Charaktertabelle von O zu bestimmen. x&! (C;) findet sich in 4.2.2.
Man erhilt aus (5.64) fiir den

ersten Fall: P =C = +1

mit den Vorgaben

RE = AT w= A}t T
1 1
. 1 1
a4y = w2 e 2 (-2 2)]
) 3 3
EQ 3 3
Ty
T
1
-1
+12- 0 »-[L-(0+0)]+8-{ —1 p-[L-(-1—-1)]+
1 0
1 0
1
1 1
480 —1 p-[1-(14+1D]+6- 0 p-[1-(—vV2-v2)]+
0 1
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1 0
- 1 0
6.0 0 p-[1-(V24+V2)]+6-{ 2 2-[1-(0+0)]={ 0
-1 0
- -1 0
bzw. mit
Rhs = AT, v=G",G5 T H
. 2 —2
ey = m i 1-(242)]+1- _i [1-(-2-2)]+
Ga -
H
0 -1
+12-¢ 0 p-[1-(04+0)]+8-{ —1 p-[1-(=1—-1)]+
0 1
1 -2
+8 - 1 p-[1-(14+1)]+6- V2 b (—V2-V2)] +
-1 0
V2 0 2
460 —v2 p[1-(V24+V2)]+6-3 0 »-[1-(0+0)][ =4 0
0 0 0
insgesamt
RiT=Afte{Giteci Ty =6/t oGt =206{". (5.65)

Der Darstellungsraum der Darstellung 7~3f+ zerféllt in zwei invariante Unterrdume der
Dimension zwei, die sich beide nach der spinoriellen, irreduziblen Darstellung Gf“ der
Gruppe 20y, transformieren. Das Ergebnis stimmt mit unseren Kontinuumsbetrachtungen
aus Unterabschnitt 5.4.1 iiberein, wonach sich die Majorana-Plaquetten-Operatoren unter
der Gruppe 20}, wie Spinoren transformieren sollten.

Fiir die Darstellungen 7%;“ * und 7%?“ erhilt man in analoger Weise

RyT=ETT@{GiT®GT} = 2H"" und (5.66)
RIT =T o{GToG ™} = 265" @20 (5.67)
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Die invarianten Unterrdume ihrer Darstellungsrdume transformieren sich damit ebenfalls
nach irreduziblen Darstellungen mit Spinorcharakter. Die explizite Ausfithrung der Rech-
nungen finden sich in Anhang C.5.

zweiter Fall: P = 4+1,C = —1

Fiir diesen Fall ergibt sich

RIT=A"®{GT®G "} = 2G5~ (5.68)
Ry =E" ®{G] ®G "} = 2H" (5.69)
RIT =T 0{G~"oG "} = 2G{ " ®2H", (5.70)

und fiir den

dritten und vierten Fall: P = —1,C = +1

findet man
RIT=T7*{G{T® Gt} = 2G7T@2H * (5.71)
R, " =T, *®@{G;T®G"} = 2G, @2H*. (5.72)

Die Zerlegung der reduziblen Darstellungen 7%5 € hingt somit nur von der Vorgabe von
7%’;,5 ab und ist unabhingig von der Wahl der P- bzw. C-Paritit. Man beachte aber,
daBl sich die jeweils als Basis der Darstellung 7%5 ¢ fungierenden Majorana-Plaquetten-
Operatoren in ihren P- und C-Paritdtseigenwerten unterscheiden. Wir beschlieflen diesen
Unterabschnitt mit einer

Zusammenfassung der Ergebnisse:

Fiir die Zerlegung der Darstellungen RFC iiber die sechs Majorana-Plaquetten-Operatoren
ij c= (O:; +) —mit dem Index ¢ = 1,2,3 fiir die drei unterschiedlichen Koordinatenebe-
nen und dem Index j = 1,2 fiir die Position des Majorana-Faktors— in ihre irreduziblen

Anteile erhilt man im Einzelnen die folgenden Resultate:

A" {GITe G} = 2677 (5.73)
Ay @{Gf oG} = 2G5 (5.74)
Effo{¢{* oGt} = 2 (5.75)
T, @{G{ @G} = 2G{ @2H" (5.76)
T {Gi*o G} = 26T @2H (5.77)
T e {GiTe Gt} = 265" @2HTT (5.78)
T, o {GToG*} = 2G,T@2H*. (5.79)

Die hier nicht ausgefiihrten Rechnungen finden sich in Anhang C.5.
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5.4.4 Konstruktion einer Orthonormalbasis

Bei der Konstruktion von Orthonormalbasen werden wir uns auf Darstellung RFC be-
schrinken, die im Kontinuumslimes zu Spin-1/2-Zusténden fiithren, d.h. deren invarianten
Unterriume sich nach der Darstellung G; unter 20y, transformieren. Diese Eigenschaft
besitzt die vierdimensionale Darstellung

RIT=A"0{GiToG T} =2G]". (5.80)

Eine Orthonormalbasis 148t sich in diesem Fall in Analogie zu den Ergebnissen aus Kapitel
2 leicht angeben. Man erhilt sie, indem man alle sechs Operatoren Oz;- 4, mit 2 = 1,2,3

und j = 1,2 aufsummiert:

Darstellung R Linearkombinationen
von 20y, der Majorana-Plaquetten-Majorana-Operatoren

+ + + + + +
267 O11 4+ 012, + 091 + 09y +03 | + 03,




Zusammenfassung und Ausblick

Zusammenfassung der Ergebnisse

Diese Arbeit beschiftigt sich mit der gruppentheoretischen Untersuchung von supersym-
metrischen Gitter-Operatoren, die zur Massenbestimmung von Zustidnden der N = 1
SUSY-Yang-Mills-Theorie im Rahmen von Monte-Carlo-Simulationen herangezogen wer-
den konnen, was insbesondere in nicht-perturbativen Energiebereichen von Interesse ist.
Meine Untersuchung basiert dabei auf einem anfangs der achtziger Jahre erschienenen Ar-
tikel von B. BERG und A. BILLOIRE, in dem die Autoren Wilson-Loops als eichinvariante
Operatoren der Gittereichtheorie nach ihrem Transformationsverhalten unter der ihnen
zugrunde liegenden Gitter-Symmetrie-Gruppe, d.h. der kubischen Gruppe O, klassifizie-
ren und geeignete Sdtze an Operatoren fiir eine Monte-Carlo-Simulation zur Bestimmung
von Glueballmassen in der QCD vorschlagen [19].

Zu diesem Zweck habe ich nach Bereitstellung gruppentheoretischer Hilfsmittel und ei-
nem kurzen Abrif} iiber die physikalischen Hintergiinde zur Bestimmung von massiven
Zustanden in stark-gekoppelten Gitter-Eichtheorien zunichst die in [19] vorgeschlagene
Konstruktion von Darstellungen der kubischen Gruppe iiber Loop-Operatoren ausfiihrlich
diskutiert. Weiterhin habe ich die dort angegebenen Resultate anhand ausgew#hlter Bei-
spiele in eigenen Rechnungen reproduzieren kénnen. Dabei legte ich grolen Wert auf eine
detaillierte und in sich konsistente Ausarbeitung der in [19] an einigen Stellen nur skiz-
zierten Vorgehensweise bei der Bestimmung der Darstellungen und insbesondere bei dem
Auffinden geeigneter Orthonormalbasen bestehend aus Linearkombinationen der Loop-
Operatoren.

Wesentliches Ziel der Arbeit ist, die in [19] dargestellte gruppentheoretische Behandlung
von Operatoren der Gittereichtheorie auf vorgegebene, supersymmetrische Gitter-Opera-
toren auszuweiten und unter Beriicksichtigung analoger Uberlegungen, Darstellungen der
zugehorigen Gitter-Symmetriegruppe iiber diese Operatoren aufzufinden, und eine Ortho-
normalbasis aus ihnen anzugeben. Hierbei ist zu beachten, dafl aufgrund des Konzeptes der
Supersymmetrie die méglichen Operatoren nun auch fermionische Freiheitsgrade in Form
von Majorana-Spinoren aufweisen diirfen. Dieser Sachverhalt machte den Ubergang von
der kubischen Gruppe zu ihrer doppelten Uberlagerungsgruppe als der nunmehr zugrunde
liegenden Symmetriegruppe der Gitter-Operatoren nétig. Dies wurde im vierten Kapitel
vollzogen. Anschlieflend habe ich das Transformationsverhalten von Majorana-Spinoren
unter der neu eingefiithrten Uberlagerungsgruppe diskutiert und unter Verwendung der



Zusammenfassung und Ausblick 115

Kenntnisse aus der relativistischen Dirac-Theorie eine Darstellung dieser Gruppe iiber
0.g. Spinoren bestimmt.

Das letzte Kapitel enthélt eine gruppentheoretische Untersuchung von drei supersymme-
trischen Operatoren der N = 1 SUSY-Yang-Mills-Theorie. Zunichst wurde der aus zwei
Majorana-Spinoren gebildete Lorentzskalar A\ betrachtet, der bereits in Monte-Carlo Si-
mulationen einer SU(2) Yang-Mills-Theory mit leichten Gluinos zur Bestimmung der im
chiralen Veneziano-Yankielowicz-Supermultiplett vorkommenden Gluinoball-Massen ver-
wendet wurde [36]. Danach modifizierte ich den Lorentzskalar A}, indem ich die Majorana-
Spinoren auf benachbarte Gitterplitze setzte und sie durch zwei Eichlinks miteinander ver-
band. Es stellte sich heraus, daf sich der betrachtete Operator Tr{X(:L‘)U;;,,)\(fL'—i—aﬂ)Uzm}
unter der Uberlagerungsgruppe der kubischen Gruppe nach ihrer irreduziblen Vektor-
Darstellung T; transformiert, so dafl eine ONB leicht bestimmt werden konnte. Zusétzlich
fiihrte ich Konsistenziiberlegung im Kontinuum durch und bestétigte dort das Ergebnis der
Gitter-Rechnung. Zuletzt diskutierte ich einen aus einer Plaquette und einem Majorana-
Spinor bestehenden Operator Tr {U,,,, A(z)}, wobei sich das Majorana-Teilchen an einer
beliebigen Plaquetten-Ecke befinden darf. Eine entsprechende Betrachtung im Kontinuum
forderte ausschlieflich spinorielle, irreduzible Darstellungen der Uberlagerungsgruppe fiir
den Gitter-Operator, die sich nach den anschlielenden Gitter-Rechnungen explizit ange-
ben lielen. Abschlieend wurde fiir die Darstellung, die im Kontinuumslimes auf einen
Spin—%—Zustand fithren sollte, eine Linearkombination aus geeigneten Gitter-Operatoren
bestimmt, die der Darstellung als ONB dienen kann.

Insgesamt 148t sich festhalten, daf8 die in [19] vollzogenen, gruppentheoretischen Klas-
sifikationmethoden fiir eichinvariante Loop-Operatoren auf die im Rahmen der vorlie-
genden Arbeit untersuchten, supersymmetrischen Gitter-Operatoren der N = 1 SUSY-
Yang-Mills-Theorie ausgeweitet werden kénnen. Somit stellt inbesondere die gruppen-
theoretische Analyse des zuletzt untersuchten Gitter-Operators Tr{Uy,,,A(x)}, der be-
reits im Rahmen von Monte-Carlo-Rechnungen auf dem Gitter zur Bestimmung von
Gluino-Glueball-Massen, also Spin—%—Zustéinden, im Veneziano-Yankielowicz- bzw. Farrar-
Gabadadze-Schwetz-Supermultiplett benutzt wird, seine Verwendung (in numerischen Si-
mulationen auf dem Gitter) auf eine solide Grundlage.

Ausblick

An dieser Stelle soll nun die Frage diskutiert werden, in wie weit die Ergebnisse dieser
Arbeit Ansatzpunkte fiir weiterfithrenden Untersuchungen im Rahmen der N = 1 super-
symmetrischen Yang-Mills-Theorie bieten:

Als Schwerpunkt liegt sicherlich nahe, die bisherigen gruppentheoretischen Untersuchun-
gen auf weitere supersymmetrische Gitter-Operatoren auszuweiten, wobei man insbesonde-
re an Operatoren mit fermionischen Komponenten interessiert sein wird, da mit deren Hilfe
Spin—%—Zustiinde gemessen werden konnen. Als mogliche Operatoren sei hier zunédchst der
Gitter-Operator Tr {Uy, 0, A(2)} genannt, dessen Pendant im Kontinuum in der Form
Fu(z)o" X(z) bereits im Zuge dieser Arbeit unter Lorentztransformationen betrachtet
wurde. Dabei zeigte sich das Verhalten eines Spin—%—Teilchens, so daf} eine entsprechende
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gruppentheoretische Analyse unter Beriicksichtigung der bisherigen Ergebnisse ein Trans-
formationsverhalten unter der zugrundeliegenden Gitter-Symmetriegruppe 20 bzw. 20y
nach ihrer spinoriellen, irreduziblen Darstellung G; vermuten 148t. Weiterhin sind Opera-
toren mit drei fermionischen Freiheitsgraden von Interesse, etwa eine Konstellation beste-
hend aus zwei auf einem Gitterpunkt befindlichen Majorana-Spinoren, die iiber Eichlinks
mit einem weiteren Majorana-Faktor verbunden sind. Dieser hier angegebene Operator
weist Spin—%— und Spin—%—Anteile auf. Man sollte aufgrund des Transformationsverhaltens
im Kontinuum erwarten, dafl nach Diskretisierung Darstellungen iiber derartige Opera-
toren ebenfalls eine spinorielle Charakteristik in Form von invarianten Unterrdumen des
zugehorigen Darstellungsraumes aufweisen, die sich nach den Darstellungen G; und H
transformieren. Nach einer detaillierteren, gruppentheoretischen Untersuchung unter Ver-
wendung der in dieser Arbeit bereitgestellten Hilfsmittel, konnten geeignete Kombinatio-
nen solcher Operatoren spéter zur numerischen Simulation fiir die Berechnung von fermio-
nischem Gluino-Glueball-Zustinden im Veneziano-Yankielowicz bzw. Farrar-Gabadadze-
Schwetz-Supermultiplett dienen.



Anhang A

Reguliare Darstellung

Aus der Kenntnis der Verkniipfungstabelle 148t sich fiir jede beliebige, endliche Gruppe G
der Ordnung ng eine reduzible Darstellung konstruieren, die sogenannte requlire Darstel-
lung. Zuvor aber eine Anmerkung zur Verkniipfungstabelle:

Multipliziert man die erste Zeile einer Verkniipfungstabelle nacheinander mit allen Ele-
menten g; der Gruppe G, so erhilt man Zeilen, die aus allen méglichen Permutationen der
urspriinglichen Zeile bestehen. Gleiches gilt fiir die Spalten.

Nun sei 0.B.d.A. g1 = e. Man ordnet die Zeilen der Verkniipfungstabelle derart um, dafl
auf der Hauptdiagonalen der Tabelle stets das neutrale Element steht. Dabei ergibt sich
automatisch, dal die Zeilen mit den zu den Spalten gehorigen Inversen durchnumeriert

werden.
€ 92 g3 e gngfl gnG
e ! e
g e
g3 e
-1
gng—l €
Ing e
Man definiert nun fiir jedes g;, ¢ € {1,...,n4} die regulédren Darstellungsmatrizen durch
[6]
D7 (9:) = 6 (grgig; ') mit 1<kl <ng, (A.1)
wobei
1 falls g¢g;=¢e¢
d(g;) = A2
(9i) { 0 sonst (A.2)

ist. Anders ausgedriickt, falt man fiir jedes einzelne Gruppenelement g; die umgeordne-
te Verkniipfungstabelle als ein ng X ng-Matrixgeriist auf und tragt in ihr die Zahl 1 an
den Plitzen ein, an denen g; auftritt. Alle anderen Gruppenelemente werden durch eine
0 ersetzt. Die Anzahl der ng-dimensionale Darstellungsmatrizen betriagt somit genau ng.
Insbesondere gilt dann, dafl x"%9(e) = ng und x"9(g;) = 0 fiir g; # e ist. Fiir den Beweis,
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daf diese Matrizen {iberhaupt eine Darstellung definieren, sei auf [3] verwiesen. Ohne an
dieser Stelle auf Einzelheiten einzugehen, kann mit Hilfe von Cayleys Theorem! gezeigt
werden, dafl die so entstandene Darstellung treu ist [4].

Theorem Die regulidre Darstellung enthélt jede nicht-dquivalente, irreduzible Darstel-
lung der Gruppe G genau sooft, wie ihre Dimension ist.
Beweis: Nach Formel (12) aus Theorem 24 gilt

1 ot 1 4
ay=—> x" (9)x"(9) = —x" (e)x"“(e) =dy (A.3)
ng P ng ~——
na
und damit das Theorem. O

Da die Dimension der reguldren Darstellung einerseits nach Konstruktion ng ist, ande-
rerseits aber auch gleich der Summe der Dimensionen der in der reguldren Darstellung
enthaltenen irreduziblen Darstellungen sein muf}, gilt zusammen mit obigem Theorem in
der Tat

Z (dy-au) = Z (dy-dyu) = Zdu2 =nag, (A4)
m

© b

und (8) aus Theorem 21 ist bewiesen.

!Theorem (Cayley): Jede Gruppe der Ordnung n ist isomorph zu einer Untergruppe der S,,.



Anhang B

Beweisskizzen zu ausgewihlten
Theoremen aus Kapitel 0 und 4

B.1 Beweisskizzen zu den Theoremen 20, 22, 24 und 25 aus
Abschnitt 0.2

In Beweisidee und Beweisfithrung bin ich in erster Linie [4] gefolgt. Alle Beweise sind so-
weit ausgefithrt, dafl ausgelassene Zwischenschritte leicht selbst zu vervollstindigen sind.

Theorem 20 Fiir zwei beliebige, nicht-dquivalente, irreduzible, unitire Darstellungsma-
trizen gilt:

d t
ne Y D" (9)kiD"(9)jt = S bijon (B.1)
g
mit der Konvention DH! (9)ki = DK (9)ik

Beweisskizze
1. Fall 4 = v: Sei X eine beliebige Matrix und man definiere

ZD 1) XD(g ZD D(g) 2 3" Dt (9) XD(g). (B2)
g9

[ (1): Die Indizes fiir die 4 = v-Darstellung sind hier weggelassen; (2): D(g) unitér]

Man zeigt leicht, da§ M mit allen D(g) kommutiert, und Schurs erstes Lemma erzwingt
also M = All. Wihlt man die dj, x d,-Matrix X = Xg(k,l =1,...,d,) gemédB (Xy);; =
6kjc$h-, gilt mit A = A\g; = const.

4
ZDT mi Xkl ]n = ZDT mlD (=) MeiOmn - (B.S)

[ (3): Wahl von Xj;; (4) 1. Lemma von Schur.]
Summiert man nun fiir n = m beide Seiten iiber n (Spurbildung), so ergibt der mittlere
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Term unter Ausnutzung von D(g)D(g) = D (g 'g) letztlich ngdg und der rechte fiigt
sich zu d,Ag. Also ist insgesamt Ay = (d/ngor)-

2. Fall p # v: Man startet wie im ersten Fall und zeigt, dal D#(g)M = MD¥(g) fiir
alle g € G ist. Schurs zweites Lemma fordert nun M = 0. Nach einem analogen Vorgehen
wie oben erhilt man das allgemeine Resultat. a

Theorem 22 Die Charaktere der nicht-dquivalenten, irreduziblen Darstellungen geniigen
folgenden Relationen:

(i) Z%x‘” (Ci)x"(Ci) = &,  (Orthonormalitiit) (B.4)
- G
() D)X (C) = 6 (Volistindigket) (B.5)
G
"

wobei gemiB Konvention y*' (C;) = (x* (C;))* ist.

Beweisskizze
(i) Ausgehend von Theorem 20 setzt man ¢ = k,j = [ und summiert beide Seiten iiber
beide Indizes. Auf der linken Seite erhdlt man

d T v d T v
"X (9)x" (9) = 2> nix* (Ci) x” (Ci) (B.6)
nG 4 ng <

und auf der rechten Seite entsprechend d,0,, .

(ii) Zur Verifikation bené6tigen wir (ohne Beweis) folgenden

Hilfssatz Sei R* eine irreduzible Darstellung von G. Summiert man R* iiber alle n;
Gruppenelemente einer festen aber beliebigen Klasse C;, so ergibt sich das Resultat

he% RH (h) = d—;Xﬂ c)1, (B.7)

wobei 1l den Identitdtsoperator bezeichnen soll.
Zuriick zum Beweis von (ii). Summiert man (9) aus Theorem 21 {iber Gruppenelemente g

aus der Klasse C; und iiber Gruppenelemente g’ aus C; so erhilt man unter Ausnutzung
des obigen Hilfssatzes auf der linken Seite

dy n; t
) —n“ 7 X (Ci) mix* (Cy)Trl/d, =
p G e

PN ) (0, (BS)
ng m

wéhrend sich die rechte Seite zu n;d;; ergibt. |
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Theorem 24 Zerlegt man eine reduzible Darstellung R in ihre irreduziblen Anteile, so
bestimmt man deren Haufigkeit a, gemifl der Formel

a = iG i x (€)X (C) - (B.9)

n

Beweisskizze
Bildet man die Spur von (5) aus Kapitel 0, Abschnitt 0.2.2, so erhilt man

X(C) =) aux"(C:) (%) (B.10)

I
Nach (i) von Theorem 22 bilden die x” (C;) ein orthogonales Vektorsystem, daher lassen
sich die Entwicklungskoeffizienten a, durch das Skalarprodukt mit x' (Ci) zu
vt (*) vt (Th.22,)

> nax” (C)x (Co) =) nix” (€)Y apx (Ci) =" nga, (B.11)
z % I

bestimmen. O

Theorem 25 Eine Darstellung R mit den Charakteren {x (C;)} ist genau dann irre-
duzibel, wenn

Zn X (C))* =ng . (B.12)

Beweisskizze
Bezeichne a, die Anzahl der irreduziblen Darstellungen R*, die in der Zerlegung von R
enthalten sind. Dann gilt
2 f :
Z n; |x (C))|° = an (auxl‘ (Cz)) (a,,x” (C’Z)) (Summenkonvention!)
(3 (2
= Y ana, > (C) X" (C)
nov )

J

-~

ngdu

= nGZ|au|2- (B.13)
u

Falls nun R &quivalent zu einer irreduziblen Darstellung R, ist, gilt a,, = 0 fiir alle p # &,
und das Kriterium ist selbstverstidndlich erfiillt. Ist andererseits das Irreduzibilitdtskriteri-
um erfiillt, muf} Zu |aﬂ|2 = 1sein. Da a, € {0,1,2,...} ist, muB es ein £ geben mit ag = 1
und a, = 0 fiir alle p # &. O

B.2 Beweisskizzen zu den Theoremen 30 und 31 aus den
Abschnitten 4.1.2 und 4.1.3

Die Beweise finden sich in [1] und sind hier lediglich der Vollstidndigkeit halber aufgenom-
men.
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Theorem und Definition 30 Seien zwei unitére, irreduzible Darstellungen R” und
R” der Dimension d, und d, einer Gruppe G durch ihre Darstellungsmatrizen D*(g) und
D¥(g) gegeben. Dann legen die Matrizen

DH®(g) = D*(g) ® D*(g) (B.14)

fiir alle g € G in eindeutiger Weise eine unitire Darstellung R” ® R~ der Dimension d,d,
fest. Fiir den Charakter XR“ ®R (g) der Darstellung gilt dabei

© v

X% (g) = X% (9xF (9) - (B.15)

Man bezeichnet die Darstellung R” ® R” als direktes Produkt der Darstellungen R" und
R’ der Gruppe G.

Beweisskizze
(i) Sei g1,92 € G, dann gilt

D (g)DPe¥ (gy) L (DM(gy) ® D¥(g0)) (D*(g5) ® D¥(g5))  (B.16)
D (DH(g1)D (g2)) ® (D" (91)D* (g5)) (B.17)

= D¥(g192) ® D"(9192) (B.18)

17“®V(9192)- (B-19)

Die Matrizen D#*®”(g), g € G definieren also eine Darstellung der Gruppe G der Dimen-
sion d,d,.

(ii) Die Unitaritéit der Darstellung R” ® R~ folgt aus der Tatsache, dafl die Darstellungsma-
trizen beider Darstellungen R" und R” unitér sind und damit auch deren direktes Produkt.

(iii) Die Charakter der Darstellung R” ® R” berechnet man ebenfalls mit Hilfe der Dar-
stellungsmatrizen D#®¥(g). Es gilt mit der ein-eindeutigen Zuordnung m < (ij), wobei
lgmgdpdw 1§i§du, 1<j<dy:

dud,
KR (g = Y (D), (B.20)
4.6 ";;1 du
0 (D*(g) ® D*(9))y3, (B.21)
i=1 j=1
4.4 dy  dy
() (D*(9));: (D*(9)) (B.22)
i=1 j=1
= R x® (). (B.23)

|
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Theorem 31 Seien R; und R, Darstellungen der beiden Gruppen G; und G» und
durch ihre Darstellungsmatrizen Dg, (g) und Dg,(g) gegeben. Dann bilden die Matrizen

Dr, R, ((91,92)) mit
Drier. ((91,92)) = Dr.(91) ® Dr,(92) (B.24)

fiir alle g1 € G1 und g» € G4 eine Darstellung der Produktgruppe G1 ® G». Die Darstel-
lung von G1®G> ist unitéir, falls G1 und G5 unitir sind, und treu, falls G; und G» treu sind.

Beweisskizze
Im wesentlichen haben wir zu zeigen, dafl (B.24) in der Tat eine Darstellung definiert.
Seien dazu beliebige g1,g] € Gy und g2, g5 € G2, dann folgt mit (B.24):

Dr,gR, ((91,92)) Drior, ((91,92)) (B.25)

= (Dgr,(g91) ® Dr,(g2)) (D=, (91) ® Dr,(g3)) (B.26)
=2 (DR, (91)Dr,(91)) ® (Dr,(92)Dr,(92)) (B.27)
= Dg,(9191) ® Dr,(9293) (B.28)
P29 Driara (9191 9208) (B.29)
) Dr,er, ((91,92)(91,95)) - (B.30)

Die zweite Behauptung folgt aus der Tatsache, dal das direkte Produkt zweier unitérer
Matrizen wieder unitér ist.

Die dritte Aussage sieht man so: Falls Ry und R, treu sind, existieren zu allen Darstel-
lungsmatrizen die Inversen, und es gilt

(Dr.(91) © Dry(92)) (D71 (91) © Dl () (B31)
= (Dm (91)Dg, (91)) ® (Dm (92) D, (gz)) (B.32)
= 191 (B.33)
= 1 (B.34)
und damit
(DRl (1) ® Dzl(92)) = (DR (1) © Dry(g2) ™" - (B.35)

Bemerkung: In (B.33) und (B.34) sind die Dimensionen der Einheitsmatrizen in geeigneter
Form zu ergénzen. a



Anhang C

Ergianzungen zu Kapitel 2 und 4

C.1 Drehmatrizen der T;-Darstellung

Die irreduziblen, dreidimensionalen Darstellungsmatrizen der kubischen Gruppe O in der
Vektordarstellung T7 bestehen aus den Eintrdgen 0 und 41, wobei in jeder Zeile und Spalte
jeweils nur eine +1 steht. Unbesetzte Felder sind daher als Null-Eintréige zu lesen. Sie sind
klassenweise geordnet. Sie kénnen in Gruppentheoriebiichern nachgeschlagen werden und

sind [1] entnommen.

o Klasse E
1
T (id) = 1
1
e Klasse Cs
1 -1
T(Cw)=| 1 T(Cyp)=| —1
-1 -1
1 -1
T (Cqc) = -1 T (Caq) = -1
1 -1
-1 -1
T (Ca) = 1 T (Cap) = -1
1 -1

e Klasse Cs
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e Klasse Cy
1 -1
T (Cyy) = 1 T (Cuy) = 1
-1 1
1 1
T(Cy)=| -1 T (Cy) = -1
1 1

e Klasse C}

1 -1
T (Cop) = -1 T (Coy) = 1
-1 -1
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C.2 Erstes Beispiel: Darstellungsmatrizen D3

Im Falle positiver C-Paritidt sind die Darstellungsmatrizen bzgl. der geordneten Basis
O; 4, t € {1,2,3} angegeben, fiir negative C-Paritit bzgl. der Basis O; _, i € {1,2,3}
(vgl. dazu Abschnitt 2.3). Aus Platzgriinden werden beide Fille in einer 3 x 3-Matrix

zusammengefafit, die C-Eintrége mit C' € {+1,—1} sind dabei entsprechend der fixierten
C-Paritit zu wihlen.

e Klasse E

e Klasse Cy

YR (Cy) =C = +1

e Klasse Cs

X% (C3) =0
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C C
Dz (Ca) = c Dy (C3) = c
C 1
1 1
Dy (C3}) = C Dy (Cy5) = 1
C 1
e Klasse Cy
X7~z (Cy) = +1
- 1
D7~2 (C4m) = ( 1 > Dﬁ (C4y) = 1
C
1 1
Dj (C4x) = c D;(C)=]| C
1 1
C 1
Dy (C3)) = 1 Dy (C3;) 1
1 C

o Klasse C}
xR (C2) =3 (C = +1) bzw. —1 (C = —1)

c c

C.3 Zweites Beispiel: Darstellungsmatrizen D3

Die Tabelle ist analog zu C.2 zu lesen. Fiir positive C-Paritét ist den Darstellungsmatrizen
die geordneten Basis O; y, i € {1,...,4} zugrunde gelegt, im Falle negativer C-Paritit
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ist O;_, i € {1,...,4} eine Basis (vgl. Abschnitt 2.4). Es werden beide Fille in einer
4 x 4-Matrix zusammengefafit, indem die C-Eintrige mit C' € {41, —1} entsprechend der
fixierten C-Paritét zu wéhlen sind.

e Klasse E

e Klasse Cy

Wie man anhand des Transformationsverhaltens der verdrehten Loops unter der
kubischen Guppe erkennt, &ndern alle vier Operatoren bei Drehungen aus der Klas-
se Cy ihre vorgegebene Orientierung. Die Eintrége sind daher je nach Wahl von C
alle positiv (+1) bzw. alle negativ (—1).

C C
C C
D3 (Coq) = o D3 (Cop) = o
C C
C C
C C
D (Coc) = o D3 (Coq) = o
C C
C C
C C
C C
e Klasse Cs

Bei Rotationen aus der Klasse C3 dndert sich keine der Orientierungen der Loops.
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Die Eintrége sind in beiden Féllen (C' = £1) gleich.

X®(C5) =1
1 1
1 1
D3 (C3a) = 1 Dz (Csg) = 1
1 1
1 1
1 1
Dy (Cay) = ) Dy (Css) = 1
1 1
1 1
_ 1 _ 1
1 1
1 1
_ 1 _ 1
Dy (0371) = 1 Dy (C361) = 1
1 1
e Klasse Cy

Alle Loops wechseln ihre Orientierung. Fiir C-Paritit gleich +1 ist also fiir jeden

Eintrag eine +1 zu setzten, fiir C' = —1 entsprechend eine —1.
xR (Co) =0
c C
prCm=| , ° Dg(Cy)= | © .
C c
c C
ppcw=| ¢ prleh)=|, °©
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e Klasse C}

Die Orientierung der 4 verdrehten Loops bleibt erhalten, d.h. die Eintrige fiir posi-
tive und negative C-Paritdt sind identisch.

X®(C3) =0
1 1
1 1
Dy (Coz) = 1 Dy (Cay) = 1
1 1
1
1
D'fz (C2z) - 1
1

C.4 Drittes Beispiel: Uber-Eck-Plaquetten

C.4.1 Irreduzibler Inhalt der R-Darstellung

Die Zerlegung der Darstellung R der Uber-Eck-Plaquetten in irreduzible Anteile erfolgt
mit Hilfe der Formel (2.17) aus Unterabschnitt 2.3.2:

op = = Snix (COXR(C) (1)

Summiert wird iiber alle fiinf Klassen der 24-elementigen Gruppe O. Thre Michtigkeit
und die Charaktere der irreduziblen Darstellungen entnimmt man der Tabelle in Unterab-
schnitt 0.3.4. Die Spuren iiber die Darstellungsmatrizen D findet man in Unterabschnitt
2.6.1. Man unterscheidet vier Sektoren:

e P=(C=+1:

1
as = 5;(1-1:6+6-1-248-1-046-1-0+3-1-2)=1
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as, = 2—14(1-1-64-6-(—1)-2+8-1-0+6-(—1)-0+3-1-2):0
ag = %(1-2-6+6-0-2+8-(—1)-0+6-0-0+3-2-2):1
S 2—14(1-3-6+6-(_1)-z+8-o-o+6-1-o+3-(_1)-z)=o
or, = %(1-3-6+6-1-2+8-0-0+6-(—1)-0+3-(—1)-2)=1.
e P=+1,C=—1:
as, = i(l-1-6+6-1-(—2)+8-1-0+6-1-0+3-1-2):0
an, = 2—14(1-1-6+6-(—1)-(—2)+8-1-0+6-(—1)-0+3-1-2)=1
ag = 2—14(1-2-6+6-0-(—2)+8-(—1)-0+6-0-0+3-2-2):1
or, = 2—14(1-3-6+6-(—1)-(—2)+8-0-0+6-1-0+3-(—1)-2)=1
— 2—14(1-3-6+6-1-(—2)+8-0-0+6-(—1)-0+3-(—1)-2):o.
e P=—-1C=+1
as = i(l-l-GJrG-1-0+8-1-0+6-1-0+3-1-(—2))=0
an, = 2—14(1-1-6+6-(—1)-0+8-1-0+6-(—1)-0+3-1-(—2))=0
ag = 2—2(1-2-6+6-0-0+8-(—1)-0+6-0-0+3-2-(—2)):0
or, = 2—14(1-3-6+6-(—1)-0+8-0-0+6-1-0+3-(—1)-(—2)):1
ar, = 2—14(1-3-6+6-1-0+8-0-0+6-(—1)-0+3-(—1)-(—2)):1.
e P=C=-1
Die Summanden (# 0) sind identisch zum dritten Fall P = —1,C = +1.
Man erhélt also fiir die vier Félle
R = AfToETToT " (C.2)
R A" @ Et 0T (C.3)
R = T eT, ' (C.4)
R = T, ©T, . (C.5)

Bemerkung: Wer den Ausfithrungen in 2.6.1 kein rechtes Vertrauen schenkt und in (C.1)
doch lieber iiber alle zehn Klassen E,Cs,Cs,...,I1Cy, IC? der vollen kubischen Gruppe
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summieren mochte, hat in allen Summen der obigen Rechnung den fiinf Summanden wei-
tere fiinf hinzuzufiigen und die Gruppenordnung auf 48 zu verdoppeln. Im Falle positiver
P-Paritét ist sowohl x* (C;) = x* (IC;) (vgl. Charaktertabelle von Oy in 0.3.4) als auch
X7~2 (Ci) = X7~2 (IC;) (Begriindung s. 2.6.1). Die fiinf weiteren Terme sind also mit den
ersten fiinf identisch, da die Summe jetzt mit 2 x 24 = 48 normiert wird, dndert sich am
Ergebnis nichts. Fiir den Fall P = —1 gilt x* (C;) = —x* (IC;) (vgl. noch einmal mit
der Charaktertabelle von Oy) und xR (Ci) = —x® (IC;). In den fiinf letzten Summanden
treten also zwei Minuszeichen auf, die sich gerade wegheben. Das Endresultat bleibt also
unverdndert.

C.4.2 Konstruktion einer Orthonormalbasis (Teil IT)

zweiter Fall: P = +1, C = —1

-2 1 -1 -1 1

-1 0 -2 -1
1 -1 1 -1 -2
-1 1 -1 1 0 -2

O =

Durch Diagonalisierung findet man

e die Eigenwerte: -6, 0, 0, -2, -2, -2

e und die zugehorigen Eigenvektoren:

( 1 — 1 0 0 1\)
-1 1 -1 0 0 1
1 0 -1 0 1 0
82— -1 ) 0 ) 1 ) 0 ) 1 ) 0 (07)
-1 -1 0 1 0 0
L\ 1 0 1 0 0/

Der Darstellungsraum der Darstellungsmatrizen D zerfillt in drei invariante Unterrdume
der Dimensionen 1, 2 und 3. Fiir die Darstellung R gilt

R=A] ©oE" oT/ . (C.8)

Die Zerlegung ist somit abgeschlossen. £ bildet also eine Basis aus Loop-Operatoren fiir
A;'_, E*™~ bzw. T1+_.
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vierter Fall: P =C = —1

0 1 1 -1 -1

C(Cs) = C.9
(C2) -1 0 0 1 -1 (C.9)
-1 -1 -1 1 0 0
-1 -1 1 -1 0 0
Durch Diagonalisierung findet man
o die Eigenwerte: -2, -2, -2, 2, 2, 2
¢ und die zugehorigen Eigenvektoren:
( 1 0 -1 0 -1 1\)
0 1 1 -1 0 -1
-1 1 1 1 -1 1
€= oo '] 2 /['| of] of] 1 (C.10)
0 1 0 0 1 0
L 1 0 0 1 0 0/ )

Der Darstellungsraum der Dy zerféllt in zwei invariante Unterrdume der Dimension 3.
Fiir die Darstellung R gilt
R=T, &T, . (C.11)

Die Zerlegung ist damit abgeschlossen. Mit Hilfe der reduzierten Darstellungsmatrizen
AD,,i(g)A’1 der Klasse C5 findet man z.B. fiir das Element Cy, € Cs:

0 0 -1
1 -1 -1
_ -1 0 0
ADj; (Caq) A = 00 1 |- (C.12)
11 -1
10 0

Oberer und unterer Block haben dabei Spur —1 bzw. +1.

Die Charaktertabelle aus Unterabschnitt 0.3.4 ergibt x™1 (C3) = —1 baw. T2 (Cy) =
+1. Also bilden die ersten drei Vektoren aus £, eine Basis aus Loop-Operatoren fiir die
Darstellung T, ~ und die restlichen drei entsprechend eine Basis fiir T, ~ (vgl. dazu auch
die Ausfithrungen zum dritten Fall in Unterabschnitt 2.6.3).

C.5 Irreduzible Zerlegung der Darstellungen R = ﬁkpc iiber
Majorana-Plaquetten-Operatoren

Die Vorgehensweise bei der Zerlegung der Darstellungen 7?,5 € in ihre irreduziblen Anteile
habe ich in Unterabschnitt 5.4.3 beschrieben. An dieser Stelle seien daher lediglich die
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fehlenden Rechnungen nachgetragen. Da in (5.64) die Charaktere x&' (C;) fiir C; = 12Cy
und C; = 6C? Null ergeben, sind die zugehdrigen Summanden (zweiter und letzter) in den
Rechnungen nicht explizit aufgefiihrt.

erster Fall: P =C = +1

Rhs=ETH, v=A" ... T,
1 1
. 1 1
a = —{1-{ 2} [2-24+2)]+1- 2 »-[2-(-2-2)]+
. 3 3
: 3 3
T
1 1
1 1
+8-¢ —1 p-[(-1)- (-1 =1)]+8-{ =1 »-[(-1)-(1+1]+
0 0
0 0

0
+6-{ i J0-(—vV2=vDl+6-{ i }-[0-(vV2+ V)| =1
0
Rhy =BT, v=G ", G HT
1 2 -2
“a, = = 421 [2-2+2)]+1- —z 2 (-2-2)]+
G2 B
H
-1
+8-4 —1 ¢ [(-1) - (=1=D]+8-¢ 1 p-[(-1)-A+1)]+
1 -1
0
+6-{ b0 (—v2-vR+6-{ 1 0 (V2+ VD) =S 0
2

Es ergibt sich

7%;--1- — gttt ® {Gil--l- D GiH_} — g+t D Htt =ogtt . (0.13)
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1 1
1 1

T E[l- ; B-(2+2)]+1- ; B3 (-2-2)] +
3 3

+6-0 0 b-[(-1)-(—V2-v2)]+

69 0 -[(1)-(ﬁ+ﬁ>]]—{z

pE ottt ot
Rb =T, v=GH,Gy T, HHF
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Man erhilt

RIT=T"o{GTeG/™} = GfToGitTeoH "o HT (C.14)
= 2G5 T®2HTT. (C.15)

zweiter Fall: P = +1,C = —1

Rhs=A ,v=A",..., T,
1 1
. 1 1
“rog = 4—81 2 p-[1-(242)]+1-¢ 2 1-(-2-2)]+
3 3
Az 3 3
E
T
T,
1
1
+8-¢ -1 p-[1-(=1-1)]+8- —1 »-[1-(1+1)]+
0 0
0 0
1
-1
+6 - 0 ¢-[(-1)- (—vV2-V2)]
1
-1
1
-1 0
+6 - 0 ¢-[(-1)- (V2+V2)]| =1 :
1 0
-1
Rhs=Ay ,v=Gf,Gy H™~
. 2 )
a = —(1-¢{ 2 3-1-(2+2)]+1-{ =2 p-[1-(-2-2)]+
Gy 48 A 4
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-1 1
+8-¢ —1 $+[1-(-1-1)]+8 1 ¢-[1-(1+1)]
1 -1
V2
+6-9 V2 (1) (V2= V24
0
V2 0
+6-4 —v2 3-[(-1)-(vV2+V2)]| =X 2
0 0
Somit gilt
R =47 @{Gf ©G{ }=G; &Gy =2G; ®2H" . (C.16)
Rhs=ET", v=A",..., T, und Rbs=Et, v=G{ ,G§ ,H*"

Die Anwendung der Formel (5.64) liefert die gleichen Terme wie im ersten Fall fiir ﬁgs =
E*T. Das Endresultat kann demnach in analoger Weise mit

Ry =E""o{G/ oG }=H'"¢oH'"" =2H"" (C.17)

iibernommen werden.

Rhs =T ,v=A47",..., Ty~
1 1
1 1 1
a = —1-{ 2 V- B-2+2)]+1-{ 2 $-[B-(-2-2)]+
Ay 48
_ 3 3
: 3 3
T3
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1
-1 0
+6 0 p-[1-(vV2+V2)] =X
1 0
-1
Rhs =T ,v=G{ ,Gy ,H*~
. 2 -2
“ q = —[1 2 5-[3-(2+2)]+1-{ —2 »-[3-(-2-2)]+
1 48
Gy 4 —4
H

V2 2
+6-{ —V2 -[1-(\/§+\/§)]+]= 0
0 2

Man findet demnach

R =T "0{G"®G"} = G/"oG,"oH" o H" (C.18)
= 2G; ®2H'. (C.19)
dritter und vierter Fall: P = —1,C = +1
ﬁgsle_i,uzAl_i,...,T;i und ﬁgsle_i,yzGl_i,G;i,H’i
bzw.
ﬁgS:Tz_i,u:Al_i,...,Tz_i und ﬁgS:TQ_i,V:Gfi,Gz_i,H_i

Die resultierenden Summen sind mit denen der ersten beiden Félle (fiir ﬁﬁs =T, baw.
REg = T, ) identisch. Man erhilt

RiE=T*e{G; 06"} = ¢G;*eG,*oH *oH * (C.20)
= 2G{T@2H . (C.21)
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bzw.

RyF=Ty*eo{citoc*} = G, oG, *oH *oH* (C.22)



Anhang D

Gruppen SO(3) und SU(2)

D.1 Drehgruppe SO(3)

Die Gruppe SO(3) besteht aus der Menge aller reellen 3 x 3-Matrizen R mit den Eigen-
schaften

R'R = 1 (D.1)
detR = 1. (D.2)

Aufgrund obiger Forderungen vermittelt die Matrix R Rotationen um beliebig wéhlbare
Achsen und Winkel im dreidimensionalen Raum, weshalb sie auch als Drehgruppe be-
zeichnet wird. Die SO(3) besitzt demnach unendlich viele Elemente und ist zudem nicht-
abelsch, da die Hintereinanderausfithrung von Rotationen i.a. nicht kommutativ ist. Aus
der Orthogonalitdtsforderung (D.1) folgt, da$ von den neun Matrixeintrigen nur drei frei
wéhlbar sind, als Parameter nehme man 61, 65, 65. Die SO(3) bildet also eine Lie-Gruppe,
und die Matrizen R lassen sich in der Form

R=eT? (D.3)

schreiben, wobei man fiir die Generatoren 7%, a = 1,2, 3 beispielsweise

00 0 00 1 0 -1 0
t=100 -1], 7= 0001, =1 00 (D.4)
01 0 -1 .0 0 0 00

findet. Unter Verwendung des total antisymmetrischen Tensors dritter Stufe €y, mit der
Normierung €123 = 1 ergibt sich in kompakter Form

(Ta)bc = —€apc - (D5)

Mit Hilfe der Rechenregeln des total antisymmetrischen Tensors dritter Stufe erhdlt man
schlieBlich die Vertauschungsrelationen der Generatoren der Drehgruppe

[Tas Tb] = €abeTe - (D.6)
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Setzt man J* :=i7% a = 1,2,3, so ergeben sich die hermiteschen (Drehimpuls-) Genera-
toren der SO(3), fiir die

(Ja)bc = —l€qbc (D7)
[Janb] = i€abee (D.S)

gilt, so daf} die Matrizen
R — ¢i00° (D.9)

eine unitidre Darstellung der SO(3) bilden. Zusammen mit der Jacobi-Identitét
[Jas [Tos Jell = [[Jay Jbls Je] + [ by [Jas Tl (D.10)

definiert (D.8) die Lie-Algebra der Gruppe SO(3)!. Thre irreduziblen Darstellungen kénnen
auf rein algebraischem Wege mit Hilfe der Eigenwerte j(j+1), 7 =0,1/2,1,3/2,2,5/2,...
des Casimir-Operators J? klassifiziert werden, ihre Dimensionen ergeben sich dabei zu
2(j + 1). Details findet man z.B. in [41]. Fiir ganzzahlige j erhilt man die Tensordarstel-
lungen der Lie-Algebra. Die halbzahligen j fiihren auf die Spinordarstellungen.

D.2 Uberlagerungsgruppe SU(2)

Die Gruppe SU(2) wird aus komplexen 2 x 2-Matrizen gebildet, die den Einschrinkungen

vut = 1 (D.11)
detU = 1 (D.12)

unterliegen. Von den sechs reellen Parametern lassen sich lediglich drei frei wihlen, so dafl
ein Element der SU(2) in der Form

U = i7" (D.13)

geschrieben werden kann. Die Generatoren ¢® sind dabei die drei Pauli-Spin-Matrizen

01=<2(1)>, 02=<g _Oz>’ 03=<é _01> (D.14)

Da fiir die Pauli-Matrizen
[aa,a”] = 2ieape0” (D.15)

gilt, erfiillen sie mit der Entsprechung J, = 0%/2 die gleichen Vertauschungsrelationen wie
die Generatoren J* der SO(3). Beide Gruppen stimmen also in ihrer Lie-Algebra iiberein,
und die irreduziblen Darstellungen der Lie-Algebren sind somit identisch.

Zu den irreduziblen Darstellungsmatrizen der Elemente ¢ der Lie-Gruppe SU(2) gelangt
man nun durch Exponentierung der Erzeugenden ihrer einparametrigen Untergruppe. Die
Erzeugenden entsprechen dabei gerade den Generatoren, die die zugehorige Lie-Algebra

'Die Lie-Algebra der SO(3) wird oftmals als so(3) bezeichnet.
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(hier also su(2)) erfiillen. Fiir Details verweise ich auf [20,28]. Die irreduziblen Dar-
stellungen R’ der Drehgruppe SO(3) erhilt man dann durch die zusétzliche Forderung
R’ (—id) = 1 mit —id € SU(2) aus ihrer universellen Uberlagerungsgruppe? SU(2).

Unter Beriicksichtigung von
{aa,a”} — 25,11 (D.16)

ergibt eine Reihenentwicklung der Exponentialfunktion (D.13)

i10°0° _ 6 (bb) (O
e'2 = cos <2> +z(an)51n<2> , (D.17)

wobei 6% = n%0 mit ), (n%)? = 1 zu setzen ist. Die SU(2) besitzt demnach eine 4-
Periodizitit, da aufgrund des Faktors 1/2 in den trigonometrischen Funktionen fiir § = 27

und n® beliebig
U(2r) =-1 (D.18)

und fiir 0 = 4n
Udr) =1 (D.19)

gilt. Dagegen zeigt man mit Hilfe einer entsprechende Entwicklung von (D.9), dafi die
SO(3) eine 27-Periodizitat aufweist. Damit ergibt sich wegen

U@ +2r) — ~U@®) und  R(@+21) — R(O) V6, (D.20)
U@B+4r) — U@B) und RO+ 4x) — R(6) VO, (D.21)

eine 2:1-Abbildung
{U,-U}«+— R, (D.22)

bzw. in mathematischer Formulierung, ein Homomorphismus SU(2) — SO(3) mit einem
Kern bestehend aus zwei Elementen. Dabei liefert der Homomorphiesatz die Beziehung
SO(3) = SU(2)/Zs .

2Auf den Begriff der universellen Uberlagerungsgruppe soll hier nicht niher eingegangen werden. Fiir
eine genaue Definition wiren gewisse Hilfsmittel aus der Topologie erforderlich, auf deren Bereitstellung
wir an dieser Stelle verzichten wollen. Eine mathematische Einfithrung in die Theorie der Lie-Algebren und
ihren Darstellungen bietet z.B. [42].



Anhang E

Dirac-Matrizen

E.1 Dirac-Matrizen in euklidischer und minkowskischer For-

mulierung

Zwischen den euklidischen Dirac-Matrizen und denen im Minkowski-Raum besteht der
folgende Zusammenhang [12]:

N fir §j=1,2,3 (E.1)
gukl = _jymink. _ mink. (E.2)

E.2 Eigenschaften euklidischer Matrizen

Fiir die euklidischen Dirac-Matrizen gelten die folgenden Eigenschaften [43]:

v o= 1 (E.3)
o= (E.4)
{7[“7V} = 25uu]1- (E5)
Mit den zuséatzlichen Definitionen
Y5 = V1727374 (E.6)
1
Ouy = 5[7#7'71/]
ergibt sich
5 o= 7 (E.8)
% =1 (E.9)
Vst = 0, (E.10)
sowie
(E5) 1
ow = 5 (= (2001 = 1)) (E.11)

= Y — Wl (E.12)
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Dirac-Matrizen

Fiir weitere Relationen in diesem Kontext konsultiere man [43].
Eine mogliche Darstellung der Dirac-Matrizen ist nach [12]
0 —ioj .
i = ) =123 ,
Vi ( io; 0 > J
wobei mit ¢; die Pauli-Matrizen gemeint sind (vgl. Anhang D).

Fiir v4 und v5 = v1v2y374 = 'yg wéahlt man in der Dirac-Darstellung

== gy un »s=(

in der Weyl-Darstellung dagegen

=y = 0 1 und =
Yo = Y4 = 1 0 Y5 =

Fiir den Ladungskonjugationsoperator gelten die folgenden Zusammenhénge [43]:

ct = —-C

ct = ¢!
C’y,,C'_1 = —’yﬁ
0717;10 = —y
CysC™' = —f
CopwC bt = —afw
C_lawa = —Ou -

In der Dirac-Darstellung kann die Ladungskonjugationsmatrix als

—102 0

gewihlt werden. In der Weyl-Darstellung findet

Verwendung.
In darstellungsfreier Form findet man [28]

- _mink. eukl.
2

C =iy = —

Yo -

(E.13)

(E.14)

(E.15)

(E.23)

(E.24)

(E.25)



Anhang F
Majorana-Spinoren

Dirac-Spinoren sind aus zwei Weyl-Spinoren zusammengesetzte Spinoren, die in der Weyl-

_( Ye
() -

besitzen, wobei ¥y, und g je zweikomponentige Weyl-Spinoren darstellen, die sich nach

Darstellung die Form

der linken bzw. rechten Fundamentaldarstellung der Lorentzgruppe transfomieren.

Im Minkowski-Raum erhélt man einen Majorana-Spinor, indem man an einen allgemeinen
Dirac-Spinor die Bedingung
Y =4l =9'C (F.2)

stellt. Dabei ist in minkowskischer Formulierung

70 = (j‘l g) (F.3)

und C' die Ladungskonjugationsmatrix.

Ein Majorana-Spinor ,s geht also wegen (F.2) bei Ladungskonjugation in sich selbst
iiber, also

Ui = Yu (F.4)

und besitzt daher anstatt der vier komplexen Freiheitsgrade eines Dirac-Spinors lediglich
zwei komplexe bzw. vier reelle Parameter. Die Ladungskonjugation ist dabei durch [28]

© = Ot (F.5)

C= ( “;2 _?02 ) (F.6)

definiert.
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Gibt man die Hermitizitidtseigenschaft der minkowskischen Formulierung auf, so 148t sich
ein euklidischer Majorana-Spinor durch die Relation

X =\C (F.7)

definieren. In der Weyl-Darstellung schreibt sich damit der Majorana-Spinor gemif

A:(éﬁ), (F.8)

wobei j4 ein linkshindiger Weyl-Spinor ist. Fiir weitere Anmerkungen zu Majorana-
Spinoren in euklidischer Formulierung konsultiere man [43] und die darin angegebenen
Referenzen.

An dieser Stelle seien lediglich zwei Rechenregeln fiir Grassmann-wertige Majorana-Spinoren
1 und ¢ angegeben, wobei die erste in in Kapitel 5 Verwendung findet:

Yo = ¢ (F.9)
"Z')’u(ls = _‘l_s')’;ﬂp (F.IO)

Beide Relationen weist man mit Hilfe der definierenden Eigenschaft des Ladungskonjuga-
tionsoperators C nach:

v = (P¢)t
(¥*Ce)’
—¢'Cly
¢'Cyp
= ¢, (F.11)

bzw.

Pyd = (yue)
= (W'Cyue)
—¢™yLChyp
¢'v,CY
_¢t0'7;ﬂ/’
= —Pu. (F.12)



Anhang G

Lorentztransformationen

Eine Lorentztransformation in minkowskischer Formulierung ist eine linerare Transforma-

tion des Vierervektors z# = (20, 2!, 22, z3)

ot — o'* = ot z¥ mit a, eR, (G.1)

die der Bedingung

2? =2 = g, 7t2” = 2tz (G.2)

geniigt. Dabei ist g,, = g,, = diag(1,—1,—1,—1) die Metrik im Minkowski-Raum. Der
kovariante Vierervektor z, = g,,x" transformiert sich in analoger Weise gemf

z, — ), = a,"z" . (G.3)

Fiir a#, gelten die folgenden Relationen [35,40,44]:

@ Ht, = at (G.4)
atraf, = 6F (G.5)
ay"at, = 6, (G.6)
guwat,d”s = gpr . (G.7)

Aufgrund des Relativitdtsprinzips und der daraus resultierenden Lorentz-Kovarianz-Forderung
der Dirac-Gleichung ergibt sich fiir das Transformationsverhalten der vier Komponenten
eines Dirac-Spinors unter Lorentztransformationen der lineare Zusammenhang

Yi(z') = Sijihj(@) (G.8)
mit 4,7 = 1,...,4. Die 4 x 4-Matrix S = S(a) hat dabei die Bedingung
S~ a)y*S(a) = at,y (G.9)

zu erfiillen.

Wihlt man gemifl der Standarddarstellung

o = ( g _01 ) , (G.10)
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so gilt fiir die Matrix S insbesondere die Beziehung [35]
ST = ’)/05_1’)/0 . (G.ll)

Fiir den hermitesch-konjugierten Spinor ¢! und den konjugierten Spinor! ¢ = ¢!~° erhalt
man unter Lorentztransformation [35]

¥ (z')1 = ¢l (2) ST (G.12)
bzw.
P) = )y
(1Dt ()50
(G2 gt (2)y0 5
= Y(z)S7t. (G.13)

In euklidischer Formulierung ist dagegen die Definition ¢ = 1!+, nicht mehr giiltig, so
daf} die Herleitung fiir die Transformation (G.13) des konjugierten Spinors fiir euklidische
Spinoren nicht iibernommen werden kann [45]. Stattdessen setzt man wie im Falle der
euklidischen Majorana-Spinoren (vgl. Anhang F) fiir den konjugierten Spinor

v =ytC . (G.14)
Damit gilt unter Lorentztransformation

P'(z') = ¢'(«)'C
(Sy(z))' C
= ol(z)S'C
= (z)CiSIC . (G.15)

Fiir die Ladungskonjugationsmatrix C' und die Lorentz-Transformationsmatrix S findet
man als Analogon zu Gleichung (G.11) in euklidischer Formulierung

St=cstct (¥, (G.16)
so dafl wie im Minkowski-Fall letztendlich wieder
P'(z") =4St (G.17)

gilt.

Tn der Literatur findet man auch die Bezeichnung adjungierter Spinor.



149

(¥) Begriindung:

Im Falle infinitesimalen Transformationsparameters €,, mit €,, = —¢,, wird
die Lorentztransformation von Spinoren durch die folgende Matrix beschrieben
(vgl. [46]): ‘

S~1— %EWUW, €w ER. (G.18)

Damit ergibt sich fiir kleine Abweichungen von der Identitét

]
1+ —€pou (G.19)

-1
S 4

Q

)
St~ 1 - —eno

i (G.20)

t
pv
Wegen
clstc = ¢! {11 - ie,wafw} c
i -1 _t
= 1 - ZEIU, C U;UIC

—Ouv

1
= 1+ Zew,au,,

= 5! (G.21)

erhilt man somit

st=cs 'ct. (G.22)
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