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Einleitung

Die Elementarteilchen und ihre fundamentalen Wechselwirkungen, die elektroma-
gnetische, schwache und starke Wechselwirkung, lassen sich mit hoher Genauig-
keit durch das Standardmodell beschreiben. Alle Voraussagen des Standardmodells
wurden bisher experimentell bestétigt. Dennoch ist das Standardmodell nicht in
der Lage, alle offenen Fragen zu beantworten. So besteht z.B. das sog. Hierarchie-
Problem, das daraus resultiert, dass das Standardmodell auf einem Produkt aus drei
Eichgruppen (SU(3) x SU(2) x U(1)) basiert, mit unterschiedlichen Kopplungskon-
stanten in jedem Sektor. Es hat sich herausgestellt, dass es nicht moglich ist das
Standardmodell so zu erweitern, dass sich die Kopplungen auf einer grofleren Skala
vereinigen. Weiterhin vermag das Standardmodell nicht zu erklidren wieso die ele-
mentaren Fermionen in drei Familien mit vollig unterschiedlichen Massen auftreten.
Es gibt noch weitere Phénomene die das Standardmodell nicht zu erkléren vermag,
wie z.B. dunkle Materie.

Aufgrund dieser Probleme war man bestrebt das Standardmodell zu erweitern, des-
sen Teilchenspektrum durch die Poincaré-Gruppe und ihrer zugehorigen Lie-Algebra
festgelegt wird. Die durch die spezielle Relativitéitstheorie motivierte Poincaré-Alge-
bra lasst sich jedoch nicht durch eine innere Lie-Algebra erweitern, wie S. COLEMAN
und J. MANDULA([3] gezeigt haben. Lésst man jedoch auch antikommutierende Ge-
neratoren zu, dann lisst sich die Poincaré-Algebra sinnvoll erweitern zu einer sog.
Lie-Superalgebra.

Damit erhélt man als Erweiterung des Standardmodells supersymmetrische Theo-
rien, die in der Lage sind einige Probleme des Standardmodells zu lésen oder zu-
mindest zu entschérfen. So tritt z.B. das Hierarchie-Problem in einer supersymme-
trischen Quantenfeldtheorie nicht auf. Auch liefert die Supersymmetrie Ansétze zur
Vereinheitlichung aller fundamentalen Kréfte inklusive der Gravitation. Dies ist je-
doch vermutlich nur im Rahmen einer supersymmetrischen Stringtheorie moglich.
Die Supersymmetrie ist eine Symmetrie zwischen Fermionen und Bosonen, d.h. je-
des Teilchen erhélt einen supersymmetrischen Partner, mit einem um % reduzierten
Spin, aus der anderen Gruppe. Der einfachste Fall fiir eine supersymmetrische nich-
tabelsche Eichtheorie ist die N=1 SU(2) Super-Yang-Mills-Theorie, mit der sich die-
se Arbeit beschéftigt. In den letzten Jahren hat die DESY-Miinster Kollaboration
im Rahmen von Gittersimulationen Untersuchungen zum Massenspektrum dieser
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Theorie gemacht. Dabei wurden bisher Spin 0 und Spin % Zusténde untersucht.
Diese Arbeit beschéftigt sich mit der Simulation von Spin 1 Zustédnden auf dem Git-
ter. Insbesondere werden Gluino-Gluino Bindungszusténde, die bisher nur mit Hilfe
lokaler Operatoren untersucht wurden, durch ausgedehnte Operatoren beschrieben.
Dafiir wurde das von C. GEBERT geschriebene Programm um Messroutinen zur Be-
stimmung der Massen von Spin 1 Gluino-Gluino Bindungszusténden erweitert. Die
Zustande werden dabei auf zwei verschiedene Weisen realisiert, zum einen durch
Operatoren, die beide Majorana-Teilchen an den selben Gitterplatz setzen, zum an-
deren durch rdumlich ausgedehnte Operatoren, bei denen die Majorana Teilchen
auf benachbarten Gitterplitzen lokalisiert sind. Diese Verfahren werden auf ihre
Vor- und Nachteile untersucht.



Kapitel 1

Einfiihrung in die Supersymmetrie

Auch wenn die Supersymmetrie noch nicht zweifelsfrei nachgewiesen ist, so gibt
es doch einige Indizien, die fiir eine supersymmetrische Beschreibung der Natur
sprechen (vgl. Einleitung). Durch die Einfiihrung einer Supersymmetrie entstehen
neue Multipletts, in denen Teilchen mit unterschiedlichem Spin vereinigt werden.
Insbesondere handelt es sich um eine Symmetrie, die bosonische und fermionische
Freiheitsgrade vermischt.

1.1 Graduierung und Poincaré-Superalgebra

1.1.1 Poincaré-Algebra

Das Elementarteilchenspektrum einer relativistischen Quantenfeldtheorie ergibt sich
aus den irreduziblen Darstellungen der Poincaré-Gruppe P. Diese setzt sich aus
den Verschiebungen im Minkowski-Raum und den Lorentztransformationen zusam-
men. Die zugehorige Lie-Algebra wird von den sechs Generatoren der Lorentzgruppe
M* = —M"" und den vier Generatoren der Translationsgruppe P* erzeugt und
wird durch Vertauschungsrelationen der insgesamt zehn Generatoren

[P, P'] = 0
(PP M) = i (" P” — " P")
[M™ M) = —i(g"" M — g" M — g"? M* + g7 M*"?)

festgelegt.
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1.1.2 Casimir-Operatoren

In der Quantenfeldtheorie konnen alle physikalischen Zustdnde nach den Eigen-
werten von Casimir-Operatoren klassifiziert werden. Die Casimir-Operatoren einer
Gruppe sind dadurch definiert, dass sie mit allen Generatoren der Gruppe vertau-
schen.

Die Casimir-Operatoren der Poincaré-Gruppe sind:

P> = pp*
w2 = W,Wwr,

mit dem Pauli-Lubanski-Vektor W, = ¢,,,0 P*M?”.

1.1.3 Irreduzible Darstellungen

Aus den oben angegebenen Casimir-Operatoren ergeben sich verschiedene irreduzi-
ble Darstellungen der Poincaré-Gruppe. Dabei sind zwei dieser Darstellungen von
Bedeutung, die massive Darstellung, zur Beschreibung massebehafteter Teilchen,
und die massenlose Darstellung fiir massenlose Teilchen.

1. Massive Darstellung: P? = m2c®> > 0

W? = —m*c*S*
Sk ist der Generator der inneren Drehungen.

Fiir die Eigenwerte ergibt sich:

(NN V]

1
W? = —m?c®s(s+1) mit meRunds:O,§,1,

goe e .

Die Darstellung wird durch die Masse m und den Spin s charakterisiert. Sie
lésst sich mit massiven Elementarteilchen identifizieren.

2. Massenlose Darstellung: P? = 0 und W?2 = 0

1.3
WH =hP" mit h::tsundSZO,é,l,a,... ,
wobei h = Wy /P, ebenfalls ein Casimir-Operator ist. Die Poincaré-Invariante
h wird als Helizitit bezeichnet. Sie ,ersetzt® bei massenlosen Teilchen den

Spinbegriff.
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3. Die zwei weiteren irreduziblen Darstellungen sind physikalisch irrelevant. Eine
beschreibt massenlose Teilchen mit kontinuierlichem Spin (s € R), die andere
Teilchen, die sich mit Uberlichtgeschwindigkeit bewegen (P, P* <0).

1.1.4 Z,-Graduierung der Poincaré-Algebra

Das Spektrum der Elementarteilchen lésst sich durch eine Veréinderung der Poincaré-
Algebra erweitern. Dies ist nicht im Rahmen einer Lie-Algebra moglich, sondern nur
wenn man zusitzlich zu den Kommutatorrelationen auch Antikommutatorrelationen
zwischen den Generatoren zulésst.

Eine solche Algebra ist die Zs-graduierte Algebra:

G =G0 D9,
mit:
T 0Yj € Glitjmoaz)y mit 4,7 € {0,1} und z; € Gy, ¥i € G-

Eine graduierte Zs-Lie-Algebra erhalt man mit:

Supersymmetrie : z;0y; = —(—1)"y; o x;
Jacobi-Identitit : @y o (y;0 zp) (—1)F™
110 (2 0 1) (=) 4 2, 0 (21, 0 1) (1)1,

Damit erweitert man die Poincaré-Symmetrie durch so genannte SUSY-Generatoren

Q.(a=1,...,4), mit den Vertauschungsrelationen:
[P*, Q4] = 0
1
[M!Wa Qa] = _(éguy)abe

{Qaa Qb} = _2<7M0)abpu )

mit o = & [y#,4"].

1.1.5 Irreduzible Darstellungen der SUSY-Algebra

Die irreduziblen Darstellungen dieser Algebra erhilt man wiederum aus den zu-
gehorigen Casimir-Operatoren. Diese lauten im Fall der SUSY-Algebra wie folgt:

P> = p.p*
c* = C,C"

mit
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Cw = Y,P,-Y,P,

1
Yo = Wit X,

1.
X, = 5@%75@

Dabei sind die Qs so genannte Weyl-Spinoren.
Der Vierervektor Y, erfiillt die relativistische Drehimpulsalgebra:

Y0, Y] = i€p0 PPY7

im Ruhesystem ergibt sich:

Y3, Y] = imeiYs
Damit stellt %37 eine Verallgemeinerung des Drehimpulses dar (auch Superspin ge-
nannt), mit den Eigenwerten:

(Y/m)> =y(y+1) mit y=0,,1

N W

3 5 PARERER

| —

Fiir den Casimir-Operator im Ruhesystem C? = —2m?2Y? ergibt sich:
1 .3

C? = 2miy(y+1) mit y= 0,5,1,5,...

Im massiven Fall wird somit jede irreduzible Darstellung der SUSY-Algebra durch
das Paar (m,y) charakterisiert, wobei man die Zusténde innerhalb eines solchen
Supermultipletts zum einen nach

e den Eigenwerten y3 der z-Komponente des Superspins %17' mit —y <y3 <y,
und zum anderen wegen [Ws, C,,C*] = [W3,Y3] = 0 nach

e den Eigenwerten s3 der z-Komponente des Spins %W mit s3 € {yg, Y3 + %, Y3z —
und nochmals zweifach entartetem s3 = y3,

klassifiziert.

Im massenlosen Fall, P? = 0 und W? = 0, tritt die Helizitit h wieder an die Stelle
der z-Komponente des Spins s, und man erhilt zwei Zustéinde, die mit A und h =

h+ % bezeichnet sind. Fiir C'PT-invariante Theorien hat man den obigen Zustédnden

zwei weitere hinzuzufiigen. Fiir ihre Helizitdten ergibt sich dann hopy = —h und
Fopr == —h— 4,

1.1.6 Chirales und Vektor-Supermultiplett

In diesem Unterabschnitt sei kurz auf die zwei einfachsten Darstellungen der SUSY-
Algebra eingegangen.

N[
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Chirales Supermultiplett

Fiir y = 0 erhélt man das chirale Supermultiplett. Im massiven Sektor besteht es

aus drei Teilchen:

e cinem Spin-3-Teilchen (Dublett mit s3 = +3)
e cinem skalaren Teilchen (Boson mit Spin 0)

e cinem pseudoskalaren Teilchen (Boson mit Spin 0) .

Mit Hilfe des (massiven) chiralen Supermultipletts lassen sich beispielsweise Quarks
und Leptonen sowie ihre Superpartner Squarks und Sleptonen beschreiben. Dariiber
hinaus ordnet man die Higgs-Teilchen und ihre SUSY-Partner dieser Darstellung zu.

Das massenlose chirale Supermultiplett gleicht seinem massiven Analogon. Es bein-
haltet ein skalares Teilchen (A = 0) und einen Weyl-Spinor (h = 1/2). Fiir eine
Lorentz-invariante Theorie hat man jetzt noch die beiden durch C' PT-Transformation
zu bestimmenden Partner zu berticksichtigen. Man erhélt somit insgesamt

e cin Majorana-Spinor-Teilchen (h = +1/2)
und

e cin komplexwertiges skalares Teilchen (h = 0) .

Vektor-Supermultiplett

Sollen auch Eichbosonen (z.B. die Gluonen der QCD, oder die Vektorbosonen des
elektroschwachen Sektors) in die Theorie eingebaut werden, so hat man Darstel-
lungen mit y = % zu betrachten. Das sich daraus ableitende Vektor-Supermultiplett
enthélt im massiven Fall:

e 2 Spin-3-Teilchen (jeweils ein Dublett)
e cin Vektorteilchen (Boson Spin 1 / Triplett)
e cin pseudoskalares Teilchen (Boson Spin 0) .

Das massenlose Vektor-Supermultiplett mit A = 1/2 beinhaltet zuziiglich der C'PT-
Partner

e cin (massenloses) vektorielles Teilchen (h = £1)
und als fermionischen Partner der Eichbosonen

e cin Majorana-Spinor-Teilchen (h = +3) .
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1.2 Superfelder

In einer gewohnlichen Feldtheorie sind die Felder Funktionen der Raumzeitkoordina-
ten x. Um eine supersymmetrische Feldtheorie zu konstruieren, bietet es sich an ein
Superfeld S(z,6,0) einzufiihren, das auch von grassmannwertigen Weyl-Spinoren 6
und # abhingt. Zu den Poincaré-Transformationen

(A(w),a) = exp {z (—%wwMW - xMP“) } , (1.1)

die auf Felder des vierdimensionalen Minkowski-Raumes wirken, gibt es auch ein
Analogon im Superraum, der ein um vier! grassmannwertige Koordinaten erweiter-
ter Minkowski-Raum ist. In diesem Superraum liefern die SUSY-Generatoren () und
@ analog zu den Generatoren P*, die durch exp(—iz, P") Verschiebungen um z, im
Minkowski-Raum erzeugen, eine Translation um die Weyl-spinoriellen, grassmann-
wertigen Parameter 6 und 6 gemif

exp {z (9@ - 5@)} (SUSY-Translation) . (1.2)

Damit erhdlt man als supersymmetrische Erweiterung der Poincaré-Gruppe die
Poincaré-Supergruppe. Ein allgemeines Gruppenelement (ohne Beriicksichtigung von
Lorentz-Boosts) hat dann die Form?

G (2,0,0) = exp {i (—" P, + 0Q + 0Q) } . (13)

Ein Superfeld S(z,6,0) kann man in eine Potenzreihe in § und 6 entwickeln. Auf-
grund der Grassmann-Eigenschaft {6,, 03} = 0 bricht diese Reihe nach endlich vielen
Termen ab. Man erhéilt fiir das Superfeld

S(x,0,0) = f(x)+0p(x)+0&(x) + (00)M(x)
+ (00)N(z) + 000 A, (z) + (00)0X(z)
+ (09)0a(x) + (06)(00)d(x). (1.4)

mit den Komponentenfeldern ¢, &, M, N, Ay, A, @ und d. Dabei enthalten die Super-
felder die im vorherigen Abschnitt angesprochenen Supermultipletts in Form eben

Die zusitzlichen Koordinaten werden durch zwei Weyl-Spinoren 6 und 6 ausgedriickt.
2Eine Darstellung im Superraum ist

P, = —id,

: 9 T

1Qa = 00 io! ,0%0,

Qs = _ 0 +i0%*" . 9
o aéd (o7

mit o = (1,0',02,0%). Eine Herleitung findet man z.B. in [1].
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dieser Komponentenfelder. Thr Verhalten unter Lorentztransformationen ergibt sich
aus der Forderung, das das Superfeld S ein Lorentzskalar sei. Da Linearkombina-
tionen von Superfeldern wieder Superfelder sind, ist der durch sie gegebene Dar-
stellungsraum linear. Er ist allerdings hochgradig reduzibel. Um zu irreduziblen
Darstellungen der Superfelder zu gelangen, fordert man deren Invarianz gegeniiber
SUSY-Transformationen. Die beiden wichtigsten Typen von Feldern sind in diesem
Zusammenhang

e das skalare Superfeld
e das Vektor-Superfeld.

Wenn man kovariante Ableitungen

D, = %Hagdédau (1.6)
Dy = —%—i@aa;‘dﬁu (1.7)

einfithrt, erhdlt man durch die Forderung D,®(z,60,0) = 0 ein chirales und fiir
Ds®(x,0,0) = 0 ein antichirales Superfeld. Ein solches Superfeld enthiilt Skalar-
felder und ein Weyl-Spinorfeld. Es beschreibt die bekannten Fermionfelder (Quarks
und Leptonen) und ihre supersymmetrischen Partner (Squarks und Sleptonen).
Will man auch Eichbosonen beschreiben, so braucht man eine Theorie, die Spin-1
Vektorfelder beinhaltet. Die SUSY-kovariante Bedingung fiir ein solches Vektor-
Superfeld lautet dann

V(z,0,0) =VT'(x,0,0) . (1.8)

Dieses Feld lésst sich wiederum in Komponentenfelder [10]

~ 1

V(z,0,0) = f+i0¢—ifp+ 5(ee)M - %(ée)M*
+ (00"0) A, +i(60)6 <X + %&ﬂ@m)
T <>\ + %au(m) + L0y a0) <d Lo f) (1.9)
zerlegen. Es ergeben sich als fermionische Freiheitsgrade zwei Weyl-Spinorfelder ¢

und A, sowie als bosonische Anteile zwei reelle Felder f und d, ein komplexes Feld
M und schlieBlich ein reelles Vektorfeld A,,.

1.3 Eine supersymmetrische Lagrangedichte

Mit diesen Superfeldern lésst sich eine Supersymmetrische nicht-abelsche Eichtheo-
rie konstruieren (siehe z.B [1]), deren Lagrangedichte sich unter Weglassung der
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Materiefelder in euklidischer Formulierung zu

1
L= ZFSVFSV + )\“%(DM)\)“ (1.10)
ergibt. Dabei ist
F,=0,A, —0,A,+[A, A (1.11)

der nicht-abelsche Feldstarketensor und

(D) = 0+ [A,, 0] (1.12)

die kovariante Ableitung in adjungierter Darstellung (vgl. Kapitel 2.2). Auerdem
ist zu beachten, dass sich die Felder in der adjungierten Darstellung befinden:

A= \T°
Ay = —igAjT?
Fu = —igFeT" (1.13)

Das bosonische Vektorfeld A, stellt dabei ein Gluon dar, und der Majorana-Spinor
A ist mit den zugehorigen Superpartnern, den Gluinos, zu identifizieren. Dass es sich
um eine Supersymmetrische Theorie handelt, folgt aus den SUSY-Transformationen

6A,(x) = —2gA(x)y.e (1.14)
S\(z) = —écrpTFpT(x)s (1.15)
SMz) = ééapTFpT(:c), (1.16)

unter denen die zugehorige Wirkung invariant ist.



Kapitel 2

Die N=1 SUSY-Yang-Mills
Theorie auf dem Gitter

2.1 Grundbegriffe der Gittereichtheorie

2.1.1 Notationen

Das lokale Eichprinzip macht bekanntermafien die Einfithrung von Paralleltranspor-
tern und kovarianten Ableitungen notwendig. Genauer lésst sich in kontinuierlicher
Raumzeit zu jeder Kurve ¢, : [0, s] — R* ein durch die SU(N)-Eichsymmetrie indu-
zierter Paralleltransporter U(cs) € SU(N) finden, der dann iitber DYSON’S Formel

Uley) = Pexp {_/ Aﬂ(x)d:cu} (2.1)

Cs

mit dem Eichfeld A, verkniipft ist. Dabei stellt P den Pfadordnungsoperator dar,
und das Eichfeld ist Element der Lie-Algebra der SU(N), d.h. 4, (z) € su(N).

Den Kriimmungs- oder Feldstiarketensor F),,(z) der Theorie erhdlt man dann aus
infinitesimalen geschlossenen Kurven c,,,, um « mit Seitenldngen dz,, und dz, durch
die Beziehung

Ulcgpp) =1 — F(x)dz,d,. (2.2)

Auf dem Gitter ist die kleinste Wegstrecke nicht mehr infinitesimal, sondern von der
Linge a.

Die Paralleltransporter werden deshalb auf den Gitterkanten definiert:

Uu(@

>
>

x x+af
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Die zu (2.1) analoge Beziehung zwischen den Paralleltransportern und dem Eichfeld
A, ist durch
U,(z) = e @ und UJL(:U) = 2 4u(®@) (2.3)

gegeben.

2.1.2 Die Wilson-Wirkung fiir das Eichfeld

Um nun eine Gitter-Wirkung fiir das Eichfeld aufzustellen, benétigt man analog zu
(2.2) geschlossene Kurven. Die kleinstmogliche Wahl ist hierbei auf dem Gitter die
sogenannte Plaquettenvariable U, (z) entlang eines Quadrats der Seitenlénge a:

Ul(z + av)
T+ av - T+ afi + av
Ule) 1 | O+ ai)
x > r+a
Uu(z a
Algebraisch ist dieser Ausdruck durch
U () = Ui(:z:)UjL(a: + av)U,(z + ap)U, () (2.4)

gegeben.

Durch Einsetzen der (2.3) entsprechenden Beziehungen, Benutzung der Campell-
Baker-Hausdorff-Formel' und Taylor-Entwicklung nach a sieht man dann, dass (2.2)
in der folgenden Art und Weise reproduziert wird:

Uw(z) =1—a*F,,(z) + O(d®). (2.5)

Als Diskretisierung des Eichfeldanteils der Lagrange-Dichte benutzen wir nun die
Standard-Formulierung nach WILSON [21][22]:

Sl (z Z > {4—Tr{UW(x)+UW(x)} . (2.6)

z 1<u#v<4

Die Lagrange-Dichte auf dem Gitter hédngt mit der Wirkung iiber die Beziehung

Slat _ a4 Zﬁlat@]) (2.7)

exp(z) exp(y) = exp(z +y + 5[z, y] +...)
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zusammen, denn es gilt a*y.  — [d*s fir a — 0. Eine naheliegende Wahl der
Lagrange-Dichte auf dem Gitter ist daher

L) = g 3[4 T {Uwo) + o} 23

29 1<ps#v<d

2.1.3 Die Wirkung fiir den fermionischen Teil
Im Kontinuum ist der fermionische Teil der Wirkung durch den Ausdruck
Li(x) = Tr {\2)7,DuA(x) } (2.9)

gegeben. Im wesentlichen sind nun also Ableitungen auf dem Gitter zu modellieren.
Fiir die Ableitung ohne Eichfeld und eine auf dem Gitter erklarte Funktion f findet
man dabei eine Vorwérts- und eine Riickwértsableitung sowie eine symmetrische

Form:
AU f(@) = (f(e+af) - (2)
A f) = () ~ flr - ai)
A () = oo (F(r+ af) — f(z - ai). (210)

Man sieht sofort, dafl diese im Limes a — 0 die Ableitungen des Kontinuums erge-
ben. Fiir die kovariante Ableitung der adjungierten Darstellung kann man auf dem
Gitter analoge Versionen definieren

DS () = - (UM)fw + ai)Ula) — f(2))
DL f(a) = (f(x) ~ Uale — ai) f(z — ap) Uz — o))
D () = oo (U F( + ai)Up(e) — Ul — ap) (& — af) Uz — af)
(2.11)
Die fermionische Lagrange-Dichte ist nun durch
Lotz) = — Z Tr{ (@)Ul () A + af) U ()
—A(x + ap) UM @)U () } (2.12)

gegeben. Um dies auf eine Form zu bringen, die der von (2.9) entspricht, fiigen wir
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zwei Nullen ein und nutzen die Zyklizitat der Spur:

Elf“t(x) =

DU @M + ap)U, ()

_ZTI«{

- )\( )V ()
0
_U;(x)j‘(x + ajt)y,Uu(z)A(2)

F A A@) |
N———

L A DI ) — DI AN
Tr {A(w)7, DI M\(x)}

(2.13)

Man erkennt, dass auch hier der korrekte Kontinuumslimes reproduziert wird.

Schliefllich muss man noch den Wilson-Term einfiihren, der die beim Kontinuums-

limes auftretenden Fermion-Doppler eliminiert und kein Analogon im Kontinuum

findet:

lat
‘Cf Wil

@ = fr3m

(2.14)

Insgesamt sieht also der fermionische Anteil der Lagrange-Dichte wie folgt aus:

Cﬂ?t(w)

Dabei haben wir den Gluinos durch den Term £ (z)

1

a
I

— X + af)(vy, + T)Uu(a:))\(a:)UjL(x)>

+ (mo + %T) X(az)/\(az)}.

L) + L) = Tr{ =3 (A(x)(w — U)M@ + ai)U, ()

(2.15)

= moTr{\(z)\(z)} noch eine

zusitzliche (nackte) Masse myg verliehen. Die zugehorige Wirkung findet man z.B. in

[13]. In der weiteren Rechnung werden wir die Kennzeichnung lat weglassen, denn

es ist klar, dass es sich um die Variation der Gitter-Lagrange-Dichte handelt.
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2.2 Majorana-Fermionen in der adjungierten Dar-
stellung
Wie z.B. in [18] nachzulesen existiert ein Zusammenhang zwischen der Tensordar-

stellung der SO(3) und der Spinordarstellung der SU(2). So ldsst sich jedem Vektor
x € R3 eine 2 x 2-Matrix X

! + ix? —x

o 3 1_ 2
X = 2ol = < v,r Ty ) (2.16)
. 1 .
' = §TrXaZ (2.17)
zuordnen. Transformiert man X mit einem A € SU(2)

X — X' = AXN (2.18)

entspricht das einer orthogonalen Vektor-Transformation? R¥ € SO(3) von x. Es
muss also gelten:

AXA™Y £ (Rigl)o! (2.19)
& /Ao!At = 2/RYo (2.20)

Durch Multiplikation mit %ak und anschlieBender Spurbildung erhélt man:

RN = %Tr oF AT AT (2.21)
Mit der Skalierung
a(am + 4r) 2 \(z) — Mx) (2.22)
und dem Hoppingparameter
1
= Y —— (2.23)

lasst sich, da sich die Felder in der Lagrangedichte (2.15) in der adjungierten Dar-
stellung (1.13) befinden, die zugehorige Wirkung schreiben als:

2denn det X ist das negative Skalarprodukt —z’z?; auBerdem ist die Determinante invariant
unter SU(2) Transformationen und damit auch —ziz?’.
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Sy = Z{Tr(x<x)A(x))

xT

10 D) BRI AEAMARINE AT
p=1 ap

@l — sV (@) Ag (e — mUm) }

Diese Wirkung lésst sich auch kompakter schreiben als

1 _
S =5 2 N W)Qh (), (2.25)

T,0,a

y,8,b

mit der Fermionenmatrix

4
QZ%7{L'C¢ = 5ym5ba56a - K Z [(T + ’yu)ﬁavu(x)bady,x-i-u + (T - ’yu)ﬁa(vf)ba(y)éy-i-u,x} .

pn=1
(2.26)
Dabei gelten fiir V und A die zu (2.21) bzw. (2.18) analogen Beziehungen
Vu“b(a:) = 2Tr (Uu(sc)T“U;l(a:)Tb) (2.27)
N(z) = A 'Ma)A(z). (2.28)

Diese Wirkung ist die von I. MONTVAY vorgeschlagene Version der CURCI-VENE-
ZIANO-Wirkung. Aufgrund des Transformationsverhaltens der Majorana-Spinoren
(2.28) spricht man auch von der supersymmetrischen Yang-Mills Theorie mit Majo-
rana-Fermionen in adjungierter Darstellung.

2.3 Die n-Punkt Funktion

Da Majorana-Fermionen wegen der Beziehung A = CA” nur halb so viele Freiheits-
grade wie Dirac-Fermionen haben, ldsst sich der fermionische Teil der Wirkung auch
schreiben als
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a ab b
S; = —Z)\ QN (y)

- Zv QN (). (2.29)

Das zugehorige erzeugende Funktional lautet dann

= / DUD exp (-sg —Sp=> J(@A(@) : (2.30)
Mit den Transformationen
Xe(z) = Xe(x) + Zjb )b (x,) (2.31)
My, (2, y) = [CQL, (2, y) (2.32)
erhalt man schliefSlich

- / DUD/\’eXp< ZA’ M(z,y)N(y >+J<x>M-1<a:,y>J<y>>.

(2.33)
In diesem Ausdruck tritt die Pfaffsche Form der Matrix M auf. Fiir eine total an-
tisymmetrische Matrix mit 2N Dimensionen lésst sich die Pfaffsche Form schreiben
als

1 1
Pf[M] = /,D)\ exp <_§)\;U'MHV)\V) = Weﬂll’l---HQNVQNMﬂlyl e MP«QN’QN’ (234)

dabei ist € der total antisymmetrische Tensor. Das erzeugende Funktional bekommt
dann die Gestalt

- /DU Pf[M] exp (—Sg - % > J(@)M N (a, y)J(y)> (2.35)

oder mit

Serp = S, — log Pf[M] (2.36)

die Form

- /DU exp ( off — ZJ )J(y)) . (2.37)
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Durch funktionale Differentiation lassen sich daraus die n-Punkt Funktionen berech-
nen:

(TN (@n) - A (2)})
I DUDAX (1) A () exp (=S, = 3 20, @) M (2. 9)A() )
N | DUDX exp (=S, — Sf)

1 s M
Z[o]/ DU5Jfll(x1)5J§g(xn) eXp( Sers — ZJ )Jy(y)) -~

- <5Jff (:cj;JCn (@) P ( Z ()M y)Ji’(y)>> (2.38)

g

(), bezeichnet die noch auszufiihrende Mittelung iiber die Eichfelder. Diese wird
auf dem Gitter numerisch durchgefiihrt. Fiir die im weiteren betrachteten Zusténde
ist es notwendig, die 4-Punkt-Funktion zu kennen, die sich aus(2.38) zu

<T{X31 x1) )\02 (x2) )\‘33 (x3) )\C“ (x4 }>
— <M 16162( 1,$2)M_1CSC4(I’3,IL'4)

€1€2 €3€4

+M 16104(331,.1’4)]\/[ 16203(1’2,1‘3)

€1€4 €2€3

—M00 <x17 LL’3)M s ('r27 x4)>g

€1€3 €2€4

— <Aclc2 IL‘l,l‘Q)C A6364(IE3,I‘4)0_1

€102 5262 €304 Sa€a

+Aclc4(l‘1,l‘4)c ACQCS(I‘Q,ZL‘g)C_l

€104 d4€4 " €203 d3€3

— A8 (w1, 13)Cy, L A2 (29, 24) 64€4>g (2.39)

€103

ergibt. Mit der inversen Fermionenmatrix A = QL.



Kapitel 3
Simulation auf dem Gitter

Wie in der QCD erwartet man in der N=1 Supersymmetrischen Yang-Mills Theorie
massive Bindungszustdnde der elementaren Teilchen. Bei nicht gebrochener Super-
symmetrie sollten sich diese Zustdnde in den supersymmetrischen Multipletts aus
Kapitel 1 anordnen. Um das Massenspektrum einer Theorie zu untersuchen, ist es
notwendig, Verfahren zu entwickeln die geeignet sind die Massen von Bindungs-
zustidnden zu messen. Dabei hat man sich bisher auf Zustinde konzentriert, die auf
einem Gitterpunkt lokalisiert waren und hat ihnen spéter durch sog. Smearing eine
rdumliche Ausdehnung verlichen. In diesem Kapitel ist die Vorgehensweise fiir diese
lokalen Operatoren kurz zusammengefasst. Im néchsten Kapitel wird dann darauf
eingegangen, welche Anderungen fiir die Betrachtung nichtlokaler Operatoren not-
wendig sind.

3.1 Erzeugung von Feldkonfigurationen

Um Massen von Bindungszusténden auf dem Gitter zu messen, ist es notwendig Er-
wartungswerte, wie in Formel (2.39), von Funktionen der Felder A(U) zu berechnen.

(A(U)) = / DU e=Ses1 A(U) (3.1)
Wegen der grofien Zahl an Integrationsvariablen!
DU = [[ dU,.(x)

€T,

kommt zur Auswertung nur eine Monte-Carlo-Integration in Frage. Dazu werden
zufillig Feldkonfigurationen erzeugt und dann der Mittelwert des Integranden gebil-
det. Dieses Vorgehen wire im vorliegenden Fall jedoch sehr ineffizient, da aufgrund

ISelbst fiir die Testldufe dieser Arbeit, fiir die nur ein sehr kleines Gitter verwendet wurde,
wéren es schon iiber 1000 Integrationsvariablen.
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des Faktors e~%/s der Integrand Peaks bei einigen wenigen Konfigurationen hat. Es
ist numerisch daher effizienter ein Ensemble {U,|n = 1,..., N} mit der Verteilung
p(Uy,) ~ e~%47(U) zu erzeugen. Der Erwartungswert einer Grofie A ergibt sich dann
ALl

(A) = % S AU,). (3.2)

Eine detaillierte Darstellung der verschiedenen numerischen Verfahren findet man
z.B. in [14].

3.2 Korrelationsfunktionen

Die Masse eines gebundenen Zustandes ¢ (das konnte z.B. ein Bindungszustand aus
zwei Majorana-Teilchen ¢ = A\(x)A(z) sein,) wird durch das asymptotische Verhalten
der Korrelationsfunktionen

C(AL) = (S(t+At)'S(t)) — (S(t+ At)TY (S(1)) (3.3)

zwischen den Zeitscheibenerwartungswerten

S(t,p=0) = Li > lat) (3.4)

bestimmt. Dabei ist L? das (rdumliche) Volumen, die Summe iiber # sorgt dafiir,
dass man nur die Komponenten mit Impuls p = 0 erhélt. Fiigt man jetzt einen
kompletten Satz von Energieeigenfunktionen ein und beriicksichtigt periodische bzw.
antiperiodische Randbedingungen in Zeitrichtung, dann erhélt man

C(an) = Y {lnSOI0)f e ™A £ | (0] S(t)f |n) [PemnEm=20}

= Z Cn (e_m"At + e_m"(T_At)) : (3.5)

n

Durch die Periodizitdt des Gitters ergibt sich eine Symmetrie bzgl. % bei einer
zeitlichen Ausdehnung von T'. Fiir groe Werte von At sind die Terme fiir groflere
Massen exponentiell gedampft, so dass C(At) im Limes At — oo in

C(At) = Co+ ¢y (™A £ emm(T-20) (3.6)

iibergeht. Durch einen Fit an diese Funktion kann man dann die Masse des leich-
testen Zustandes extrahieren. Da man den Grenziibergang At — oo jedoch nicht
ausfithren kann, erhélt man bei einem solchen Fit Fehler, da die Terme zu schwere-
ren Zustdnden nicht vollig verschwinden. Um dennoch gute Ergebnisse zu erzielen
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ist es notwendig Operatoren zu konstruieren, die das Vakuum besonders gut auf den
Grundzustand abbilden. Denn fiir einen Operator ¢ mit

(n|S(#)[0) = dp1, (3.7)

ist der Ubergang zu At — oo nicht notwendig, um die tatséchliche Masse zu ex-
trahieren. Solche Operatoren sind jedoch nicht einfach zu finden, man fiihrt des-
halb unterschiedliche Smearing-Techniken ein, die es erlauben eine grofie Zahl von
Operatoren zu erzeugen. Im Rahmen dieser Arbeit wurde jedoch ein anderer Weg
beschritten. Es wurden nichtlokale Operatoren konstruiert, die evtl., eine bessere
Projektion auf den Grundzustand liefern. Auflerdem wére es auch denkbar, dass
man Operatoren erhélt, die primér auf einen schwereren Zustand projizieren

(n[S(8)]0) = - (3.8)

3.3 Massenbestimmung von Majorana-Majorana
Bindungszustinden

Die Korrelationsfunktionen fiir Zusténde, die zwei Majoranateilchen enthalten, ha-
ben alle eine dhnliche Struktur. Sie bestehen immer aus verbundenen und unverbun-
denen Anteilen. So berechnet sich die Korrelationsfunktion fiir den skalaren Gluino-

ball o(z) = A(x)\(x) aus (2.39) zu:

(P(@)(y)) = Troe AuaTrse Ayy —2Trse Agy Ay (3.9)

TV
unverbundener Anteil verbundener Anteil

Um jetzt Massen berechnen zu konnen ist es notwendig, A(U) = Q~Y(U) zu ken-
nen. D.h. es ist notwendig die Fermionenmatrix @), zu invertieren. Da z und y alle
Gitterpunkte durchlaufen, und Matrixinversionen sehr rechenaufwendig sind, ist es
nicht moglich die komplette Fermionenmatrix zu invertieren. Deshalb verwendet
man ein anderes Verfahren zur Berechnung der Korrelationsfunktion. Dabei werden
die verbundenen und unverbundenen Anteile getrennt betrachtet. Die unverbunde-
nenen Anteile werden mittels der Volume Source Technique (VST), die verbundenen
Anteile durch statistisch verteilte Quellen berechnet.

3.4 Der verbundene Anteil

Um nicht den vollen Propagatoren A,, berechnen zu miissen, wihlt man sich eine
feste Quelle z = x( und berechnet dann die Elemente A, mit

Q:vyAymo = 5:1:,:1:0- (310)
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Fiir die Korrelationsfunktion ergibt sich dann fiir den verbundenen Anteil

1
C(At) = <F E 2Tr, 75AZ$075AW0> : (3.11)
2 =
Y
Dabei nutzt man die Relation
A = 5 (A7)0 5 (3.12)

der Fermionenmatrix aus. Mit der Transposition 7} ;. bzgl. der Orts-, Spin- und
Farbfreiheitsgrade.

3.5 Der unverbundene Anteil

Zur Ermittelung des unverbundenen Anteils ist es notwendig Propagatoren des Typs
A, zu berechnen. Eine Moglichkeit stellt dabei die Volume Source Technique(VST)
dar. Die VST ermoglicht es alle Propagatoren A,, aus einer einzigen Matrixinversi-
on? zu gewinnen. Dabei macht man sich zu Nutze, dass nach dem Elitzur-Theorem

[4] die Erwartungswerte nicht eichinvarianter Gréfien verschwinden.

ANpo =Dow+ Y Auy = Ay (3.13)
y#zx y

Denn A,y ist fiir z # y nicht eichinvariant und > A, lasst sich durch eine einzige
Matrixinversion gewinnen:

° (@, y) Y A (Y, 2) = bla, a, ] (3.14)

Z,C,

Dabei ist b[z,a, u] = 1 fiir alle Punkte im Orts- Spin- und Farbraum. Der gesamte
Raum ist also angefiillt mit Quellen, dieser Umstand war namensgebend fiir die
VST.

3.6 Smearing

Wenn man Bindungszustédnde auf dem Gitter simuliert ist nicht nur das Transforma-
tionsverhalten der verwendeten Operatoren bedeutend, sondern auch ihre Struktur.
Um gute Ergebnisse zu erzielen ist es wichtig, dass der aus dem Vakuum erzeugte Zu-
stand im wesentlichen ein Energieeigenzustand ist. Dies versucht man zu erreichen,

?Eine Matrixinversion meint hier das Losen des Gleichungssystems Q4 (x,y)Z}(y) = 64 ().
Wenn 64 (x) = 1 fiir [z, ¢,7] und sonst = 0, dann liefert Z gerade eine Spalte von (Q%%(y,z))~! =
Zy(y)-
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indem man den Operatoren durch Smearing eine raumliche Ausdehnung verleiht. Ein
Bindungszustand zweier Gluinos wire z.B. auf einem Gitterpunkt lokalisiert und da-
mit punktférmig. Fiir einen gluonischen Bindungszustand wiirde sich z.B. eine Aus-
dehnung von der Gréfle einer Plakette ergeben. Diese Ausdehnungen stimmen nicht
zwangslaufig mit den natiirlichen Ausdehnungen dieser Bindungszusténde iiberein.
Smearing sorgt dafiir, dass die simulierten Zusténde ,,verschmiert werden und so ein
besseres Resultat fiir den zu messenden Zustand erzielt wird. Der Smearing-Radius
muss dabei auf den zu messenden Zustand abgestimmt werden. Als zusétzlicher
Effekt des Smearings ergibt sich eine Verbesserung des Signal-Rausch-Verhéltnisses.

3.6.1 APE Smearing

Y

Abbildung 3.1: APE Smearing

Ein mogliches Verfahren zur Verschmierung von Eichfeldern ist APE-Smearing. Da-
bei wird ein Link durch eine Summe iiber benachbarte Links ersetzt (siehe Abb.
3.1). Durch N-fache Anwendung dieses Verfahrens

U:v,u - Ur,u te Z (U;Jrﬂ,quJrﬂ,uUzv,u + UxJFﬂ*lA’»VUlB*lA’»/JUa:T—ﬁ,V) (3-15>
v=1,2,3
vFEp

auf das komplette Gitter erhélt man einen Smearing-Radius von R = Ne.

3.6.2 Jacobi Smearing

Wenn man fermionische Zusténde berechnet, ist es notwendig die Fermionenmatrix
zu invertieren. Dabei ist es das einfachste, mit punktférmigen Quellen und Senken
zu arbeiten. Dies wird jedoch den physikalischen Zusténden nicht gerecht, die eine
natiirliche Ausdehnung besitzen. Eine Moglichkeit dieser Ausdehnung gerecht zu
werden, ist die d—artigen Quellen und Senken durch

N; 3 i

F(z,a') = 678, + Z KJ Z (Oar Vi (@) 4 0w pa V) () (3.16)

i=1 n=1
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zu ersetzen. Dabei meint S0/ [...] N-fache Iteration von [...]. Die Parameter &
und N sind durch ausprobieren zu optimieren.



Kapitel 4
Der Spin 1 Operator

Nach Kapitel 1 gibt es ein supersymmetrisches Vektormultiplett, das zwei Spin—%, ein
Spin-0 (Pseudoskalar) und ein Spin-1 (Vektor)-Teilchen enthélt. In diesem Kapitel
werden lokale und nichtlokale Operatoren konstruiert, die das Spin-1-Vektorboson
beschreiben.

4.1 Der lokale Spin-1 Operator

Lokal (d.h. alle Majorana-Teilchen befinden sich auf dem selben Gitterpunkt) lésst
sich ein Spin 1 Operator durch

Yo =AY mit p=1,2,3 (4.1)

oder durch

©p = MY A mit p=1,2,3 (4.2)

realisieren. Der erste Operator transformiert sich wie ein Vektor, der zweite wie
ein Pseudovektor. Beachtet man die speziell fiir Majorana-Spinoren giiltige Relation
(A.10)

775’7;#5 = _QE'Yuw (43)

ergibt sich direkt ¢, = 0. Es gibt also keinen lokalen Operator, der einen Spin-1
Zustand mit negativer Paritéit erzeugt.

4.1.1 Das Transformationsverhalten

Sei A eine Lorentz-Transformation und S(A) die zugehorige Transformationsmatrix.
Dann gilt
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S7's8 = (
STS = A (
X&) = SA@) (
N(') = Ma)S™ (

Damit ergibt sich fiir das Transformationsverhalten des Operators (4.2)

pu(@) = AM2) 7N () (4.8)
(2)S™ "5SS 1y, S\ () :
= @) AA(r) = Alp, (o). (4.10)

>~

Der Operator transformiert sich also wie ein Vierervektor. Beachtet man auch noch
das Transformationsverhalten unter Raumspiegelung, das durch den Paritétsopera-
tor P mit

P\ = im) (4.11)
P(\) = —idy (4.12)

beschrieben wird, ergibt sich, dass sich der Operator wie ein (Dreier-)Pseudovektor
transformiert

P(py) = PN, P(A) = Maypad = =Mk = —o, (4.13)
P(gp) = P17, P(X) = Mavs7u7ad = Md = ¢, (4.14)

Dabei wurde verwendet, dass {74,7,} = 0 (vgl. Anhang C) fiir 4 = 1,2, 3,5 gilt.

4.1.2 Die Korrelationsfunktion

Wenn man beachtet, dass

Cy,07' = wnd CAC™'=CTAC = ATewe (4.15)

I

gilt (vgl. Anhang D und E), kann man die Korrelationsfunktion mit Hilfe von Glei-
chung (2.39) berechnen
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(eu(@)en () = (M)A @)} {AWswAw)})
= <)‘§1($) 5, (@ 53( ))‘54( )>
05151’75617—17u7—1520535375637—3’)/1/7—354

= 517'2 ('T ZC)A(;SM (y y>CTg(152 071(154

HAG (2, y) A (2, 9)C5, O,

T2

—AG (T, y) A (x, y)CTgag,C

0516175 e1m1 V162 0536375 €313 Vv 1304
= E_Cﬁlél) g?’rg (x x)C’TQéQ E_C€3(53)A637—4 (y y) T454

Aggel (z,x) —Abb

Y5 61T17H715275 €373 Vv 364
+ ( 06151)A6172 (LU y)CTQ(Szl A52T4 (LU y) CT45305363
N A/_/

-~

S4e3 (v,9)

*A§4€1 (y,l’) 57’463
V5 erm1 V1627V €373 Vv 364
B ( C(6161)A517'2 ($ y)CT253 A52T4 ("L‘ y)

-~

__Aba
A‘SSCI (y,r)

—1
0636375 €33 Vv 1304 07—454 V5 e1m1 Vw162

'

Y 5y (“ Y ry5,)Co4e5 (—Cigry)
= Tree {15780 ) Tree {7570y}
—Trge {157y V570 D ya }
+Trse {157 Bey 150z } - (4.16)

Damit ergibt sich schliellich

<§05(5L‘)905(y)> = Trsc {’757qu90} Trsc {75’7uAyy} - 2Trsc {75’7uA$y’75’7uAyx} .
(4.17)

4.2 Der nichtlokale Spin-1 Gluinoball

Im Kontinuum besitzen Gluinobélle einen ganzzahligen Spin J, wodurch sie durch
irreduzible Darstellungen der Gruppe SO(3)! klassifiziert werden. Auf dem Gitter
gehen die kontinuierlichen Rotationen der Gruppe SO(3) in die Transformationen der

Tm allgemeinen zieht man die irreduziblen Darstellungen der Gruppe SU(2) zur Klassifikation
von Spinzustdnden heran. Im bosonischen Sektor stimmen die die irreduziblen Darstellungen von
SU(2) und SO(3) jedoch iiberein.
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kubischen Gruppe O}, iiber. Zusténde auf dem Gitter werden dementsprechend nach
den irreduziblen Darstellungen von O, klassifiziert. Diese sind A, A, FE, T7 und
T,. Da man aus Gittersimulationen Spinzusténde des Kontinuums extrahieren will,
muss man beachten, was mit einer irreduziblen Darstellung R’ aus SO(3), (wobei
4§ den Spinzustand bezeichnet) beim Ubergang zu einem diskreten Gitter geschieht.
Es zeigt sich, dass man R als eine reduzible Darstellung Rz) von Oy, auffassen kann.
Diese wiederum lasst sich dann in ihre irreduziblen Teile zerlegen, und man erhélt:

Spin  Zerlegung in irreduzible

Ji Darstellungen von O
0 A

1 T

2 Eal

3 Aol ol

4 AoEeT ol

Wie man sieht ist die Darstellung fiir Spin-1, an der wir interessiert sind, irreduzibel.
Damit lassen sich Spin-1 Teilchen auf dem Gitter durch Operatoren beschreiben, die
sich unter 7T} transformieren. Zustédnde mit héherem Spin spalten sich dagegen auf
dem Gitter auf, was es schwieriger macht, diese zu behandeln. Eine ausfiihrliche
Darstellung dieser Thematik findet man z.B. in [8] und [9].

Es gibt verschiedene Moglichkeiten Spin-1-Gluinoball-Zusténde mittels nichtlokaler
Operatoren auf dem Gitter zu modellieren. Eine ausfiihrliche Auflistung findet man
in [9]. Die einfachste Moglichkeit ist der Majorana-Link-Majorana-Operator:

Pp = TT{S‘@)U;W)‘(x + af) Uz} (4.18)

Graphisch ldsst er sich durch

veranschaulichen, wobei die Gitter-Links zur Visualisierung gekriimmt gezeichnet
sind. Im dreidimensionalen Gitter sind drei Orientierungen des Operators moglich,
die mit
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A

bezeichnet werden. Die Operatoren O - O3 lassen sich mit den Kanten eines Wiirfels
identifizieren; geometrische Uberlegungen fithren dazu, dass sie sich nach 7} trans-
formieren. Das gleiche Transformationverhalten zeigt auch der Operator

o = Tr {A(2)UL s A (@ + aft)Upy}- (4.19)

4.2.1 Verhalten unter P-Paritat

Spiegelt man die Majorana-Link-Majorana-Operatoren
0 = T {M@)UL, A + a) U}, (4.20)
mit I' = {1, 75}, am Gitterpunkt z, so erhilt man zunéchst

Px{j‘(x)UxT,uPA(l‘ + ala)Ux;M} = = <_Z S‘(x)’YOUxT;ﬁuZ’ ’YOF)\('I - aﬂ) Ux;—u)
=+ (AN@)RUL_ M @ — ap)Us )
= &+ (X(:C)U;;_MF)\(SC — aﬂ)Um;,#> . (4.21)

Dabei ist zu beachten, dass 75 unter Raumspiegelungen das Vorzeichen wechselt,
also
PP =4T (4.22)

gilt (vgl. Anhang D). Fiihrt man jetzt eine Translation in +j-Richtung um einen
Gitterplatz durch, so geht die iiber Gleichung (4.21) gebildete Spur in den Ausdruck

£ (Tr {Mz + ap)UpuTA(2)UL, ) = £ (Tr {A(z + aft)T*Uy,, LA (2)°T°UL, })
= =Xz +ap)TA(2)"Tr {T*V,, T'UL . })

M)’ TA*(z + aji) Tr {TbUT TUpp})
Tr {\z)"T°UL, T (2 + aft)T* UM )
2

+
+
+
+
+ (Tr {\(2)U}, LA+ aft) Wap}) (4.23)

AA/-\/-\

iiber. Dabei wurden die Zerlegung A = A7 und die Rechenregel 1)¢ = ¢1) verwen-
det (vgl. Anhang A). Damit hat ¢, also eine negative P-Paritét, ¢, hingegen eine
positive.
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4.2.2 Verhalten unter C-Paritat

Die Majorana-Spinoren verhalten sich gegeniiber C-Paritédtsoperationen per Defini-
tion invariant

A-S A =X bzw. A-S A=), (4.24)

Dasselbe gilt fiir v5. Die Gitter-Links &ndern jeweils ihre Orientierung

Upp ~— UL, bow. UL, -5 Uy, (4.25)

H zip

so dass beide Majorana-Link-Majorana-Operatoren insgesamt den C-Paritétseigen-
wert +1 besitzen.

4.2.3 Der Majorana-Link-Majorana Operator

Aus den vorhergehenden Abschnitten folgt, dass sich die Operatoren ¢, (z) (4.19)
und ¢, (x) (4.18) wie ein Vektor bzw. Pseudovektor transformieren. Um die Massen
dieser Bindungszustinde ¢(x) zu bestimmen, muss man die Korrelation (¢(x)¢(y))
berechnen. Mit (2.39), den Relationen aus Anhang E und den Abkiirzungen z; = x,
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Ty =+ aft, y1 =y und yo = y + aft ergibt sich
(oo} = (T (MOULIAw + 0} )

Tre {My)US, Ay + af)Uyy, } >

= (N@N(+ )X )Ny + )
Tr {T“UT TU, x'u}Tr {TCUJ;quUy;u}

_ ! <A (€)A5, (2 + ai) A5, (y) N5, (y + ap))
051611“615205363 sos Vi () VS (y)

— Ang2 (21, 22) A5, (11, 92)C5,Cr,

+A517’4 <x17 yQ)AggT3<x27yl)C C. !

Ta04 7303
ac ( )Abd ( )C C
517’3 xl’ yl 0274 .Z'Q, y2 T353 T404

05161 F6152 05363F6354 Vab <x1>vu6d<y1)

_ im {TA®, Y Tr, {TAZ AV () Ve (y)

T1T2 Yy1y2

_iTrs {TA% TAY YV (a)VeE ()
—iTrs {rAg, DAY AV (@) Vi ()

= iTrSC {TA 2,V (21)} Tree {TA,,,V, (1)}
_iTrSC {TA o, V()T Ay V(1) }

1
_ZTrsc {FAylml V,u<x1)FA:B2y2 VVT<y1>} (426>

Aus diesem Ausdruck lassen sich, mit den in Kapitel 3 vorgestellten Methoden,
Massen fiir die Gluinobélle 17+ und 1~ extrahieren. Es sind jedoch einige Beson-
derheiten zu beachten, auf die im weiteren eingegangen wird.

4.2.4 Die VST fiir nichtlokale Operatoren

Zur Bestimmung der unverbundenen Anteile nichtlokaler Operatoren muss die VST
leicht abgewandelt werden. Fiir den Vektor-Gluinoball ergibt sich die Korrelations-
funktion aus 4.26 zu

Clise.(At) ZTI‘SC {75AmmV 1 }TrSC {75Ayly2v (yl)} (4.27)

zy
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Um hier die VST anwenden zu kénnen muss man die obigen Ausdriicke um nicht
eichinvariante Anteile erweitern:

Tre. {75Ax1$2Vf(x1)} = Tre {75A$1x2VMT(:E1)}+ Z Tr,. {m:,AxlyVHT(xl)} (4.28)

Y#£T2 B
=0 imEchmittel
Graphisch stellt sich das wie folgt dar:
L2 T2 T2
VST ERREYEE
Vu(xl) .: AZ‘2$1 — VM(ZL'l) __' A$29€1 + Vu(l‘l) + e
T I I '

Vv
nicht eichinvariant

Abbildung 4.1: Die Volume Source Technique

Damit lasst sich die VST prinzipiell auch auf nichtlokale Operatoren anwenden.

4.2.5 Anwendung und Probleme der VST

Wie von R. PEETZ [15] festgestellt wurde, verschwinden bei Korrelationen der Form
Tr{l'A,;}Tr{I'A,,} nicht alle unerwiinschten Terme. Dies trifft auch auf die nicht-
lokale Variante

ZTrsc {Amlmgvf(xl)} Trsc {Amlmgvf(xl)} (429)
5
zu. Anhand von Abb. 4.2 lasst sich das leicht erkennen.

Dieses Problem wurde dadurch behoben, dass man, bevor das Ensemblemittel {iber
das Produkt aus Trg {AmmVMT(:El)} und Trg {AmmVuT(xl)} gebildet wird, die
unerwiinschten Terme beseitigt. Das geschieht fiir jeden der Terme separat, indem
man auf jeder Konfiguration zufillige Eichtransformationen &, durchfiihrt und dann
den Mittelwert bildet. Also sind in

ct) = % Z D ETree {An, V) (1)} (4.30)

T

alle nicht eichinvarianten Terme eliminiert, so dass
C(At) = {(c(t)e(t + At)) (4.31)

die Korrelation ohne systematische Fehler liefert. Dieses Vorgehen birgt jedoch ein
anderes Problem: zum einen tritt durch die zusétzliche Mittelung eine weitere Feh-
lerquelle auf, zum anderen ist diese Variante der VST mit einem deutlich hoheren
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T2 Y
Vu(xl) [ szm Ayzyf::l Vu(yl)
T U1
1 VST
A?JQZQ
T2 Y2 T2 A s Y2
. T9z1
Vu(xl) Apyry Ayzyl':__[ Vu(yl) + Vu(x1>[ [ Vu(yl)
T Y1 X1 n
noA,. SR
+ + wl)[ X [ AT
x1 n

TV
Eichinvarianter Anteil, der im Mittel nicht verschwindet.

Abbildung 4.2: Probleme der VST

Rechenaufwand verbunden, da nach jeder zufélligen Eichtransformation die Fermio-
nenmatrix erneut invertiert werden muss. In Zukunft bleibt deshalb zu untersuchen,
ob es angebracht ist, hier eine andere Methode einzusetzen.

4.3 Smearing fiir nichtlokale Operatoren

Um Smearing auf nichtlokale Operatoren anwenden zu kénnen ist es notwendig si-
cherzustellen, dass die gewéahlten Verfahren das Transformationsverhalten unveréandert
lassen. Da die von uns betrachteten Majorana-Link-Majorana-Operatoren sowohl
Majorana-Spinoren als auch Eichlinks enthalten, liegt es nahe, diese beiden Verfah-
ren zu kombinieren.

4.3.1 APE Smearing

Die in Abb. 4.3 illustrierte Ersetzung

Upp = Upp + € E , (U;Jrﬂ,quJrﬁ,qu,v + U:rJr/lfﬂ,vafﬁ,uUmT—ﬁ,u) (4.32)
v=1,2,3
vF#L
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AT

Y

Abbildung 4.3: APE Smearing

eines Eichlinks sollte keinen Einflufl auf das Transformationsverhalten haben. Dies
ist bzgl. der kubischen Gruppe O gegeben, denn U, , und Um,u transformieren sich
offensichtlich identisch unter O. Jetzt bleibt nur noch das Verhalten von Ux,u unter
P- und C-Paritétsoperationen zu untersuchen. Bei einer Raumspiegelung am Punkt
x ergibt sich

PUsy) = Us-ute Z ( Vo pUs,v + Uz, - Us i, NU:BT+V 1/)
I/V;EB
= J3 N+€ Z (Ux a—v,v x U, MUJ:T VV+UT a4o— VVUx'f‘ﬁ,_MUﬂH—l?—IZV)
UU;iS
= Us-ute Z ( —p Voo pUsw + UsjpiUns, uU; uu>
VU;EB
= Us—p (4.33)
unter Beriicksichtigung von U, , = U, :Z +i—p- Unter C-Konjugation wird die Konfigu-

ration in Gegenrichtung durchlaufen

C<Uil37/1«) = Uer,u_'_E Z (UxT VUeru,uUerﬂ»V—i_Um*V VU:er V,LLU:erJr,u 1/1/)

v=1,2,3
vFER

Tt
_ T § T T T
- Ux,u +e (Ux uUeru ,uUﬂC‘H%V + Uz VU:): 1% uU:er,u 1% u)

v=1,2,3
VFEL

- UxTuu' _'_ € Z (U;+M VU:B+1A’»/'LU1'7V + U{L’+/:Lfl>,l/U{L'71/ /J'UZ‘T 1% 1/) (434)
v=1,2,3
vFER

= Ul (4.35)

Insgesamt sieht man, dass sich U, , und Ux,u in gleicher Weise unter Transformatio-
nen verhalten. APE-Smearing kann also ohne Bedenken auf alle Operatoren ange-
wandt werden, die Eichlinks enthalten.
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4.3.2 Jacobi-Smearing

Beim Jacobi-Smearing wird das Fermionfeld durch die Matrix (3.16) verschmiert

X&) = Pz, 2 )\ (). (4.36)

z'.b

Um das Transformationsverhalten von A zu untersuchen, geniigt es den ersten Ite-
rationsschritt des Jacobi-Smearings zu betrachten

3
(7, 1) = Z [5“b5mf + Ky Z (5m’,m+;zv,fb($) + 5m/+ﬂ,mVJab($))] A (')

z',b p=1

= X(2)+ > ks Yy (VP@)N (@ + i) + V(@) (z - p) . (4.37)

€T,

Raumspiegelung am Punkt z ergibt:
P (S‘G(f, t)) = i\ (x) + Z K. Z (V“b Vi (z — i) + ijb(x)i%)\b(x + ﬂ))
= A (z) + Z KJ Z Vi (@)inaA(x — o) + V" (2)ina A (z + )

~ i [Aa<x>+z P (VI N — ) + VN )

= iy (4.38)

Wenn man nun noch beachtet, dass durch die Summation iiber alle Raumrich-
tungen A rotationssymmetrisch wird und aulerdem invariant unter C-Konjugation
C(Vih) = Vb, C(\) = A ist, erhilt man fiir X das selbe Transformationsverhalten
wie fiir \.

Zusammenfassend ldsst sich sagen, dafl man sowohl APE- als auch Jacobi-Smearing
auf nichtlokale Operatoren anwenden kann, ohne deren Transformationsverhalten zu
dandern. Es ist jedoch weiterhin notwendig die Smearing-Radien individuell anzupas-
sen. Insbesondere bleibt zu untersuchen, ob die fiir den Majorana-Link-Majorana-
Operator offensichtliche Wahl N; = N pp und € = K, optimal ist.






Kapitel 5
Ergebnisse

In diesem Kapitel werden einige der Simulationsergebnisse vorgestellt. Es handelt
sich dabei allerdings nicht um quantitative Ergebnisse, sondern um eine erste Stu-
die, die zum Testen der neu programmierten Messroutinen gedacht ist. Die hier auf-
gefithrten Ergebnisse wurden alle auf einem Gitter der Groe 43 x 6 bei K = 0,194
und (= 2,3 mit 332 Konfigurationen durchgefiihrt.

6 —
4
A
>
=
>
—
\Y
1
2
T T T T T
0 1 2 3 4 5
At

Abbildung 5.1: Zeitscheibenkorrelationsfunktion des Spin-1-Vektorbosons

In Abb. 5.1 ist die Zeitscheibenkorrelation des nichtlokal realisierten 1~T-Gluinoball
(4.19) aufgetragen. Der Fit mit (3.6) ergab eine Masse von am, = 0,668. Dabei
wurde kein Smearing eingesetzt.

Abb. 5.2 zeigt die Korrelationsfunktion des 1~ "-Gluinoball. Dabei wurde sowohl
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Abbildung 5.2: Zeitscheibenkorrelationsfunktion des Spin-1-Vektorteilchens (mit
Smearing)

APE- als auch Jacobi-Smearing eingesetzt. Mit den Smearingparametern

Ny = Napp=4

ky = €=0,2.

Der Fit mit (3.6) lieferte eine Masse von am, = 0,565 und weicht damit deutlich
von dem Ergebnis ohne Smearing ab. Die Tendenz zu einer geringeren Masse deutet
zumindest darauf hin, dass eine bessere Projektion auf den Grundzustand gelungen
ist.

In Abb. 5.3 ist die Zeitscheibenkorrelation des 17"-Gluinoball (lokaler Operator)
zu sehen. Hier wurde der lokale Operator (4.2) verwendet. Der Massenfit ergab
am = 0,931. Die Ergebnisse, fiir den nichtlokalen Operator, zum unverbundenen
Anteil waren bisher leider so schlecht, dass hier kein direkter Vergleich zwischen
lokal und nichtlokal moglich ist. In Abb. 5.4 sieht man jedoch den Vergleich fiir die
Verbundenen Anteile. Es wird deutlich, dass der nichtlokale Operator grofiere Fehler
produziert.

Insgesamt muss man aber sagen, dass Untersuchungen auf gréfleren Gittern notwen-
dig sind, um aussagekriftige Ergebnisse zu erhalten. Die hier aufgefiihrten Beispiele
zeigen jedoch, dass sich Massen aus den betrachteten Operatoren extrahieren lassen.
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At

Abbildung 5.3: Zeitscheibenkorrelationsfunktion des Spin-1-Pseudovektors (lokaler
Operator)
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Abbildung 5.4: Korrelationsfunktion des lokalen und nichtlokalen Pseudoskalars






Zusammenfassung und Ausblick

Ziel dieser Arbeit war es zu untersuchen, ob und in welcher Weise Majorana-Majorana-
Bindungszustéinde durch nichtlokale Operatoren in einer SU(2) Super Yang-Mills
Theorie auf dem Gitter realisierbar sind. Dazu wurden die Zeitscheibenkorrelati-
onsfunktionen der Gluinobille 17" und 17* auf der Basis eines Majorana-Link-
Majorana-Operators berechnet. Der 17 "-Gluinoball wurde auch mittels eines lokalen
Operators realisiert. Fiir den 1--Gluinoball war das aufgrund der Majorana-Natur
der Spinoren nicht méglich. Da zum Erzielen guter Ergebnisse Smearing unerlésslich
ist, wurden die géngigen Smearing Verfahren, Ape- und Jacobi-Smearing, auf ihre
Tauglichkeit in Bezug auf nichtlokale Operatoren untersucht. Es hat sich herausge-
stellt, dass diese Verfahren prinzipiell auch auf nichtlokale Operatoren anwendbar
sind.

Diese Operatoren auf dem Gitter zu simulieren erforderte eine Erweiterung der bis-
herigen Simulationsalgorithmen. Dies ist auf Basis eines von C. GEBERT entwickel-
ten Programms geschehen. Mit dem modifizierten Programm sind Testlaufe durch-
gefithrt worden, die sinnvolle Ergebnisse lieferten. Es ist also prinzipiell moglich,
mittels nichtlokaler Operatoren, Majorana-Majorana-Bindungszusténde zu simulie-
ren. Der nétige Rechenaufwand verdoppelt sich jedoch im Vergleich zu lokalen Ope-
ratoren. Da sich manche Zustinde, wie z.B. der 1-1 Gluinoball, jedoch nicht lo-
kal realisieren lassen, wird man hier auf einen nichtlokalen Operator zuriickgreifen
miissen.

Da zur Messung des unverbundenen Anteils die Volume Source Technique, die wie R.
PEETZ[15] festgestellt hat einen systematischen Fehler beinhaltet, eingesetzt wurde
ist es notwendig dies weiter zu untersuchen, und evtl. das Verfahren zu modifizieren!.
In Zukunft ware es interessant Untersuchungen auf grofleren Gittern durchzufiihren,
um auch quantitative Ergebnisse zu erzielen. Dazu wire es insbesondere notwendig
geeignete Smearing-Parameter zu ermitteln und Simulationen bei unterschiedlichen
Hoppingparametern durchzufithren, um die auf dem Gitter gebrochene Supersym-
metrie zu restaurieren. Es wire auch moglich die bisher mittels lokaler Operatoren
untersuchten Zustdnde durch nichtlokale Operatoren zu modellieren. Es ist durch-

!Die vorgenommene Modifikation der VST behebt zwar den systematischen Fehler, produziert
aber zusétzliche statistische Fehler. Auflerdem bendotigt diese Variante der VST einen deutlich
hoheren Rechenaufwand.
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aus moglich, dass man eine bessere Projektion auf den Grundzustand oder sogar auf
einen angeregten Zustand erhélt.



Anhang A
Majorana-Spinoren

Dirac-Spinoren sind aus zwei Weyl-Spinoren zusammengesetzte Spinoren, die in der

=) -

besitzen, wobei ¥y und 1 je zweikomponentige Weyl-Spinoren darstellen, die sich
nach der linken bzw. rechten Fundamentaldarstellung der Lorentzgruppe transfo-

Weyl-Darstellung die Form

mieren.

Im Minkowski-Raum erhilt man einen Majorana-Spinor, indem man an einen all-
gemeinen Dirac-Spinor die Bedingung

IE = z/JT’VO =y'C (A.2)

stellt. Dabei ist in minkowskischer Formulierung

0= (2 3) (A3)

und C' die Ladungskonjugationsmatrix.

Ein Majorana-Spinor ¢, geht also wegen (A.2) bei Ladungskonjugation in sich
selbst iiber, also

Uiy = Ym (A4)
und besitzt daher anstatt der vier komplexen Freiheitsgrade eines Dirac-Spinors
lediglich zwei komplexe bzw. vier reelle Parameter. Die Ladungskonjugation ist dabei
durch [10]

¥ = Cit (A5)

(7 1)

mit
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definiert.

Gibt man die Hermitizitédtseigenschaft der minkowskischen Formulierung auf, so
148t sich ein euklidischer Majorana-Spinor durch die Relation

A= \C (A7)

definieren. In der Weyl-Darstellung schreibt sich damit der Majorana-Spinor geméf

_ [ 9a
(2)

wobei 74 ein linkshandiger Weyl-Spinor ist. Fiir weitere Anmerkungen zu Majorana-
Spinoren in euklidischer Formulierung konsultiere man [5] und die darin angegebenen
Referenzen.

An dieser Stelle seien lediglich zwei, fiir diese Arbeit wichtige, Rechenregeln fiir
Grassmann-wertige Majorana-Spinoren ¢ und ¢ angegeben:

vo = ¢ (A.9)
VWp = = (A.10)

Beide Relationen weist man mit Hilfe der definierenden Eigenschaft des Ladungs-
konjugationsoperators C' nach:

v = (Yo)
(V' Co)
—¢'C"Y
= ¢'CY
= o, (A.11)

bzw.

Vyup = (V7.0)"
(V' Cyu0)'
~ g Ot
= GOy
= —¢'Cy
=~y (A.12)



Anhang B

SU(N)-Algebra

B.1 Allgemeine Relationen

Der Darstellungsraum der Eichgruppe SU(N) in der Fundamentaldarstellung be-
steht aus N-komponentigen Vektoren ¢. Die Eichtransformationen wirken dann via

¢(z) — w(z)¢(z), (B.1)
wobei U eine Matrix aus SU(N) ist. Diese lassen sich in der Form
w(z) = " @1 (B.2)

schreiben, wobei die T* die Generatoren der Eichgruppe in Fundamentaldarstel-
lung sind. Genauer bilden sie eine Basis der zu SU(N) gehorigen Lie-Algebra. Die
Anzahl der Generatoren betrigt im Fall der SU(N) N2 — 1. Fiir diese spurfreien,
hermiteschen Matrizen gelten mit der Normierung

1
Tr(T*T") = 50 (B.3)
die Beziehungen
[T, 7% = ifaT* (B.4)
1
{T°, 7"} = ﬁéaberabcTC. (B.5)

Die f. sind die Strukturkonstanten der Eichgruppe! und sind total antisymmetrisch
gegen die Vertauschung zweier Indizes. Die auftretenden Konstanten d;. sind iiber

dape = 2Te({T*, T*}T°) (B.6)

1Sie legen die Struktur der zugehorigen Lie-Algebra eindeutig fest.
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definiert und sind total symmetrisch gegen Permutationen der Indizes. Man kann
nun folgern:

Tr(TaTbTC) = i(dabc + Z.fabc) (B7)
1 1
Te(T*TTTY) = 17 davOea + g(dabe + 1 fave) (dede + 1 fede)- (B.8)
Aulerdem gilt
facdfbcd = 5abCA7 (Bg)
wobei C'y = N.
B.2 SU(2)

Im Fall der SU(2) lassen sich als Generatoren etwa Vielfache der Pauli-Matrizen
wéhlen, so daf§ dann mit

01:<(1)(1)) 02:<(; _OZ> 0—3:((1) _01) (B.10)

gilt
1
T = 50“, a=1,2,3. (B.11)
Die Pauli-Matrizen erfiillen
[0, 0% = 2icg0” (B.12)
{0 o’} = 20wl (B.13)
also ist im Fall der SU(2)
fabc = Eabc (B14)
dwe = 0. (B.15)
Fir N = 2 gilt daher
1
Te(T°T*T®) = 7 abe (B.16)
1

To(TT'TT) = 2 (Oudea — fae fode): (B.17)



Anhang C

Dirac-Matrizen

C.1 Dirac-Matrizen in euklidischer und minkow-
skischer Formulierung

Zwischen den euklidischen Dirac-Matrizen und denen im Minkowski-Raum besteht
der folgende Zusammenhang [14]:

gkl = jyminkfiy §=1,2,3 (C.1)
,yzukl. _ —i’y}fmk':’ygmk'- (C.2)

C.2 Eigenschaften euklidischer Matrizen

Fiir die euklidischen Dirac-Matrizen gelten die folgenden Eigenschaften [5]:

o= 1 (C.3)
W= (C
V) = 20,1
Mit den zuséatzlichen Definitionen
V5 = V1727374 (C.6)
7
Ow = 5[’7;“71/] (07)
ergibt sich
V5= %T, (C.8)
%=1 (C.9)

{est = 0, (C.10)



48 Dirac-Matrizen

sowie

€5

Ow = 9 (7;/% - (25vu1 - VM'YV))

= 1YY — 10,1,

Eine mogliche Darstellung der Dirac-Matrizen ist nach [14]

0 —in .
;= =1,2,3
7] <ZO'J O ) ) .7 » < )

wobel mit o; die Pauli-Matrizen gemeint sind (vgl. Anhang A).

Fiir v4 und v5 = 717927371 = 7;[ wahlt man in der Weyl-Darstellung

(01 q (1 0
Yo = Y4 = 10 un s = 0 —1 )

(C.13)

(C.14)



Anhang D

Paritiatsoperationen

D.1 Ladungskonjugation

Fiir den Ladungskonjugationsoperator gelten die folgenden Zusammenhénge [5]:

ct = —-C
ct = ¢!
nyuC’l = _’VZ
C_lsz = -
CysC™h = A
CJWC*1 = —afw
C_lawa’ = —Ou .

In der Weyl-Darstellung kann die Ladungskonjugationsmatrix als

. iUQ 0
C N ( 0 —iO’g )

gewahlt werden.
In darstellungsfreier Form findet man [10]

C = ing"™ v = =750 -

e e e N e e
CRCRCRCRCRC
N O O B W NN =
N N e e N N N

(D.8)

(D.9)
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D.2 Raumspiegelungen

Die P-Paritétsoperation beschreibt Punktspiegelungen. Die wichtigsten Relationen
sind bei spiegelung am Punkt x:

P(Uu(z)) = Uu(z) =Uf(x — ) (D.10)
PV = Vo=V (D.11)
PA = i)\ (D.12)
P(\) = —ily (D.13)
P ly,P = —y, mit p=1,235 (D.14)
PlvP = (D.15)



Anhang E

Wichtige Relationen

Fiir die Fermionenmatrix

4

Z%,m = 5y15ba5ﬁa - K Z [(T + ’Vu)ﬁavu(x>ba5y,x+u + (T - VH)Ba(VE>ba(y>5y+u,x}

pn=1
gilt folgender Zusammenhang [23]:

b -1
CBLQZ:E,LTCTCM

b
= ng,aﬂ

Fiir ihr Inverses folgen dann einige wichtige Relationen:

VAL (z— )75
ab
Auy(l‘ - y)
C AT
CAC™'=CAC

ba *
AVM(:y - SE)
ba
_Auu(y - 'I)
—CA
ATI/,LG,

(E.1)

(E.2)

~ o~ N
S Ot > W
— N N ~~—



Anhang F

Hinweise zum Programm

Hier sind kurz die wichtigsten Bedienungshinweise zum Programm zusammengefasst.
Alle Einstellungen die zur Konfiguration von Messungen notwendig sich lassen sich
in der Datei config.dat vornehmen. Dabei sind die wichtigsten:

e Use Jacobi smearing, Smearing-Level, kappa_Jacobi
Einstellungen fiir das Jacobi Smearing. Bezieht sich auf alle Spin-1 Operatoren.

e Basic APE-Smearing, N, epsilon
Einstellungen fiir das APE-Smearing. Bezieht sich auf alle nichtlokalen Ope-
ratoren.

e Calculate Spinl Correlator, <mul(0..2),mu2(0..2)> , nonlocal , local
Hier kann man festlegen fiir welche Spin-1 Korrelatoren der zusammenhéngen-
de Anteil berechnet werden soll. Durch mul und mu2 wird die Spinkomponente
auf den verschiedenen Zeitscheiben festgelegt.

e Calculate Spinl TwoLoopCorrelator , <mu3,mud4> , nonlocal , local
Hier kann man dieselben Einstellung fiir den unzusammenhéngenden Korre-
lator machen.

e Number of gauge-transformations for the VST (1-777)
Legt die anzahl der Eichtransformationen fest, die auf einer Konfiguration
durchgefiihrt werden, um den VST-Error zu beheben.
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