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1.1.4 Z2-Graduierung der Poincaré-Algebra . . . . . . . . . . . . . . 5

1.1.5 Irreduzible Darstellungen der SUSY-Algebra . . . . . . . . . . 5

1.1.6 Chirales und Vektor-Supermultiplett . . . . . . . . . . . . . . 6

1.2 Superfelder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Eine supersymmetrische Lagrangedichte . . . . . . . . . . . . . . . . 9

2 Die N=1 SUSY-Yang-Mills Theorie auf dem Gitter 11

2.1 Grundbegriffe der Gittereichtheorie . . . . . . . . . . . . . . . . . . . 11

2.1.1 Notationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Die Wilson-Wirkung für das Eichfeld . . . . . . . . . . . . . . 12

2.1.3 Die Wirkung für den fermionischen Teil . . . . . . . . . . . . . 13

2.2 Majorana-Fermionen in der adjungierten Darstellung . . . . . . . . . 15

2.3 Die n-Punkt Funktion . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Simulation auf dem Gitter 19

3.1 Erzeugung von Feldkonfigurationen . . . . . . . . . . . . . . . . . . . 19

3.2 Korrelationsfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Massenbestimmung von Majorana-Majorana
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Einleitung

Die Elementarteilchen und ihre fundamentalen Wechselwirkungen, die elektroma-

gnetische, schwache und starke Wechselwirkung, lassen sich mit hoher Genauig-

keit durch das Standardmodell beschreiben. Alle Voraussagen des Standardmodells

wurden bisher experimentell bestätigt. Dennoch ist das Standardmodell nicht in

der Lage, alle offenen Fragen zu beantworten. So besteht z.B. das sog. Hierarchie-

Problem, das daraus resultiert, dass das Standardmodell auf einem Produkt aus drei

Eichgruppen (SU(3)×SU(2)×U(1)) basiert, mit unterschiedlichen Kopplungskon-

stanten in jedem Sektor. Es hat sich herausgestellt, dass es nicht möglich ist das

Standardmodell so zu erweitern, dass sich die Kopplungen auf einer größeren Skala

vereinigen. Weiterhin vermag das Standardmodell nicht zu erklären wieso die ele-

mentaren Fermionen in drei Familien mit völlig unterschiedlichen Massen auftreten.

Es gibt noch weitere Phänomene die das Standardmodell nicht zu erklären vermag,

wie z.B. dunkle Materie.

Aufgrund dieser Probleme war man bestrebt das Standardmodell zu erweitern, des-

sen Teilchenspektrum durch die Poincaré-Gruppe und ihrer zugehörigen Lie-Algebra

festgelegt wird. Die durch die spezielle Relativitätstheorie motivierte Poincaré-Alge-

bra lässt sich jedoch nicht durch eine innere Lie-Algebra erweitern, wie S. Coleman

und J. Mandula[3] gezeigt haben. Lässt man jedoch auch antikommutierende Ge-

neratoren zu, dann lässt sich die Poincaré-Algebra sinnvoll erweitern zu einer sog.

Lie-Superalgebra.

Damit erhält man als Erweiterung des Standardmodells supersymmetrische Theo-

rien, die in der Lage sind einige Probleme des Standardmodells zu lösen oder zu-

mindest zu entschärfen. So tritt z.B. das Hierarchie-Problem in einer supersymme-

trischen Quantenfeldtheorie nicht auf. Auch liefert die Supersymmetrie Ansätze zur

Vereinheitlichung aller fundamentalen Kräfte inklusive der Gravitation. Dies ist je-

doch vermutlich nur im Rahmen einer supersymmetrischen Stringtheorie möglich.

Die Supersymmetrie ist eine Symmetrie zwischen Fermionen und Bosonen, d.h. je-

des Teilchen erhält einen supersymmetrischen Partner, mit einem um 1
2

reduzierten

Spin, aus der anderen Gruppe. Der einfachste Fall für eine supersymmetrische nich-

tabelsche Eichtheorie ist die N=1 SU(2) Super-Yang-Mills-Theorie, mit der sich die-

se Arbeit beschäftigt. In den letzten Jahren hat die DESY-Münster Kollaboration

im Rahmen von Gittersimulationen Untersuchungen zum Massenspektrum dieser
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Theorie gemacht. Dabei wurden bisher Spin 0 und Spin 1
2

Zustände untersucht.

Diese Arbeit beschäftigt sich mit der Simulation von Spin 1 Zuständen auf dem Git-

ter. Insbesondere werden Gluino-Gluino Bindungszustände, die bisher nur mit Hilfe

lokaler Operatoren untersucht wurden, durch ausgedehnte Operatoren beschrieben.

Dafür wurde das von C. Gebert geschriebene Programm um Messroutinen zur Be-

stimmung der Massen von Spin 1 Gluino-Gluino Bindungszuständen erweitert. Die

Zustände werden dabei auf zwei verschiedene Weisen realisiert, zum einen durch

Operatoren, die beide Majorana-Teilchen an den selben Gitterplatz setzen, zum an-

deren durch räumlich ausgedehnte Operatoren, bei denen die Majorana Teilchen

auf benachbarten Gitterplätzen lokalisiert sind. Diese Verfahren werden auf ihre

Vor- und Nachteile untersucht.



Kapitel 1

Einführung in die Supersymmetrie

Auch wenn die Supersymmetrie noch nicht zweifelsfrei nachgewiesen ist, so gibt

es doch einige Indizien, die für eine supersymmetrische Beschreibung der Natur

sprechen (vgl. Einleitung). Durch die Einführung einer Supersymmetrie entstehen

neue Multipletts, in denen Teilchen mit unterschiedlichem Spin vereinigt werden.

Insbesondere handelt es sich um eine Symmetrie, die bosonische und fermionische

Freiheitsgrade vermischt.

1.1 Graduierung und Poincaré-Superalgebra

1.1.1 Poincaré-Algebra

Das Elementarteilchenspektrum einer relativistischen Quantenfeldtheorie ergibt sich

aus den irreduziblen Darstellungen der Poincaré-Gruppe P. Diese setzt sich aus

den Verschiebungen im Minkowski-Raum und den Lorentztransformationen zusam-

men. Die zugehörige Lie-Algebra wird von den sechs Generatoren der Lorentzgruppe

Mµν = −Mνµ und den vier Generatoren der Translationsgruppe P µ erzeugt und

wird durch Vertauschungsrelationen der insgesamt zehn Generatoren

[P µ, P ν] = 0

[P ρ,Mµν ] = i (gρµP ν − gρνP µ)

[Mµν ,Mρσ] = −i (gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ)

festgelegt.
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1.1.2 Casimir-Operatoren

In der Quantenfeldtheorie können alle physikalischen Zustände nach den Eigen-

werten von Casimir-Operatoren klassifiziert werden. Die Casimir-Operatoren einer

Gruppe sind dadurch definiert, dass sie mit allen Generatoren der Gruppe vertau-

schen.

Die Casimir-Operatoren der Poincaré-Gruppe sind:

P 2 = PµP
µ

W 2 = WµW
µ ,

mit dem Pauli-Lubanski-Vektor Wµ = 1
2
εµνρσP

νMρσ.

1.1.3 Irreduzible Darstellungen

Aus den oben angegebenen Casimir-Operatoren ergeben sich verschiedene irreduzi-

ble Darstellungen der Poincaré-Gruppe. Dabei sind zwei dieser Darstellungen von

Bedeutung, die massive Darstellung, zur Beschreibung massebehafteter Teilchen,

und die massenlose Darstellung für massenlose Teilchen.

1. Massive Darstellung: P 2 = m2c2 > 0

W 2 = −m2c2S2

Sk ist der Generator der inneren Drehungen.

Für die Eigenwerte ergibt sich:

P 2 = m2c2,

W 2 = −m2c2s(s+ 1) mit m ∈ R und s = 0,
1

2
, 1,

3

2
, . . . .

Die Darstellung wird durch die Masse m und den Spin s charakterisiert. Sie

lässt sich mit massiven Elementarteilchen identifizieren.

2. Massenlose Darstellung: P 2 = 0 und W 2 = 0

W µ = hP µ mit h = ±s und s = 0,
1

2
, 1,

3

2
, . . . ,

wobei h = W0/P0 ebenfalls ein Casimir-Operator ist. Die Poincaré-Invariante

h wird als Helizität bezeichnet. Sie
”
ersetzt“ bei massenlosen Teilchen den

Spinbegriff.
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3. Die zwei weiteren irreduziblen Darstellungen sind physikalisch irrelevant. Eine

beschreibt massenlose Teilchen mit kontinuierlichem Spin (s ∈ R), die andere

Teilchen, die sich mit Überlichtgeschwindigkeit bewegen (PµP
µ < 0).

1.1.4 Z2-Graduierung der Poincaré-Algebra

Das Spektrum der Elementarteilchen lässt sich durch eine Veränderung der Poincaré-

Algebra erweitern. Dies ist nicht im Rahmen einer Lie-Algebra möglich, sondern nur

wenn man zusätzlich zu den Kommutatorrelationen auch Antikommutatorrelationen

zwischen den Generatoren zulässt.

Eine solche Algebra ist die Z2-graduierte Algebra:

G = G(0) ⊕ G(1) ,

mit:

xi ◦ yj ∈ G(i+j mod 2) mit i, j ∈ {0, 1} und xi ∈ G(i), yi ∈ G(j).

Eine graduierte Z2-Lie-Algebra erhält man mit:

Supersymmetrie : xi ◦ yj = −(−1)i·jyj ◦ xi

Jacobi-Identität : xk ◦ (yl ◦ zm) (−1)k·m

+yl ◦ (zm ◦ xk) (−1)k·l + zm ◦ (xk ◦ yl) (−1)l·m.

Damit erweitert man die Poincaré-Symmetrie durch so genannte SUSY-Generatoren

Qa(a = 1, . . . , 4), mit den Vertauschungsrelationen:

[P µ, Qa] = 0

[Mµν , Qa] = −(
1

2
σµν)abQb

{Qa, Qb} = −2(γµC)abPµ ,

mit σµν = i
2
[γµ, γν].

1.1.5 Irreduzible Darstellungen der SUSY-Algebra

Die irreduziblen Darstellungen dieser Algebra erhält man wiederum aus den zu-

gehörigen Casimir-Operatoren. Diese lauten im Fall der SUSY-Algebra wie folgt:

P 2 = PµP
µ

C2 = CµνC
µν

mit



6 Einführung in die Supersymmetrie

Cµν = YµPν − YνPµ

Yµ = Wµ +
1

4
Xµ

Xµ =
1

2
Q̄γµγ5Q

Dabei sind die Qs so genannte Weyl-Spinoren.

Der Vierervektor Yµ erfüllt die relativistische Drehimpulsalgebra:

[Yµ, Yν] = iεµνρσP
ρY σ

im Ruhesystem ergibt sich:

[Yi, Yj] = imεijkYk

Damit stellt 1
m
~Y eine Verallgemeinerung des Drehimpulses dar (auch Superspin ge-

nannt), mit den Eigenwerten:

(~Y /m)2 = y(y + 1) mit y = 0,
1

2
, 1,

3

2
, . . .

Für den Casimir-Operator im Ruhesystem C2 = −2m2Y 2 ergibt sich:

C2 = −2m4y(y + 1) mit y = 0,
1

2
, 1,

3

2
, . . . .

Im massiven Fall wird somit jede irreduzible Darstellung der SUSY-Algebra durch

das Paar (m, y) charakterisiert, wobei man die Zustände innerhalb eines solchen

Supermultipletts zum einen nach

• den Eigenwerten y3 der z-Komponente des Superspins 1
m
~Y mit −y ≤ y3 ≤ y ,

und zum anderen wegen [W3, CµνC
µν ] = [W3, Y3] = 0 nach

• den Eigenwerten s3 der z-Komponente des Spins 1
m
~W mit s3 ∈

{
y3, y3 + 1

2
, y3 −

1
2

}

und nochmals zweifach entartetem s3 = y3,

klassifiziert.

Im massenlosen Fall, P 2 = 0 und W 2 = 0, tritt die Helizität h wieder an die Stelle

der z-Komponente des Spins s, und man erhält zwei Zustände, die mit h und h =

h+ 1
2

bezeichnet sind. Für CPT -invariante Theorien hat man den obigen Zuständen

zwei weitere hinzuzufügen. Für ihre Helizitäten ergibt sich dann hCPT = −h und

hCPT = −h = −h− 1
2
.

1.1.6 Chirales und Vektor-Supermultiplett

In diesem Unterabschnitt sei kurz auf die zwei einfachsten Darstellungen der SUSY-

Algebra eingegangen.
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Chirales Supermultiplett

Für y = 0 erhält man das chirale Supermultiplett. Im massiven Sektor besteht es

aus drei Teilchen:

• einem Spin-1
2
-Teilchen (Dublett mit s3 = ±1

2
)

• einem skalaren Teilchen (Boson mit Spin 0)

• einem pseudoskalaren Teilchen (Boson mit Spin 0) .

Mit Hilfe des (massiven) chiralen Supermultipletts lassen sich beispielsweise Quarks

und Leptonen sowie ihre Superpartner Squarks und Sleptonen beschreiben. Darüber

hinaus ordnet man die Higgs-Teilchen und ihre SUSY-Partner dieser Darstellung zu.

Das massenlose chirale Supermultiplett gleicht seinem massiven Analogon. Es bein-

haltet ein skalares Teilchen (h = 0) und einen Weyl-Spinor (h = 1/2). Für eine

Lorentz-invariante Theorie hat man jetzt noch die beiden durch CPT -Transformation

zu bestimmenden Partner zu berücksichtigen. Man erhält somit insgesamt

• ein Majorana-Spinor-Teilchen (h = ±1/2)

und

• ein komplexwertiges skalares Teilchen (h = 0) .

Vektor-Supermultiplett

Sollen auch Eichbosonen (z.B. die Gluonen der QCD, oder die Vektorbosonen des

elektroschwachen Sektors) in die Theorie eingebaut werden, so hat man Darstel-

lungen mit y = 1
2

zu betrachten. Das sich daraus ableitende Vektor-Supermultiplett

enthält im massiven Fall:

• 2 Spin-1
2
-Teilchen (jeweils ein Dublett)

• ein Vektorteilchen (Boson Spin 1 / Triplett)

• ein pseudoskalares Teilchen (Boson Spin 0) .

Das massenlose Vektor-Supermultiplett mit h = 1/2 beinhaltet zuzüglich der CPT -

Partner

• ein (massenloses) vektorielles Teilchen (h = ±1)

und als fermionischen Partner der Eichbosonen

• ein Majorana-Spinor-Teilchen (h = ± 1
2
) .
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1.2 Superfelder

In einer gewöhnlichen Feldtheorie sind die Felder Funktionen der Raumzeitkoordina-

ten x. Um eine supersymmetrische Feldtheorie zu konstruieren, bietet es sich an ein

Superfeld S(x, θ, θ̄) einzuführen, das auch von grassmannwertigen Weyl-Spinoren θ

und θ̄ abhängt. Zu den Poincaré-Transformationen

(Λ(w), a) = exp

{

i

(

−
1

2
wρσM

ρσ − xµP
µ

)}

, (1.1)

die auf Felder des vierdimensionalen Minkowski-Raumes wirken, gibt es auch ein

Analogon im Superraum, der ein um vier1 grassmannwertige Koordinaten erweiter-

ter Minkowski-Raum ist. In diesem Superraum liefern die SUSY-Generatoren Q und

Q̄ analog zu den Generatoren P µ, die durch exp(−ixµP
µ) Verschiebungen um xµ im

Minkowski-Raum erzeugen, eine Translation um die Weyl-spinoriellen, grassmann-

wertigen Parameter θ und θ̄ gemäß

exp
{
i
(
θQ+ θ̄Q̄

)}
(SUSY-Translation) . (1.2)

Damit erhält man als supersymmetrische Erweiterung der Poincaré-Gruppe die

Poincaré-Supergruppe. Ein allgemeines Gruppenelement (ohne Berücksichtigung von

Lorentz-Boosts) hat dann die Form2

G
(
xµ, θ, θ̄

)
= exp

{
i
(
−xµPµ + θQ + θ̄Q̄

)}
. (1.3)

Ein Superfeld S(x, θ, θ̄) kann man in eine Potenzreihe in θ und θ̄ entwickeln. Auf-

grund der Grassmann-Eigenschaft {θα, θβ} = 0 bricht diese Reihe nach endlich vielen

Termen ab. Man erhält für das Superfeld

S(x, θ, θ̄) = f(x) + θφ(x) + θ̄ξ̄(x) + (θθ)M(x)

+ (θ̄θ̄)N(x) + θσµθ̄Aµ(x) + (θθ)θ̄λ̄(x)

+ (θ̄θ̄)θα(x) + (θθ)(θ̄θ̄)d(x). (1.4)

(1.5)

mit den Komponentenfeldern φ, ξ̄,M,N,Aµ, λ̄, α und d. Dabei enthalten die Super-

felder die im vorherigen Abschnitt angesprochenen Supermultipletts in Form eben

1Die zusätzlichen Koordinaten werden durch zwei Weyl-Spinoren θ und θ̄ ausgedrückt.
2Eine Darstellung im Superraum ist

Pµ = −i∂µ

iQα =
∂

∂θα
− iσ

µ
αα̇θ̄α̇∂µ

iQ̄α̇ = −
∂

∂θ̄α̇
+ iθασ

µ
αα̇∂µ

mit σµ = (1, σ1, σ2, σ3). Eine Herleitung findet man z.B. in [1].
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dieser Komponentenfelder. Ihr Verhalten unter Lorentztransformationen ergibt sich

aus der Forderung, das das Superfeld S ein Lorentzskalar sei. Da Linearkombina-

tionen von Superfeldern wieder Superfelder sind, ist der durch sie gegebene Dar-

stellungsraum linear. Er ist allerdings hochgradig reduzibel. Um zu irreduziblen

Darstellungen der Superfelder zu gelangen, fordert man deren Invarianz gegenüber

SUSY-Transformationen. Die beiden wichtigsten Typen von Feldern sind in diesem

Zusammenhang

• das skalare Superfeld

• das Vektor-Superfeld.

Wenn man kovariante Ableitungen

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ (1.6)

D̄α̇ = −
∂

∂θ̄α̇
− iθασµ

αα̇∂µ (1.7)

einführt, erhält man durch die Forderung DαΦ(x, θ, θ̄) = 0 ein chirales und für

D̄α̇Φ(x, θ, θ̄) = 0 ein antichirales Superfeld. Ein solches Superfeld enthält Skalar-

felder und ein Weyl-Spinorfeld. Es beschreibt die bekannten Fermionfelder (Quarks

und Leptonen) und ihre supersymmetrischen Partner (Squarks und Sleptonen).

Will man auch Eichbosonen beschreiben, so braucht man eine Theorie, die Spin-1

Vektorfelder beinhaltet. Die SUSY-kovariante Bedingung für ein solches Vektor-

Superfeld lautet dann

V (x, θ, θ̄) = V †(x, θ, θ̄) . (1.8)

Dieses Feld lässt sich wiederum in Komponentenfelder [10]

V (x, θ, θ̄) = f + iθφ− iθ̄φ̄+
i

2
(θθ)M −

i

2
(θ̄θ)M∗

+
(
θσµθ̄

)
Aµ + i(θθ)θ̄

(

λ̄+
i

2
σ̃µ∂µφ

)

− i(θ̄θ̄)θ

(

λ+
i

2
σµ∂µφ̄

)

+
1

2
(θθ)(θ̄θ̄)

(

d−
1

2
∂µ∂

µf

)

(1.9)

zerlegen. Es ergeben sich als fermionische Freiheitsgrade zwei Weyl-Spinorfelder φ

und λ, sowie als bosonische Anteile zwei reelle Felder f und d, ein komplexes Feld

M und schließlich ein reelles Vektorfeld Aµ.

1.3 Eine supersymmetrische Lagrangedichte

Mit diesen Superfeldern lässt sich eine Supersymmetrische nicht-abelsche Eichtheo-

rie konstruieren (siehe z.B [1]), deren Lagrangedichte sich unter Weglassung der
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Materiefelder in euklidischer Formulierung zu

L =
1

4
F a

µνF
a
µν +

1

2
λ̄aγµ(Dµλ)a (1.10)

ergibt. Dabei ist

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] (1.11)

der nicht-abelsche Feldstärketensor und

(Dµλ̄) = ∂µλ̄+ [Aµ, λ̄] (1.12)

die kovariante Ableitung in adjungierter Darstellung (vgl. Kapitel 2.2). Außerdem

ist zu beachten, dass sich die Felder in der adjungierten Darstellung befinden:

λ = λaT a

Aµ = −igAa
µT

a

Fµν = −igF a
µνT

a (1.13)

Das bosonische Vektorfeld Aµ stellt dabei ein Gluon dar, und der Majorana-Spinor

λ ist mit den zugehörigen Superpartnern, den Gluinos, zu identifizieren. Dass es sich

um eine Supersymmetrische Theorie handelt, folgt aus den SUSY-Transformationen

δAµ(x) = −2gλ̄(x)γµε (1.14)

δλ(x) = −
i

g
σρτFρτ (x)ε (1.15)

δλ̄(x) =
i

g
ε̄σρτFρτ (x), (1.16)

unter denen die zugehörige Wirkung invariant ist.



Kapitel 2

Die N=1 SUSY-Yang-Mills

Theorie auf dem Gitter

2.1 Grundbegriffe der Gittereichtheorie

2.1.1 Notationen

Das lokale Eichprinzip macht bekanntermaßen die Einführung von Paralleltranspor-

tern und kovarianten Ableitungen notwendig. Genauer lässt sich in kontinuierlicher

Raumzeit zu jeder Kurve cs : [0, s] → R4 ein durch die SU(N)-Eichsymmetrie indu-

zierter Paralleltransporter U(cs) ∈ SU(N) finden, der dann über Dyson’s Formel

U(cs) = P exp

{

−

∫

cs

Aµ(x)dxµ

}

(2.1)

mit dem Eichfeld Aµ verknüpft ist. Dabei stellt P den Pfadordnungsoperator dar,

und das Eichfeld ist Element der Lie-Algebra der SU(N), d.h. Aµ(x) ∈ su(N).

Den Krümmungs- oder Feldstärketensor Fµν(x) der Theorie erhält man dann aus

infinitesimalen geschlossenen Kurven cx;µ,ν um xmit Seitenlängen dxµ und dxν durch

die Beziehung

U(cx;µ,ν) = 1 − Fµν(x)dxµdxν. (2.2)

Auf dem Gitter ist die kleinste Wegstrecke nicht mehr infinitesimal, sondern von der

Länge a.

Die Paralleltransporter werden deshalb auf den Gitterkanten definiert:

-

x x+ aµ̂

Uµ(x)
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Die zu (2.1) analoge Beziehung zwischen den Paralleltransportern und dem Eichfeld

Aµ ist durch

Uµ(x) = e−aAµ(x) und U †
µ(x) = eaAµ(x) (2.3)

gegeben.

2.1.2 Die Wilson-Wirkung für das Eichfeld

Um nun eine Gitter-Wirkung für das Eichfeld aufzustellen, benötigt man analog zu

(2.2) geschlossene Kurven. Die kleinstmögliche Wahl ist hierbei auf dem Gitter die

sogenannte Plaquettenvariable Uµν(x) entlang eines Quadrats der Seitenlänge a:

-

6

�

?

x x+ aµ̂
Uµ(x)

x+ aν̂ x+ aµ̂+ aν̂

U †
µ(x+ aν̂)

U †
ν(x) Uν(x + aµ̂)

Algebraisch ist dieser Ausdruck durch

Uµν(x) = U †
ν(x)U

†
µ(x + aν̂)Uν(x + aµ̂)Uµ(x) (2.4)

gegeben.

Durch Einsetzen der (2.3) entsprechenden Beziehungen, Benutzung der Campell-

Baker-Hausdorff-Formel1 und Taylor-Entwicklung nach a sieht man dann, dass (2.2)

in der folgenden Art und Weise reproduziert wird:

Uµν(x) = 1 − a2Fµν(x) + O(a3). (2.5)

Als Diskretisierung des Eichfeldanteils der Lagrange-Dichte benutzen wir nun die

Standard-Formulierung nach Wilson [21][22]:

Slat
g (x) =

1

2g2

∑

x

∑

1≤µ6=ν≤4

[

4 − Tr {Uµν(x) + Uνµ(x)}

]

. (2.6)

Die Lagrange-Dichte auf dem Gitter hängt mit der Wirkung über die Beziehung

Slat = a4
∑

x

Llat(x) (2.7)

1exp(x) exp(y) = exp(x + y + 1

2
[x, y] + . . .)
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zusammen, denn es gilt a4
∑

x →
∫
d4x für a → 0. Eine naheliegende Wahl der

Lagrange-Dichte auf dem Gitter ist daher

Llat
g (x) =

1

2g2

1

a4

∑

1≤µ6=ν≤4

[

4 − Tr {Uµν(x) + Uνµ(x)}

]

. (2.8)

2.1.3 Die Wirkung für den fermionischen Teil

Im Kontinuum ist der fermionische Teil der Wirkung durch den Ausdruck

Lf(x) = Tr
{
λ̄(x)γµDµλ(x)

}
(2.9)

gegeben. Im wesentlichen sind nun also Ableitungen auf dem Gitter zu modellieren.

Für die Ableitung ohne Eichfeld und eine auf dem Gitter erklärte Funktion f findet

man dabei eine Vorwärts- und eine Rückwärtsableitung sowie eine symmetrische

Form:

∆lat,f
µ f(x) =

1

a
(f(x+ aµ̂) − f(x))

∆lat,b
µ f(x) =

1

a
(f(x) − f(x− aµ̂))

∆lat,sym
µ f(x) =

1

2a
(f(x+ aµ̂) − f(x− aµ̂)) . (2.10)

Man sieht sofort, daß diese im Limes a → 0 die Ableitungen des Kontinuums erge-

ben. Für die kovariante Ableitung der adjungierten Darstellung kann man auf dem

Gitter analoge Versionen definieren

Dlat,f
µ f(x) =

1

a

(
U †

µ(x)f(x + aµ̂)Uµ(x) − f(x)
)

Dlat,b
µ f(x) =

1

a

(
f(x) − Uµ(x− aµ̂)f(x− aµ̂)U †

µ(x− aµ̂))
)

Dlat,sym
µ f(x) =

1

2a

(
U †

µ(x)f(x+ aµ̂)Uµ(x) − Uµ(x− aµ̂)f(x− aµ̂)U †
µ(x− aµ̂)

)
.

(2.11)

Die fermionische Lagrange-Dichte ist nun durch

Llat
f (x) =

1

2a

∑

µ

Tr
{

λ̄(x)γµU
†
µ(x)λ(x+ aµ̂)Uµ(x)

−λ̄(x + aµ̂)γµUµ(x)λ(x)U †
µ(x)

}

(2.12)

gegeben. Um dies auf eine Form zu bringen, die der von (2.9) entspricht, fügen wir
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zwei Nullen ein und nutzen die Zyklizität der Spur:

Llat
f (x) =

1

2a

∑

µ

Tr
{

λ̄(x)γµU
†
µ(x)λ(x+ aµ̂)Uµ(x)

− λ̄(x)γµλ(x)
︸ ︷︷ ︸

0

−U †
µ(x)λ̄(x + aµ̂)γµUµ(x)λ(x)

+ λ̄(x)γµλ(x)
︸ ︷︷ ︸

0

}

=
1

2
Tr
{

λ̄(x)γµD
lat,f
µ λ(x) −Dlat,f

µ λ̄(x)γµλ(x)
}

= Tr
{
λ̄(x)γµD

lat,f
µ λ(x)

}
. (2.13)

Man erkennt, dass auch hier der korrekte Kontinuumslimes reproduziert wird.

Schließlich muss man noch den Wilson-Term einführen, der die beim Kontinuums-

limes auftretenden Fermion-Doppler eliminiert und kein Analogon im Kontinuum

findet:

Llat
f,Wil(x) =

1

2a
r
∑

µ

Tr

{

−λ̄(x)U †
µ(x)λ(x+ aµ̂)Uµ(x)

−λ̄(x+ aµ̂)Uµ(x)λ(x)U †
µ(x)

}

+
4r

a
Tr
{
λ̄(x)λ(x)

}
(2.14)

Insgesamt sieht also der fermionische Anteil der Lagrange-Dichte wie folgt aus:

Llat
f (x) + Llat

f,Wil(x) + Llat
m (x) = Tr

{

1

2a

∑

µ

(

λ̄(x)(γµ − r)U †
µ(x)λ(x+ aµ̂)Uµ(x)

−λ̄(x+ aµ̂)(γµ + r)Uµ(x)λ(x)U †
µ(x)

)

+

(

m0 +
4r

a

)

λ̄(x)λ(x)

}

. (2.15)

Dabei haben wir den Gluinos durch den Term Llat
m (x) = m0Tr{λ̄(x)λ(x)} noch eine

zusätzliche (nackte) Masse m0 verliehen. Die zugehörige Wirkung findet man z.B. in

[13]. In der weiteren Rechnung werden wir die Kennzeichnung lat weglassen, denn

es ist klar, dass es sich um die Variation der Gitter-Lagrange-Dichte handelt.
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2.2 Majorana-Fermionen in der adjungierten Dar-

stellung

Wie z.B. in [18] nachzulesen existiert ein Zusammenhang zwischen der Tensordar-

stellung der SO(3) und der Spinordarstellung der SU(2). So lässt sich jedem Vektor

x ∈ R3 eine 2 × 2-Matrix X

X = xiσi =

(
x3 x1 − ix2

x1 + ix2 −x3

)

(2.16)

xi =
1

2
TrXσi (2.17)

zuordnen. Transformiert man X mit einem Λ ∈ SU(2)

X → X ′ = ΛXΛ′ (2.18)

entspricht das einer orthogonalen Vektor-Transformation2 Rki ∈ SO(3) von x. Es

muss also gelten:

ΛXΛ−1 !
= (Rijxj)σi (2.19)

⇔ xjΛσjΛ−1 = xjRijσi (2.20)

Durch Multiplikation mit 1
2
σk und anschließender Spurbildung erhält man:

Rkj =
1

2
Tr σkΛσjΛ−1. (2.21)

Mit der Skalierung

a3/2(am + 4r)1/2λ(x) → λ(x) (2.22)

und dem Hoppingparameter

K =
1

2am0 + 8r
(2.23)

lässt sich, da sich die Felder in der Lagrangedichte (2.15) in der adjungierten Dar-

stellung (1.13) befinden, die zugehörige Wirkung schreiben als:

2denn det X ist das negative Skalarprodukt −xixi; außerdem ist die Determinante invariant

unter SU(2) Transformationen und damit auch −xixi.
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Sf =
∑

x

{

Tr (λ̄(x)λ(x))

− KTr

( 4∑

µ=1

∑

αβ

λ̄β(x + µ)[r + γµ]βαUµ(x)λα(x)U−1
µ (x)

+λ̄β(x)[r − γµ]βαU
−1
µ (x)λβ(x− µ)Uµ(x)

)}

=
1

2

∑

x,α,a
y,β,b

{

λ̄a
α(x)λa

α(x)

− K

4∑

µ=1

λ̄b
β(x+ µ)[r + γµ]βαV

ba
µ (x)λa

α(x) + λ̄b
β(x)[r − γµ]βα(V T

µ )ba(x)λa
α(x+ µ)

}

.

(2.24)

Diese Wirkung lässt sich auch kompakter schreiben als

Sf =
1

2

∑

x,α,a
y,β,b

λ̄b(y)Qba
yβ,xαλ

a(x), (2.25)

mit der Fermionenmatrix

Qba
yβ,xα = δyxδbaδβα −K

4∑

µ=1

[
(r + γµ)βαVµ(x)baδy,x+µ + (r − γµ)βα(V T

µ )ba(y)δy+µ,x

]
.

(2.26)

Dabei gelten für V und λ die zu (2.21) bzw. (2.18) analogen Beziehungen

V ab
µ (x) = 2Tr

(
Uµ(x)T aU−1

µ (x)T b
)

(2.27)

λ′(x) = Λ−1λ(x)Λ(x). (2.28)

Diese Wirkung ist die von I. Montvay vorgeschlagene Version der Curci-Vene-

ziano-Wirkung. Aufgrund des Transformationsverhaltens der Majorana-Spinoren

(2.28) spricht man auch von der supersymmetrischen Yang-Mills Theorie mit Majo-

rana-Fermionen in adjungierter Darstellung.

2.3 Die n-Punkt Funktion

Da Majorana-Fermionen wegen der Beziehung λ = Cλ̄T nur halb so viele Freiheits-

grade wie Dirac-Fermionen haben, lässt sich der fermionische Teil der Wirkung auch

schreiben als
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Sf =
1

2

∑

x,y

λ̄a
µ(x)Qab

µνλ
b
µ(y)

=
1

2

∑

x,y

λa
µ(x)CµτQ

ab
τνλ

b
µ(y). (2.29)

Das zugehörige erzeugende Funktional lautet dann

Z[J ] =

∫

DUDλ exp

(

−Sg − Sf −
∑

x

J(x)λ(x)

)

. (2.30)

Mit den Transformationen

λa
µ(x)

′ = λa
µ(x) +

∑

y

J b
ν(M

−1)ba
νµ(x, y) (2.31)

M ba
νµ(x, y) = [CQ]baνµ(x, y) (2.32)

erhält man schließlich

Z[J ] =

∫

DUDλ′ exp

(

−Sg −
1

2

∑

x,y

λ′(x)M(x, y)λ′(y) + J(x)M−1(x, y)J(y)

)

.

(2.33)

In diesem Ausdruck tritt die Pfaffsche Form der Matrix M auf. Für eine total an-

tisymmetrische Matrix mit 2N Dimensionen lässt sich die Pfaffsche Form schreiben

als

Pf[M ] =

∫

Dλ exp

(

−
1

2
λµMµνλν

)

=
1

N !2N
εµ1ν1...µ2N ν2N

Mµ1ν1
. . .Mµ2N ν2N

, (2.34)

dabei ist ε der total antisymmetrische Tensor. Das erzeugende Funktional bekommt

dann die Gestalt

Z[J ] =

∫

DU Pf[M ] exp

(

−Sg −
1

2

∑

x,y

J(x)M−1(x, y)J(y)

)

(2.35)

oder mit

Seff = Sg − log Pf[M ] (2.36)

die Form

Z[J ] =

∫

DU exp

(

−Seff −
1

2

∑

x,y

J(x)M−1(x, y)J(y)

)

. (2.37)
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Durch funktionale Differentiation lassen sich daraus die n-Punkt Funktionen berech-

nen:

〈
T
{
λc1

ε1
(x1) . . . λ

cn

εn
(xn)

}〉

=

∫
DUDλλc1

ε1(x1) . . . λ
cn
εn

(xn) exp
(

−Sg −
1
2

∑

x,y λ(x)M(x, y)λ(y)
)

∫
DUDλ exp (−Sg − Sf)

=
1

Z[0]

∫

DU
δn

δJc1
ε1 (x1)δJcn

εn
(xn)

exp

(

−Seff −
1

2

∑

x,y

Ja
µ(x)M−1ab

µν(x, y)J
b
ν(y)

)∣
∣
∣
∣
∣
J=0

=

〈

δn

δJc1
ε1 (x1)δJcn

εn
(xn)

exp

(

1

2

∑

x,y

Ja
µ(x)M−1ab

µν(x, y)J
b
ν(y)

)〉

g

(2.38)

〈 〉g bezeichnet die noch auszuführende Mittelung über die Eichfelder. Diese wird

auf dem Gitter numerisch durchgeführt. Für die im weiteren betrachteten Zustände

ist es notwendig, die 4-Punkt-Funktion zu kennen, die sich aus(2.38) zu

〈
T
{
λc1

ε1(x1)λ
c2
ε2(x2)λ

c3
ε3(x3)λ

c4
ε4(x4)

}〉

=
〈
M−1c1c2

ε1ε2
(x1, x2)M

−1c3c4
ε3ε4

(x3, x4)

+M−1c1c4
ε1ε4

(x1, x4)M
−1c2c3

ε2ε3
(x2, x3)

−M−1c1c3
ε1ε3 (x1, x3)M

−1c2c4
ε2ε4 (x2, x4)

〉

g

=
〈
∆c1c2

ε1δ2
(x1, x2)C

−1
δ2ε2

∆c3c4
ε3δ4

(x3, x4)C
−1
δ4ε4

+∆c1c4
ε1δ4

(x1, x4)C
−1
δ4ε4

∆c2c3
ε2δ3

(x2, x3)C
−1
δ3ε3

−∆c1c3
ε1δ3

(x1, x3)C
−1
δ3ε3

∆c2c4
ε2δ4

(x2, x4)C
−1
δ4ε4

〉

g
(2.39)

ergibt. Mit der inversen Fermionenmatrix ∆ = Q−1.



Kapitel 3

Simulation auf dem Gitter

Wie in der QCD erwartet man in der N=1 Supersymmetrischen Yang-Mills Theorie

massive Bindungszustände der elementaren Teilchen. Bei nicht gebrochener Super-

symmetrie sollten sich diese Zustände in den supersymmetrischen Multipletts aus

Kapitel 1 anordnen. Um das Massenspektrum einer Theorie zu untersuchen, ist es

notwendig, Verfahren zu entwickeln die geeignet sind die Massen von Bindungs-

zuständen zu messen. Dabei hat man sich bisher auf Zustände konzentriert, die auf

einem Gitterpunkt lokalisiert waren und hat ihnen später durch sog. Smearing eine

räumliche Ausdehnung verliehen. In diesem Kapitel ist die Vorgehensweise für diese

lokalen Operatoren kurz zusammengefasst. Im nächsten Kapitel wird dann darauf

eingegangen, welche Änderungen für die Betrachtung nichtlokaler Operatoren not-

wendig sind.

3.1 Erzeugung von Feldkonfigurationen

Um Massen von Bindungszuständen auf dem Gitter zu messen, ist es notwendig Er-

wartungswerte, wie in Formel (2.39), von Funktionen der Felder A(U) zu berechnen.

〈A(U)〉 =

∫

DU e−SeffA(U) (3.1)

Wegen der großen Zahl an Integrationsvariablen1

DU =
∏

x,µ

dUµ(x)

kommt zur Auswertung nur eine Monte-Carlo-Integration in Frage. Dazu werden

zufällig Feldkonfigurationen erzeugt und dann der Mittelwert des Integranden gebil-

det. Dieses Vorgehen wäre im vorliegenden Fall jedoch sehr ineffizient, da aufgrund

1Selbst für die Testläufe dieser Arbeit, für die nur ein sehr kleines Gitter verwendet wurde,

wären es schon über 1000 Integrationsvariablen.
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des Faktors e−Seff der Integrand Peaks bei einigen wenigen Konfigurationen hat. Es

ist numerisch daher effizienter ein Ensemble {Un|n = 1, . . . , N} mit der Verteilung

p(Un) ∼ e−Seff (U) zu erzeugen. Der Erwartungswert einer Größe A ergibt sich dann

zu

〈A〉 =
1

N

N∑

n=1

A(Un). (3.2)

Eine detaillierte Darstellung der verschiedenen numerischen Verfahren findet man

z.B. in [14].

3.2 Korrelationsfunktionen

Die Masse eines gebundenen Zustandes ϕ (das könnte z.B. ein Bindungszustand aus

zwei Majorana-Teilchen ϕ = λ̄(x)λ(x) sein,) wird durch das asymptotische Verhalten

der Korrelationsfunktionen

C(∆t) =
〈
S(t + ∆t)†S(t)

〉
−
〈
S(t+ ∆t)†

〉
〈S(t)〉 (3.3)

zwischen den Zeitscheibenerwartungswerten

S(t, p = 0) =
1

L
3

2

∑

~x

ϕ(x, t) (3.4)

bestimmt. Dabei ist L3 das (räumliche) Volumen, die Summe über ~x sorgt dafür,

dass man nur die Komponenten mit Impuls p = 0 erhält. Fügt man jetzt einen

kompletten Satz von Energieeigenfunktionen ein und berücksichtigt periodische bzw.

antiperiodische Randbedingungen in Zeitrichtung, dann erhält man

C(∆t) =
∑

n

{
|〈n|S(t)|0〉|2 e−En∆t ± | 〈0|S(t)† |n〉 |2e−En(L−t−∆t)

}

=
∑

n

cn
(
e−mn∆t ± e−mn(T−∆t)

)
. (3.5)

Durch die Periodizität des Gitters ergibt sich eine Symmetrie bzgl. T
2

bei einer

zeitlichen Ausdehnung von T . Für große Werte von ∆t sind die Terme für größere

Massen exponentiell gedämpft, so dass C(∆t) im Limes ∆t→ ∞ in

C(∆t) = C0 + c1
(
e−m1∆t ± e−m1(T−∆t)

)
(3.6)

übergeht. Durch einen Fit an diese Funktion kann man dann die Masse des leich-

testen Zustandes extrahieren. Da man den Grenzübergang ∆t → ∞ jedoch nicht

ausführen kann, erhält man bei einem solchen Fit Fehler, da die Terme zu schwere-

ren Zuständen nicht völlig verschwinden. Um dennoch gute Ergebnisse zu erzielen
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ist es notwendig Operatoren zu konstruieren, die das Vakuum besonders gut auf den

Grundzustand abbilden. Denn für einen Operator ϕ mit

〈n|S(t)|0〉 = δn1, (3.7)

ist der Übergang zu ∆t → ∞ nicht notwendig, um die tatsächliche Masse zu ex-

trahieren. Solche Operatoren sind jedoch nicht einfach zu finden, man führt des-

halb unterschiedliche Smearing-Techniken ein, die es erlauben eine große Zahl von

Operatoren zu erzeugen. Im Rahmen dieser Arbeit wurde jedoch ein anderer Weg

beschritten. Es wurden nichtlokale Operatoren konstruiert, die evtl., eine bessere

Projektion auf den Grundzustand liefern. Außerdem wäre es auch denkbar, dass

man Operatoren erhält, die primär auf einen schwereren Zustand projizieren

〈n|S(t)|0〉 ≈ δnm. (3.8)

3.3 Massenbestimmung von Majorana-Majorana

Bindungszuständen

Die Korrelationsfunktionen für Zustände, die zwei Majoranateilchen enthalten, ha-

ben alle eine ähnliche Struktur. Sie bestehen immer aus verbundenen und unverbun-

denen Anteilen. So berechnet sich die Korrelationsfunktion für den skalaren Gluino-

ball ϕ(x) = λ̄(x)λ(x) aus (2.39) zu:

〈ϕ(x)ϕ(y)〉 = Trsc ∆xxTrsc ∆yy
︸ ︷︷ ︸

unverbundener Anteil

−2Trsc ∆xy∆yx
︸ ︷︷ ︸

verbundener Anteil

(3.9)

Um jetzt Massen berechnen zu können ist es notwendig, ∆(U) = Q−1(U) zu ken-

nen. D.h. es ist notwendig die Fermionenmatrix Qxy zu invertieren. Da x und y alle

Gitterpunkte durchlaufen, und Matrixinversionen sehr rechenaufwendig sind, ist es

nicht möglich die komplette Fermionenmatrix zu invertieren. Deshalb verwendet

man ein anderes Verfahren zur Berechnung der Korrelationsfunktion. Dabei werden

die verbundenen und unverbundenen Anteile getrennt betrachtet. Die unverbunde-

nenen Anteile werden mittels der Volume Source Technique (VST), die verbundenen

Anteile durch statistisch verteilte Quellen berechnet.

3.4 Der verbundene Anteil

Um nicht den vollen Propagatoren ∆xy berechnen zu müssen, wählt man sich eine

feste Quelle x = x0 und berechnet dann die Elemente ∆yx0
mit

Qxy∆yx0
= δx,x0

. (3.10)
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Für die Korrelationsfunktion ergibt sich dann für den verbundenen Anteil

C(∆t) =

〈

1

L
3

2

∑

~y

2Trsc γ5∆
∗
yx0
γ5∆yx0

〉

. (3.11)

Dabei nutzt man die Relation

∆ = γ5 (∆∗)Tx,s,c γ5 (3.12)

der Fermionenmatrix aus. Mit der Transposition Tx,s,c bzgl. der Orts-, Spin- und

Farbfreiheitsgrade.

3.5 Der unverbundene Anteil

Zur Ermittelung des unverbundenen Anteils ist es notwendig Propagatoren des Typs

∆xx zu berechnen. Eine Möglichkeit stellt dabei die Volume Source Technique(VST)

dar. Die VST ermöglicht es alle Propagatoren ∆xx aus einer einzigen Matrixinversi-

on2 zu gewinnen. Dabei macht man sich zu Nutze, dass nach dem Elitzur-Theorem

[4] die Erwartungswerte nicht eichinvarianter Größen verschwinden.

∆xx = ∆xx +
∑

y 6=x

∆xy =
∑

y

∆xy (3.13)

Denn ∆xy ist für x 6= y nicht eichinvariant und
∑

y ∆xy lässt sich durch eine einzige

Matrixinversion gewinnen:

Qab
µν(x, y)

∑

z,c,α

∆bc
να(y, z) = b[x, a, µ] (3.14)

Dabei ist b[x, a, µ] = 1 für alle Punkte im Orts- Spin- und Farbraum. Der gesamte

Raum ist also angefüllt mit Quellen, dieser Umstand war namensgebend für die

VST.

3.6 Smearing

Wenn man Bindungszustände auf dem Gitter simuliert ist nicht nur das Transforma-

tionsverhalten der verwendeten Operatoren bedeutend, sondern auch ihre Struktur.

Um gute Ergebnisse zu erzielen ist es wichtig, dass der aus dem Vakuum erzeugte Zu-

stand im wesentlichen ein Energieeigenzustand ist. Dies versucht man zu erreichen,

2Eine Matrixinversion meint hier das Lösen des Gleichungssystems Qab
µν(x, y)Zb

ν(y) = δa
µ(x).

Wenn δa
µ(x) = 1 für [z, c, τ ] und sonst = 0, dann liefert Z gerade eine Spalte von (Qbc

ντ (y, z))−1 =

Zb
ν(y).
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indem man den Operatoren durch Smearing eine räumliche Ausdehnung verleiht. Ein

Bindungszustand zweier Gluinos wäre z.B. auf einem Gitterpunkt lokalisiert und da-

mit punktförmig. Für einen gluonischen Bindungszustand würde sich z.B. eine Aus-

dehnung von der Größe einer Plakette ergeben. Diese Ausdehnungen stimmen nicht

zwangsläufig mit den natürlichen Ausdehnungen dieser Bindungszustände überein.

Smearing sorgt dafür, dass die simulierten Zustände
”
verschmiert“ werden und so ein

besseres Resultat für den zu messenden Zustand erzielt wird. Der Smearing-Radius

muss dabei auf den zu messenden Zustand abgestimmt werden. Als zusätzlicher

Effekt des Smearings ergibt sich eine Verbesserung des Signal-Rausch-Verhältnisses.

3.6.1 APE Smearing

- = - + ε
6

?
-

-

6

?
+ ����

��

��	�
��-

-

����
��

��	�
��

Abbildung 3.1: APE Smearing

Ein mögliches Verfahren zur Verschmierung von Eichfeldern ist APE-Smearing. Da-

bei wird ein Link durch eine Summe über benachbarte Links ersetzt (siehe Abb.

3.1). Durch N-fache Anwendung dieses Verfahrens

Ux,µ → Ux,µ + ε
∑

ν=1,2,3
ν 6=µ

(

U †
x+µ̂,νUx+ν̂,µUx,µ + Ux+µ̂−ν̂,νUx−ν̂,µU

†
x−ν̂,ν

)

(3.15)

auf das komplette Gitter erhält man einen Smearing-Radius von R = Nε.

3.6.2 Jacobi Smearing

Wenn man fermionische Zustände berechnet, ist es notwendig die Fermionenmatrix

zu invertieren. Dabei ist es das einfachste, mit punktförmigen Quellen und Senken

zu arbeiten. Dies wird jedoch den physikalischen Zuständen nicht gerecht, die eine

natürliche Ausdehnung besitzen. Eine Möglichkeit dieser Ausdehnung gerecht zu

werden, ist die δ−artigen Quellen und Senken durch

F ab(x, x′) = δabδxx′ +

NJ∑

i=1

[

κJ

3∑

µ=1

(
δx′,x+µ̂V

ab
µ (x) + δx′+µ̂,xV

†ab
µ (x)

)

]i

(3.16)
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zu ersetzen. Dabei meint
∑NJ

i=1 [. . .] N-fache Iteration von [. . .]. Die Parameter κJ

und NJ sind durch ausprobieren zu optimieren.



Kapitel 4

Der Spin 1 Operator

Nach Kapitel 1 gibt es ein supersymmetrisches Vektormultiplett, das zwei Spin- 1
2
, ein

Spin-0 (Pseudoskalar) und ein Spin-1 (Vektor)-Teilchen enthält. In diesem Kapitel

werden lokale und nichtlokale Operatoren konstruiert, die das Spin-1-Vektorboson

beschreiben.

4.1 Der lokale Spin-1 Operator

Lokal (d.h. alle Majorana-Teilchen befinden sich auf dem selben Gitterpunkt) lässt

sich ein Spin 1 Operator durch

ϕv = λ̄γµλ mit µ = 1, 2, 3 (4.1)

oder durch

ϕp = λ̄γ5γµλ mit µ = 1, 2, 3 (4.2)

realisieren. Der erste Operator transformiert sich wie ein Vektor, der zweite wie

ein Pseudovektor. Beachtet man die speziell für Majorana-Spinoren gültige Relation

(A.10)

ψ̄γµφ = −φ̄γµψ (4.3)

ergibt sich direkt ϕv = 0. Es gibt also keinen lokalen Operator, der einen Spin-1

Zustand mit negativer Parität erzeugt.

4.1.1 Das Transformationsverhalten

Sei Λ eine Lorentz-Transformation und S(Λ) die zugehörige Transformationsmatrix.

Dann gilt
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S−1γ5S = γ5 (4.4)

S−1γµS = Λν
µγν (4.5)

λ′(x′) = Sλ(x) (4.6)

λ̄′(x′) = λ̄(x)S−1. (4.7)

Damit ergibt sich für das Transformationsverhalten des Operators (4.2)

ϕµ(x′)′ = λ̄(x′)′γ5γµλ
′(x′) (4.8)

= λ̄(x)S−1γ5SS
−1γµSλ(x) (4.9)

= λ̄(x)γ5Λ
ν
µγνλ(x) = Λν

µϕν(x). (4.10)

Der Operator transformiert sich also wie ein Vierervektor. Beachtet man auch noch

das Transformationsverhalten unter Raumspiegelung, das durch den Paritätsopera-

tor P mit

P (λ) = iγ4λ (4.11)

P (λ̄) = −iλ̄γ4 (4.12)

beschrieben wird, ergibt sich, dass sich der Operator wie ein (Dreier-)Pseudovektor

transformiert

P (ϕv) = P (λ̄)γµP (λ) = λ̄γ4γµγ4λ = −λ̄γµλ = −ϕv (4.13)

P (ϕp) = P (λ̄)γ5γµP (λ) = λ̄γ4γ5γµγ4λ = λ̄γµλ = ϕp. (4.14)

Dabei wurde verwendet, dass {γ4, γµ} = 0 (vgl. Anhang C) für µ = 1, 2, 3, 5 gilt.

4.1.2 Die Korrelationsfunktion

Wenn man beachtet, dass

CγµC
−1 = −γT

µ und C∆C−1 = C−1∆C = ∆Txµa (4.15)

gilt (vgl. Anhang D und E), kann man die Korrelationsfunktion mit Hilfe von Glei-

chung (2.39) berechnen
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〈ϕµ(x)ϕν(y)〉 =
〈{
λ̄(x)γ5γµλ(x)

}{
λ̄(y)γ5γνλ(y)

}〉

=
〈
λa

δ1
(x)λa

δ2
(x)λb

δ3
(y)λb

δ4
(y)
〉

Cδ1ε1γ5 ε1τ1γµ τ1δ2Cδ3ε3γ5 ε3τ3γν τ3δ4

=

[

∆aa
δ1τ2

(x, x)∆bb
δ3τ4

(y, y)C−1
τ2δ2

C−1
τ4δ4

+∆ab
δ1τ2

(x, y)∆ab
δ2τ4

(x, y)C−1
τ2δ4

C−1
τ4δ3

−∆ab
δ1τ2(x, y)∆

ab
δ2τ4(x, y)C

−1
τ2δ3

C−1
τ4δ4

]

Cδ1ε1γ5 ε1τ1γµ τ1δ2Cδ3ε3γ5 ε3τ3γν τ3δ4

= (−Cε1δ1)∆
aa
δ1τ2

(x, x)C−1
τ2δ2

︸ ︷︷ ︸

−∆aa
δ2ε1

(x,x)

(−Cε3δ3)∆
bb
δ3τ4

(y, y)C−1
τ4δ4

︸ ︷︷ ︸

−∆bb
δ4ε3

(y,y)

γ5 ε1τ1γµ τ1δ2γ5 ε3τ3γν τ3δ4

+ (−Cε1δ1)∆
ab
δ1τ2(x, y)C

−1
τ2δ4

︸ ︷︷ ︸

−∆ba
δ4ε1

(y,x)

∆ab
δ2τ4(x, y)C

−1
τ4δ3

Cδ3ε3
︸ ︷︷ ︸

δτ4ε3

γ5 ε1τ1γµ τ1δ2γ5 ε3τ3γν τ3δ4

− (−Cε1δ1)∆
ab
δ1τ2(x, y)C

−1
τ2δ3

︸ ︷︷ ︸

−∆ba
δ3ε1

(y,x)

∆ab
δ2τ4(x, y)

Cδ3ε3γ5 ε3τ3γν τ3δ4C
−1
τ4δ4

︸ ︷︷ ︸

γT
5 δ3τ3

(−γT
ν τ3δ4

)Cδ4ε3
(−C−1

ε3τ4
)

γ5 ε1τ1γµ τ1δ2

= Trsc {γ5γµ∆xx}Trsc {γ5γν∆yy}

−Trsc {γ5γµ∆xyγ5γν∆yx}

+Trsc {γ5γµ∆xyγνγ5∆yx} . (4.16)

Damit ergibt sich schließlich

〈
ϕP

µ (x)ϕP
µ (y)

〉
= Trsc {γ5γµ∆xx}Trsc {γ5γµ∆yy} − 2Trsc {γ5γµ∆xyγ5γµ∆yx} .

(4.17)

4.2 Der nichtlokale Spin-1 Gluinoball

Im Kontinuum besitzen Gluinobälle einen ganzzahligen Spin J , wodurch sie durch

irreduzible Darstellungen der Gruppe SO(3)1 klassifiziert werden. Auf dem Gitter

gehen die kontinuierlichen Rotationen der Gruppe SO(3) in die Transformationen der

1Im allgemeinen zieht man die irreduziblen Darstellungen der Gruppe SU(2) zur Klassifikation

von Spinzuständen heran. Im bosonischen Sektor stimmen die die irreduziblen Darstellungen von

SU(2) und SO(3) jedoch überein.
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kubischen Gruppe Oh über. Zustände auf dem Gitter werden dementsprechend nach

den irreduziblen Darstellungen von Oh klassifiziert. Diese sind A1, A2, E, T1 und

T2. Da man aus Gittersimulationen Spinzustände des Kontinuums extrahieren will,

muss man beachten, was mit einer irreduziblen Darstellung Rj aus SO(3), (wobei

j den Spinzustand bezeichnet) beim Übergang zu einem diskreten Gitter geschieht.

Es zeigt sich, dass man R als eine reduzible Darstellung Rj
O von Oh auffassen kann.

Diese wiederum lässt sich dann in ihre irreduziblen Teile zerlegen, und man erhält:

Spin Zerlegung in irreduzible

j Darstellungen von O

0 A1

1 T1

2 E ⊕ T2

3 A2 ⊕ T1 ⊕ T2

4 A1 ⊕ E ⊕ T1 ⊕ T2

...

Wie man sieht ist die Darstellung für Spin-1, an der wir interessiert sind, irreduzibel.

Damit lassen sich Spin-1 Teilchen auf dem Gitter durch Operatoren beschreiben, die

sich unter T1 transformieren. Zustände mit höherem Spin spalten sich dagegen auf

dem Gitter auf, was es schwieriger macht, diese zu behandeln. Eine ausführliche

Darstellung dieser Thematik findet man z.B. in [8] und [9].

Es gibt verschiedene Möglichkeiten Spin-1-Gluinoball-Zustände mittels nichtlokaler

Operatoren auf dem Gitter zu modellieren. Eine ausführliche Auflistung findet man

in [9]. Die einfachste Möglichkeit ist der Majorana-Link-Majorana-Operator:

ϕp = Tr{λ̄(x)U †
x;µλ(x+ aµ̂)Ux;µ} (4.18)

Graphisch lässt er sich durch

�
- λ(x+ aµ̂)λ̄(x)

U †
x;µ

Ux;µ

veranschaulichen, wobei die Gitter-Links zur Visualisierung gekrümmt gezeichnet

sind. Im dreidimensionalen Gitter sind drei Orientierungen des Operators möglich,

die mit
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q

q

��
λ̄

λ
= O1

q

q

λ̄

λ

= O2 q qλ̄ λ = O3

bezeichnet werden. Die Operatoren O1 - O3 lassen sich mit den Kanten eines Würfels

identifizieren; geometrische Überlegungen führen dazu, dass sie sich nach T1 trans-

formieren. Das gleiche Transformationverhalten zeigt auch der Operator

ϕv = Tr {λ̄(x)U †
x;µγ5λ(x+ aµ̂)Ux;µ}. (4.19)

4.2.1 Verhalten unter P-Parität

Spiegelt man die Majorana-Link-Majorana-Operatoren

ϕv = Tr {λ̄(x)U †
x;µΓλ(x+ aµ̂)Ux;µ}, (4.20)

mit Γ = {1, γ5}, am Gitterpunkt x, so erhält man zunächst

Px{λ̄(x)U †
x;µΓλ(x+ aµ̂)Ux;µ} = ±

(

−i λ̄(x)γ0U
†
x;−µi γ0Γλ(x− aµ̂)Ux;−µ

)

= ±
(

λ̄(x)γ2
0U

†
x;−µΓλ(x− aµ̂)Ux;−µ

)

= ±
(

λ̄(x)U †
x;−µΓλ(x− aµ̂)Ux;−µ

)

. (4.21)

Dabei ist zu beachten, dass γ5 unter Raumspiegelungen das Vorzeichen wechselt,

also

P−1ΓP = ±Γ (4.22)

gilt (vgl. Anhang D). Führt man jetzt eine Translation in +µ̂-Richtung um einen

Gitterplatz durch, so geht die über Gleichung (4.21) gebildete Spur in den Ausdruck

±
(
Tr
{
λ̄(x+ aµ̂)Ux;µΓλ(x)U †

x;µ

})
= ±

(
Tr
{
λ̄a(x+ aµ̂)T aUx;µΓλ(x)bT bU †

x;µ

})

= ±
(
λ̄a(x+ aµ̂)Γλ(x)bTr

{
T aUx;µT

bU †
x;µ

})

= ±
(
λ̄(x)bΓλa(x + aµ̂)Tr

{
T bU †

x;µT
aUx;µ

})

= ±
(
Tr
{
λ̄(x)bT bU †

x;µΓλ
a(x + aµ̂)T aUx;µ

})

= ±
(
Tr
{
λ̄(x)U †

x;µΓλ(x+ aµ̂)Ux;µ

})
(4.23)

über. Dabei wurden die Zerlegung λ = λaT a und die Rechenregel ψ̄φ = φ̄ψ verwen-

det (vgl. Anhang A). Damit hat ϕv also eine negative P-Parität, ϕp hingegen eine

positive.
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4.2.2 Verhalten unter C-Parität

Die Majorana-Spinoren verhalten sich gegenüber C-Paritätsoperationen per Defini-

tion invariant

λ
C

−→ λC = λ bzw. λ̄
C

−→ λ̄C = λ̄ . (4.24)

Dasselbe gilt für γ5. Die Gitter-Links ändern jeweils ihre Orientierung

Ux;µ
C

−→ U †
x;µ bzw. U †

x;µ
C

−→ Ux;µ , (4.25)

so dass beide Majorana-Link-Majorana-Operatoren insgesamt den C-Paritätseigen-

wert +1 besitzen.

4.2.3 Der Majorana-Link-Majorana Operator

Aus den vorhergehenden Abschnitten folgt, dass sich die Operatoren ϕv(x) (4.19)

und ϕp(x) (4.18) wie ein Vektor bzw. Pseudovektor transformieren. Um die Massen

dieser Bindungszustände ϕ(x) zu bestimmen, muss man die Korrelation 〈ϕ(x)ϕ(y)〉

berechnen. Mit (2.39), den Relationen aus Anhang E und den Abkürzungen x1 = x,
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x2 = x+ aµ̂, y1 = y und y2 = y + aµ̂ ergibt sich

〈ϕ(x)ϕ(y)〉 =

〈

Trc

{
λ̄(x)U †

x;µΓλ(x+ aµ̂)Ux;µ

}

Trc

{
λ̄(y)U †

y;µΓλ(y + aµ̂)Uy;µ

}
〉

=
〈
λ̄a(x)Γλb(x + aµ̂)λ̄c(y)Γλd(y + aµ̂)

〉

Tr
{
T aU †

x;µT
bUx;µ

}
Tr
{
T cU †

y;νT
dUy;µ

}

=
1

4

〈
λa

δ1
(x)λb

δ2
(x+ aµ̂)λc

δ3
(y)λd

δ4
(y + aν̂)

〉

Cδ1ε1Γε1δ2Cδ3ε3Γε3δ4V
ab
µ (x)V cd

ν (y)

=
1

4

[

∆ab
δ1τ2

(x1, x2)∆
cd
δ3τ4

(y1, y2)C
−1
τ2δ2

C−1
τ4δ4

+∆ad
δ1τ4

(x1, y2)∆
bc
δ2τ3

(x2, y1)C
−1
τ4δ4

C−1
τ3δ3

−∆ac
δ1τ3(x1, y1)∆

bd
δ2τ4(x2, y2)C

−1
τ3δ3

C−1
τ4δ4

]

Cδ1ε1Γε1δ2Cδ3ε3Γε3δ4V
ab
µ (x1)V

cd
ν (y1)

=
1

4
Trs

{
Γ∆ab

x1x2

}
Trs

{
Γ∆cd

y1y2

}
V ab

µ (x1)V
cd
ν (y2)

−
1

4
Trs

{
Γ∆da

y2x1
Γ∆bc

x2y1

}
V ab

µ (x1)V
cd
ν (y1)

−
1

4
Trs

{
Γ∆ca

y1x1
Γ∆bd

x2y2

}
V ab

µ (x1)V
cd
ν (y1)

=
1

4
Trsc

{
Γ∆x1x2

V T
µ (x1)

}
Trsc

{
Γ∆y1y2

V T
ν (y1)

}

−
1

4
Trsc {Γ∆y2x1

Vµ(x1)Γ∆x2y1
Vν(y1)}

−
1

4
Trsc

{
Γ∆y1x1

Vµ(x1)Γ∆x2y2
V T

ν (y1)
}

(4.26)

Aus diesem Ausdruck lassen sich, mit den in Kapitel 3 vorgestellten Methoden,

Massen für die Gluinobälle 1++ und 1−+ extrahieren. Es sind jedoch einige Beson-

derheiten zu beachten, auf die im weiteren eingegangen wird.

4.2.4 Die VST für nichtlokale Operatoren

Zur Bestimmung der unverbundenen Anteile nichtlokaler Operatoren muss die VST

leicht abgewandelt werden. Für den Vektor-Gluinoball ergibt sich die Korrelations-

funktion aus 4.26 zu

Cdisc.(∆t) =
∑

~x,~y

Trsc

{
γ5∆x1x2

V T
µ (x1)

}
Trsc

{
γ5∆y1y2

V T
ν (y1)

}
. (4.27)
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Um hier die VST anwenden zu können muss man die obigen Ausdrücke um nicht

eichinvariante Anteile erweitern:

Trsc

{
γ5∆x1x2

V T
µ (x1)

}
= Trsc

{
γ5∆x1x2

V T
µ (x1)

}
+
∑

y 6=x2

Trsc

{
γ5∆x1yV

T
µ (x1)

}

︸ ︷︷ ︸

=0 im Eichmittel

(4.28)

Graphisch stellt sich das wie folgt dar:

r

r

x1

x2

Vµ(x1) ∆x2x1

V ST
−→

r

r

x1

x2

Vµ(x1) ∆x2x1
+

r

r

x1

x2

Vµ(x1)
∆x2z

+ . . .

︸ ︷︷ ︸

nicht eichinvariant

Abbildung 4.1: Die Volume Source Technique

Damit lässt sich die VST prinzipiell auch auf nichtlokale Operatoren anwenden.

4.2.5 Anwendung und Probleme der VST

Wie von R. Peetz [15] festgestellt wurde, verschwinden bei Korrelationen der Form

Tr{Γ∆xx}Tr{Γ∆yy} nicht alle unerwünschten Terme. Dies trifft auch auf die nicht-

lokale Variante
∑

~x,~y

Trsc

{
∆x1x2

V T
µ (x1)

}
Trsc

{
∆x1x2

V T
µ (x1)

}
(4.29)

zu. Anhand von Abb. 4.2 lässt sich das leicht erkennen.

Dieses Problem wurde dadurch behoben, dass man, bevor das Ensemblemittel über

das Produkt aus Trsc

{
∆x1x2

V T
µ (x1)

}
und Trsc

{
∆x1x2

V T
µ (x1)

}
gebildet wird, die

unerwünschten Terme beseitigt. Das geschieht für jeden der Terme separat, indem

man auf jeder Konfiguration zufällige Eichtransformationen Ek durchführt und dann

den Mittelwert bildet. Also sind in

c(t) =
1

N

∑

~x

N∑

k=1

EkTrsc

{
∆x1x2

V T
µ (x1)

}
(4.30)

alle nicht eichinvarianten Terme eliminiert, so dass

C(∆t) = 〈c(t)c(t+ ∆t)〉 (4.31)

die Korrelation ohne systematische Fehler liefert. Dieses Vorgehen birgt jedoch ein

anderes Problem: zum einen tritt durch die zusätzliche Mittelung eine weitere Feh-

lerquelle auf, zum anderen ist diese Variante der VST mit einem deutlich höheren
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Eichinvarianter Anteil, der imMittel nicht verschwindet.

Abbildung 4.2: Probleme der VST

Rechenaufwand verbunden, da nach jeder zufälligen Eichtransformation die Fermio-

nenmatrix erneut invertiert werden muss. In Zukunft bleibt deshalb zu untersuchen,

ob es angebracht ist, hier eine andere Methode einzusetzen.

4.3 Smearing für nichtlokale Operatoren

Um Smearing auf nichtlokale Operatoren anwenden zu können ist es notwendig si-

cherzustellen, dass die gewählten Verfahren das Transformationsverhalten unverändert

lassen. Da die von uns betrachteten Majorana-Link-Majorana-Operatoren sowohl

Majorana-Spinoren als auch Eichlinks enthalten, liegt es nahe, diese beiden Verfah-

ren zu kombinieren.

4.3.1 APE Smearing

Die in Abb. 4.3 illustrierte Ersetzung

Ux,µ → Ux,µ + ε
∑

ν=1,2,3
ν 6=µ

(

U †
x+µ̂,νUx+ν̂,µUx,ν + Ux+µ̂−ν̂,νUx−ν̂,µU

†
x−ν̂,ν

)

(4.32)
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Abbildung 4.3: APE Smearing

eines Eichlinks sollte keinen Einfluß auf das Transformationsverhalten haben. Dies

ist bzgl. der kubischen Gruppe O gegeben, denn Ux,µ und Ũx,µ transformieren sich

offensichtlich identisch unter O. Jetzt bleibt nur noch das Verhalten von Ũx,µ unter

P- und C-Paritätsoperationen zu untersuchen. Bei einer Raumspiegelung am Punkt

x ergibt sich

P (Ũx,µ) = Ux,−µ + ε
∑

ν=1,2,3
ν 6=µ

(

U †
x−µ̂,−νUx−ν̂,−µUx,−ν + Ux−µ̂+ν̂,−νUx+ν̂,−µU

†
x+ν̂,−ν

)

= Ux,−µ + ε
∑

ν=1,2,3
ν 6=µ

(

Ux−µ̂−ν̂,νUx−ν̂,−µU
†
x−ν̂,ν + U †

x−µ̂+ν̂−ν̂,νUx+ν̂,−µUx+ν̂−ν̂,ν

)

= Ux,−µ + ε
∑

ν=1,2,3
ν 6=µ

(

U †
x−µ̂,νUx+ν̂,−µUx,ν + Ux−µ̂−ν̂,νUx−ν̂,−µU

†
x−ν̂,ν

)

= Ũx,−µ (4.33)

unter Berücksichtigung von Ux,µ = U †
x+µ̂,−µ. Unter C-Konjugation wird die Konfigu-

ration in Gegenrichtung durchlaufen

C(Ũx,µ) = U †
x,µ + ε

∑

ν=1,2,3
ν 6=µ

(

U †
x,νU

†
x+ν̂,µUx+µ̂,ν + Ux−ν̂,νU

†
x−ν̂,µU

†
x+µ̂−ν̂,ν

)

= U †
x,µ + ε

∑

ν=1,2,3
ν 6=µ

(

U †
x,νU

†
x+ν̂,µUx+µ̂,ν + Ux−ν̂,νU

†
x−ν̂,µU

†
x+µ̂−ν̂,ν

)††

= U †
x,µ + ε

∑

ν=1,2,3
ν 6=µ

(

U †
x+µ̂,νUx+ν̂,µUx,ν + Ux+µ̂−ν̂,νUx−ν̂,µU

†
x−ν̂,ν

)†

(4.34)

= Ũ †
x,µ. (4.35)

Insgesamt sieht man, dass sich Ux,µ und Ũx,µ in gleicher Weise unter Transformatio-

nen verhalten. APE-Smearing kann also ohne Bedenken auf alle Operatoren ange-

wandt werden, die Eichlinks enthalten.
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4.3.2 Jacobi-Smearing

Beim Jacobi-Smearing wird das Fermionfeld durch die Matrix (3.16) verschmiert

λ̃a(~x, t) =
∑

x′,b

F ab(x, x′)λb(x′). (4.36)

Um das Transformationsverhalten von λ̃ zu untersuchen, genügt es den ersten Ite-

rationsschritt des Jacobi-Smearings zu betrachten

λ̃a(~x, t) =
∑

x′,b

[

δabδxx′ + κJ

3∑

µ=1

(
δx′,x+µ̂V

ab
µ (x) + δx′+µ̂,xV

†ab
µ (x)

)

]

λb(x′)

= λa(x) +
∑

x′,b

κJ

3∑

µ=1

(
V ab

µ (x)λb(x+ µ̂) + V †ab
µ (x)λb(x− µ̂)

)
. (4.37)

Raumspiegelung am Punkt x ergibt:

P
(

λ̃a(~x, t)
)

= iγ4λ
a(x) +

∑

x′,b

κJ

3∑

µ=1

(

V ab
−µ(x)iγ4λ

b(x− µ̂) + V †ab
−µ (x)iγ4λ

b(x+ µ̂)
)

= iγ4λ
a(x) +

∑

x′,b

κJ

3∑

µ=1

(
V ba

µ (x)iγ4λ
b(x− µ̂) + V †ba

µ (x)iγ4λ
b(x+ µ̂)

)

= iγ4

[

λa(x) +
∑

x′,b

κJ

3∑

µ=1

(
V †ab

µ (x)λb(x− µ̂) + V ab
−µ(x)λ

b(x+ µ̂)
)

]

= iγ4λ̃. (4.38)

Wenn man nun noch beachtet, dass durch die Summation über alle Raumrich-

tungen λ̃ rotationssymmetrisch wird und außerdem invariant unter C-Konjugation

C(V ab
µ ) = V ab

µ , C(λ) = λ ist, erhält man für λ̃ das selbe Transformationsverhalten

wie für λ.

Zusammenfassend lässt sich sagen, daß man sowohl APE- als auch Jacobi-Smearing

auf nichtlokale Operatoren anwenden kann, ohne deren Transformationsverhalten zu

ändern. Es ist jedoch weiterhin notwendig die Smearing-Radien individuell anzupas-

sen. Insbesondere bleibt zu untersuchen, ob die für den Majorana-Link-Majorana-

Operator offensichtliche Wahl NJ = NAPE und ε = κJ , optimal ist.





Kapitel 5

Ergebnisse

In diesem Kapitel werden einige der Simulationsergebnisse vorgestellt. Es handelt

sich dabei allerdings nicht um quantitative Ergebnisse, sondern um eine erste Stu-

die, die zum Testen der neu programmierten Messroutinen gedacht ist. Die hier auf-

geführten Ergebnisse wurden alle auf einem Gitter der Größe 43 × 6 bei K = 0, 194

und β = 2, 3 mit 332 Konfigurationen durchgeführt.

Abbildung 5.1: Zeitscheibenkorrelationsfunktion des Spin-1-Vektorbosons

In Abb. 5.1 ist die Zeitscheibenkorrelation des nichtlokal realisierten 1−+-Gluinoball

(4.19) aufgetragen. Der Fit mit (3.6) ergab eine Masse von amv = 0, 668. Dabei

wurde kein Smearing eingesetzt.

Abb. 5.2 zeigt die Korrelationsfunktion des 1−+-Gluinoball. Dabei wurde sowohl
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Abbildung 5.2: Zeitscheibenkorrelationsfunktion des Spin-1-Vektorteilchens (mit

Smearing)

APE- als auch Jacobi-Smearing eingesetzt. Mit den Smearingparametern

NJ = NAPE = 4

κJ = ε = 0, 2.

Der Fit mit (3.6) lieferte eine Masse von amv = 0, 565 und weicht damit deutlich

von dem Ergebnis ohne Smearing ab. Die Tendenz zu einer geringeren Masse deutet

zumindest darauf hin, dass eine bessere Projektion auf den Grundzustand gelungen

ist.

In Abb. 5.3 ist die Zeitscheibenkorrelation des 1++-Gluinoball (lokaler Operator)

zu sehen. Hier wurde der lokale Operator (4.2) verwendet. Der Massenfit ergab

am = 0, 931. Die Ergebnisse, für den nichtlokalen Operator, zum unverbundenen

Anteil waren bisher leider so schlecht, dass hier kein direkter Vergleich zwischen

lokal und nichtlokal möglich ist. In Abb. 5.4 sieht man jedoch den Vergleich für die

Verbundenen Anteile. Es wird deutlich, dass der nichtlokale Operator größere Fehler

produziert.

Insgesamt muss man aber sagen, dass Untersuchungen auf größeren Gittern notwen-

dig sind, um aussagekräftige Ergebnisse zu erhalten. Die hier aufgeführten Beispiele

zeigen jedoch, dass sich Massen aus den betrachteten Operatoren extrahieren lassen.
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Abbildung 5.3: Zeitscheibenkorrelationsfunktion des Spin-1-Pseudovektors (lokaler

Operator)

Abbildung 5.4: Korrelationsfunktion des lokalen und nichtlokalen Pseudoskalars





Zusammenfassung und Ausblick

Ziel dieser Arbeit war es zu untersuchen, ob und in welcher Weise Majorana-Majorana-

Bindungszustände durch nichtlokale Operatoren in einer SU(2) Super Yang-Mills

Theorie auf dem Gitter realisierbar sind. Dazu wurden die Zeitscheibenkorrelati-

onsfunktionen der Gluinobälle 1−+ und 1++ auf der Basis eines Majorana-Link-

Majorana-Operators berechnet. Der 1++-Gluinoball wurde auch mittels eines lokalen

Operators realisiert. Für den 1−+-Gluinoball war das aufgrund der Majorana-Natur

der Spinoren nicht möglich. Da zum Erzielen guter Ergebnisse Smearing unerlässlich

ist, wurden die gängigen Smearing Verfahren, Ape- und Jacobi-Smearing, auf ihre

Tauglichkeit in Bezug auf nichtlokale Operatoren untersucht. Es hat sich herausge-

stellt, dass diese Verfahren prinzipiell auch auf nichtlokale Operatoren anwendbar

sind.

Diese Operatoren auf dem Gitter zu simulieren erforderte eine Erweiterung der bis-

herigen Simulationsalgorithmen. Dies ist auf Basis eines von C. Gebert entwickel-

ten Programms geschehen. Mit dem modifizierten Programm sind Testläufe durch-

geführt worden, die sinnvolle Ergebnisse lieferten. Es ist also prinzipiell möglich,

mittels nichtlokaler Operatoren, Majorana-Majorana-Bindungszustände zu simulie-

ren. Der nötige Rechenaufwand verdoppelt sich jedoch im Vergleich zu lokalen Ope-

ratoren. Da sich manche Zustände, wie z.B. der 1−+ Gluinoball, jedoch nicht lo-

kal realisieren lassen, wird man hier auf einen nichtlokalen Operator zurückgreifen

müssen.

Da zur Messung des unverbundenen Anteils die Volume Source Technique, die wie R.

Peetz[15] festgestellt hat einen systematischen Fehler beinhaltet, eingesetzt wurde

ist es notwendig dies weiter zu untersuchen, und evtl. das Verfahren zu modifizieren1.

In Zukunft wäre es interessant Untersuchungen auf größeren Gittern durchzuführen,

um auch quantitative Ergebnisse zu erzielen. Dazu wäre es insbesondere notwendig

geeignete Smearing-Parameter zu ermitteln und Simulationen bei unterschiedlichen

Hoppingparametern durchzuführen, um die auf dem Gitter gebrochene Supersym-

metrie zu restaurieren. Es wäre auch möglich die bisher mittels lokaler Operatoren

untersuchten Zustände durch nichtlokale Operatoren zu modellieren. Es ist durch-

1Die vorgenommene Modifikation der VST behebt zwar den systematischen Fehler, produziert

aber zusätzliche statistische Fehler. Außerdem benötigt diese Variante der VST einen deutlich

höheren Rechenaufwand.
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aus möglich, dass man eine bessere Projektion auf den Grundzustand oder sogar auf

einen angeregten Zustand erhält.



Anhang A

Majorana-Spinoren

Dirac-Spinoren sind aus zwei Weyl-Spinoren zusammengesetzte Spinoren, die in der

Weyl-Darstellung die Form

ψ =

(
ψL

ψR

)

(A.1)

besitzen, wobei ψL und ψR je zweikomponentige Weyl-Spinoren darstellen, die sich

nach der linken bzw. rechten Fundamentaldarstellung der Lorentzgruppe transfo-

mieren.

Im Minkowski-Raum erhält man einen Majorana-Spinor, indem man an einen all-

gemeinen Dirac-Spinor die Bedingung

ψ̄ ≡ ψ†γ0 = ψtC (A.2)

stellt. Dabei ist in minkowskischer Formulierung

γ0 =

(
0 1

1 0

)

(A.3)

und C die Ladungskonjugationsmatrix.

Ein Majorana-Spinor ψM geht also wegen (A.2) bei Ladungskonjugation in sich

selbst über, also

ψC
M = ψM (A.4)

und besitzt daher anstatt der vier komplexen Freiheitsgrade eines Dirac-Spinors

lediglich zwei komplexe bzw. vier reelle Parameter. Die Ladungskonjugation ist dabei

durch [10]

ψC = Cψ̄t (A.5)

mit

C =

(
iσ2 0

0 −iσ2

)

(A.6)
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definiert.

Gibt man die Hermitizitätseigenschaft der minkowskischen Formulierung auf, so

läßt sich ein euklidischer Majorana-Spinor durch die Relation

λ̄ = λtC (A.7)

definieren. In der Weyl-Darstellung schreibt sich damit der Majorana-Spinor gemäß

λ =

(

A
̄Ȧ

)

, (A.8)

wobei A ein linkshändiger Weyl-Spinor ist. Für weitere Anmerkungen zu Majorana-

Spinoren in euklidischer Formulierung konsultiere man [5] und die darin angegebenen

Referenzen.

An dieser Stelle seien lediglich zwei, für diese Arbeit wichtige, Rechenregeln für

Grassmann-wertige Majorana-Spinoren ψ und φ angegeben:

ψ̄φ = φ̄ψ (A.9)

ψ̄γµφ = −φ̄γµψ (A.10)

Beide Relationen weist man mit Hilfe der definierenden Eigenschaft des Ladungs-

konjugationsoperators C nach:

ψ̄φ = (ψ̄φ)t

= (ψtCφ)t

= −φtCtψ

= φtCψ

= φ̄ψ , (A.11)

bzw.

ψ̄γµφ = (ψ̄γµφ)t

= (ψtCγµφ)t

= −φtγt
µC

tψ

= φtγt
µCψ

= −φtCγµψ

= −φ̄γµψ. (A.12)



Anhang B

SU(N)-Algebra

B.1 Allgemeine Relationen

Der Darstellungsraum der Eichgruppe SU(N) in der Fundamentaldarstellung be-

steht aus N -komponentigen Vektoren φ. Die Eichtransformationen wirken dann via

φ(x) → ω(x)φ(x), (B.1)

wobei U eine Matrix aus SU(N) ist. Diese lassen sich in der Form

ω(x) = eiθa(x)T a

(B.2)

schreiben, wobei die T a die Generatoren der Eichgruppe in Fundamentaldarstel-

lung sind. Genauer bilden sie eine Basis der zu SU(N) gehörigen Lie-Algebra. Die

Anzahl der Generatoren beträgt im Fall der SU(N) N 2 − 1. Für diese spurfreien,

hermiteschen Matrizen gelten mit der Normierung

Tr(T aT b) =
1

2
δab (B.3)

die Beziehungen

[T a, T b] = ifabcT
c (B.4)

{T a, T b} =
1

Nc
δab + dabcT

c. (B.5)

Die fabc sind die Strukturkonstanten der Eichgruppe1 und sind total antisymmetrisch

gegen die Vertauschung zweier Indizes. Die auftretenden Konstanten dabc sind über

dabc = 2Tr({T a, T b}T c) (B.6)

1Sie legen die Struktur der zugehörigen Lie-Algebra eindeutig fest.
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definiert und sind total symmetrisch gegen Permutationen der Indizes. Man kann

nun folgern:

Tr(T aT bT c) =
1

4
(dabc + ifabc) (B.7)

Tr(T aT bT cT d) =
1

4Nc
δabδcd +

1

8
(dabe + ifabe)(dcde + ifcde). (B.8)

Außerdem gilt

facdfbcd = δabCA, (B.9)

wobei CA = N .

B.2 SU(2)

Im Fall der SU(2) lassen sich als Generatoren etwa Vielfache der Pauli-Matrizen

wählen, so daß dann mit

σ1 =

(
0 1

1 0

)

σ2 =

(
0 −i

i 0

)

σ3 =

(
1 0

0 −1

)

(B.10)

gilt

T a =
1

2
σa, a = 1, 2, 3. (B.11)

Die Pauli-Matrizen erfüllen

[σa, σb] = 2iεabcσ
c (B.12)

{σa, σb} = 2δab1, (B.13)

also ist im Fall der SU(2)

fabc = εabc (B.14)

dabc = 0. (B.15)

Für N = 2 gilt daher

Tr(T aT bT c) =
1

4
ifabc (B.16)

Tr(T aT bT cT d) =
1

8
(δabδcd − fabefcde). (B.17)



Anhang C

Dirac-Matrizen

C.1 Dirac-Matrizen in euklidischer und minkow-

skischer Formulierung

Zwischen den euklidischen Dirac-Matrizen und denen im Minkowski-Raum besteht

der folgende Zusammenhang [14]:

γeukl.
j = −iγmink.

j für j = 1, 2, 3 (C.1)

γeukl.
4 = −iγmink.

4 = γmink.
0 . (C.2)

C.2 Eigenschaften euklidischer Matrizen

Für die euklidischen Dirac-Matrizen gelten die folgenden Eigenschaften [5]:

γ2
µ = 1 (C.3)

γ†µ = γµ (C.4)

{γµ, γν} = 2δµν1 . (C.5)

Mit den zusätzlichen Definitionen

γ5 = γ1γ2γ3γ4 (C.6)

σµν =
i

2
[γµ, γν] (C.7)

ergibt sich

γ5 = γ†5 (C.8)

γ2
5 = 1 (C.9)

{γµ, γ5} = 0 , (C.10)
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sowie

σµν
(C.5)
=

i

2
(γµγν − (2δνµ1 − γµγν)) (C.11)

= iγµγν − iδµν1 . (C.12)

Eine mögliche Darstellung der Dirac-Matrizen ist nach [14]

γj =

(
0 −iσj

iσj 0

)

, j = 1, 2, 3 , (C.13)

wobei mit σj die Pauli-Matrizen gemeint sind (vgl. Anhang A).

Für γ4 und γ5 = γ1γ2γ3γ4 = γ†5 wählt man in der Weyl-Darstellung

γ0 = γ4 =

(
0 1

1 0

)

und γ5 =

(
1 0

0 −1

)

. (C.14)



Anhang D

Paritätsoperationen

D.1 Ladungskonjugation

Für den Ladungskonjugationsoperator gelten die folgenden Zusammenhänge [5]:

Ct = −C (D.1)

C† = C−1 (D.2)

CγµC
−1 = −γt

µ (D.3)

C−1γt
µC = −γµ (D.4)

Cγ5C
−1 = γt

5 (D.5)

CσµνC
−1 = −σt

µν (D.6)

C−1σt
µνC = −σµν . (D.7)

In der Weyl-Darstellung kann die Ladungskonjugationsmatrix als

C =

(
iσ2 0

0 −iσ2

)

(D.8)

gewählt werden.

In darstellungsfreier Form findet man [10]

C = iγmink.
2 γ0 = −γeukl.

2 γ0 . (D.9)
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D.2 Raumspiegelungen

Die P-Paritätsoperation beschreibt Punktspiegelungen. Die wichtigsten Relationen

sind bei spiegelung am Punkt x:

P (Uµ(x)) = U−µ(x) = U †
µ(x− µ̂) (D.10)

P (V ab
µ ) = V ab

−µ = V ba (D.11)

Pλ = iγ4λ (D.12)

P (λ̄) = −iλ̄γ4 (D.13)

P−1γµP = −γµ mit µ = 1, 2, 3, 5 (D.14)

P−1γ4P = γ4 (D.15)



Anhang E

Wichtige Relationen

Für die Fermionenmatrix

Qba
yβ,xα = δyxδbaδβα −K

4∑

µ=1

[
(r + γµ)βαVµ(x)baδy,x+µ + (r − γµ)βα(V T

µ )ba(y)δy+µ,x

]

(E.1)

gilt folgender Zusammenhang [23]:

CβιQ
ab
yx,ιτC

−1
τα = Qab

xy,αβ (E.2)

Für ihr Inverses folgen dann einige wichtige Relationen:

γ5∆
ab
µν(x− y)γ5 = ∆ba

νµ(y − x)∗ (E.3)

∆ab
µν(x− y) = −∆ba

νµ(y − x) (E.4)

C∆Txµa = −C∆ (E.5)

C∆C−1 = C−1∆C = ∆Txµa (E.6)



Anhang F

Hinweise zum Programm

Hier sind kurz die wichtigsten Bedienungshinweise zum Programm zusammengefasst.

Alle Einstellungen die zur Konfiguration von Messungen notwendig sich lassen sich

in der Datei config.dat vornehmen. Dabei sind die wichtigsten:

• Use Jacobi smearing, Smearing-Level, kappa Jacobi

Einstellungen für das Jacobi Smearing. Bezieht sich auf alle Spin-1 Operatoren.

• Basic APE-Smearing, N, epsilon

Einstellungen für das APE-Smearing. Bezieht sich auf alle nichtlokalen Ope-

ratoren.

• Calculate Spin1 Correlator, <mu1(0..2),mu2(0..2)> , nonlocal , local

Hier kann man festlegen für welche Spin-1 Korrelatoren der zusammenhängen-

de Anteil berechnet werden soll. Durch mu1 und mu2 wird die Spinkomponente

auf den verschiedenen Zeitscheiben festgelegt.

• Calculate Spin1 TwoLoopCorrelator , <mu3,mu4> , nonlocal , local

Hier kann man dieselben Einstellung für den unzusammenhängenden Korre-

lator machen.

• Number of gauge-transformations for the VST (1-???)

Legt die anzahl der Eichtransformationen fest, die auf einer Konfiguration

durchgeführt werden, um den VST-Error zu beheben.
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