Further research projects of Research Area B members
•
GRK 3027: Rigorous Analysis of Complex Random Systems The Research Training Group is dedicated to educating mathematicians in the field of complex random systems. It provides a strong platform for the development of both industrial and academic careers for its graduate students. The central theme is a mathematically rigorous understanding of how probabilistic systems, modelled on a microscopic level, behave effectively at a macroscopic scale. A quintessential example for this RTG lies in statistical mechanics, where systems comprising an astronomical number of particles, upwards of 10^{23}, can be accurately described by a handful of observables including temperature and entropy. Other examples come from stochastic homogenisation in material sciences, from the behaviour of training algorithms in machine learning, and from geometric discrete structures build from point processes or random graphs. The challenge to understand these phenomena with mathematical rigour has been and continues to be a source of exciting research in probability theory. Within this RTG we strive for macroscopic representations of such complex random systems. It is the main research focus of this RTG to advance (tools for) both qualitative and quantitative analyses of random complex systems using macroscopic/effective variables and to unveil deeper insights into the nature of these intricate mathematical constructs. We will employ a blend of tools from discrete to continuous probability including point processes, large deviations, stochastic analysis and stochastic approximation arguments. Importantly, the techniques that we will use and the underlying mathematical ideas are universal across projects coming from completely different origin. This particular facet stands as a cornerstone within the RTG, holding significant importance for the participating students. For our students to be able to exploit the synergies between the different projects, they will pass through a structured and rich qualification programme with several specialised courses, regular colloquia and seminars, working groups, and yearly retreats. Moreover, the PhD students will benefit from the lively mathematical community in Münster with a mentoring programme and several interaction and networking activities with other mathematicians and the local industry.
onlineProject members:
Matthias Löwe,
Steffen Dereich,
Caterina Zeppieri,
Zakhar Kabluchko,
Chiranjib Mukherjee,
Christian Seis,
Arnulf Jentzen,
Martin Huesmann,
Anna Gusakova,
Hendrik Weber• CRC 1442 - B01: Curvature and Symmetry
The question of how far geometric properties of a manifold determine its global topology is a classical problem in global differential geometry. Building on recent breakthroughs we investigate this problem for positively curved manifolds with torus symmetry. We also want to complete the classification of positively curved cohomogeneity one manifolds and obtain structure results for the fundamental groups of nonnegatively curved manifolds. Other goals include structure results for singular Riemannian foliations in nonnegative curvature and a differentiable diameter pinching theorem.
onlineProject members:
Burkhard Wilking,
Michael Wiemeler• CRC 1442 - B02: Geometric evolution equations
Hamilton's Ricci flow is a (weakly parabolic) geometric evolution equation, which deforms a given Riemannian metric in its most natural direction. Over the last decades, it has been used to prove several significant conjectures in Riemannian geometry and topology (in dimension three). In this project we focus on Ricci flow in higher dimensions, in particular on heat flow methods, new Ricci flow invariant curvature conditions and the dynamical Alekseevskii conjecture.
onlineProject members:
Burkhard Wilking,
Christoph Böhm• CRC 1442 - C03: K-theory of group algebras
We will study K-theory of group algebras via assembly maps. A key tool is the Farrell—Jones Conjecture for group rings and its extension to Hecke algebra. We will study in particular integral Hecke algebras, investigate Efimov’s continuous K-theory as an alternative to controlled algebra in the context of the Farrell-Jones conjecture, and study vanishing phenomena for high dimensional cohomology of arithmetic groups.
onlineProject members:
Arthur Bartels• CRC 1442 - B04: Harmonic maps and symmetry
Many important geometric partial differential equations are Euler–Lagrange equations of natural functionals. Amongst the most prominent examples are harmonic and biharmonic maps between Riemannian manifolds (and their generalisations), Einstein manifolds and minimal submanifolds. Since commonly it is extremely difficult to obtain general structure results concerning existence, index and uniqueness, it is natural to examine these partial differential equations under symmetry assumptions.
onlineProject members:
Christoph Böhm,
Anna Siffert• CRC 1442 - D03: Integrability
We investigate blobbed topological recursion for the general Kontsevich matrix model, as well as the behaviour of Baker–Akhiezer spinor kernels for deformations of the spectral curve and for the quartic Kontsevich model. We study relations between spin structures and square roots of Strebel differentials, respectively between topological recursion and free probability. We examine factorisation super-line bundles on infinite-dimensional Grassmannians and motivic characteristic classes for intersection cohomology sheaves of Schubert varieties.
onlineProject members:
Jörg Schürmann,
Raimar Wulkenhaar,
Yifei Zhao• CRC 1442 - D01: Amenable dynamics via C*-algebras
We study Cartan pairs of nuclear C*-algebras through their completely positive approximations. We are particularly interested in Cartan pairs for which the ambient C*-algebra is classifiable by K-theory data, and we explore first steps to classify such pairs themselves, at least under suitable additional conditions.
onlineProject members:
Wilhelm Winter• CRC 1442 - D05: C*-algebras, groups, and dynamics: beyond amenability
Our project will explore the regularity properties of non-nuclear C*-algebras, with a particular emphasis on stable rank one and strict comparison. We focus on two main classes of examples: C*-algebras associated with non-amenable groups and crossed product C*-algebras arising from non-amenable actions on compact Hausdorff spaces. We intend to leverage dynamical tools, including dynamical comparison and the structure of topological full groups.
onlineProject members:
Wilhelm Winter,
David Kerr• CRC 1442 - B03: Moduli spaces of metrics of positive curvature
We will develop a family version of coarse index theory which encompasses all existing index invariants for the understanding of spaces of positive scalar curvature (psc) metrics—the higher family index and index difference—as well as new ones such as family rho-invariants. This will enable the detection of new non-trivial elements in homotopy groups of certain moduli spaces of psc metrics. We will also further study the concordance space of psc metrics together with appropriate index maps.
onlineProject members:
Johannes Ebert• CRC 1442 - B05: Scalar curvature between Kähler and spin
This project aims to connect recent developments in Kähler geometry and spin geometry related to lower scalar curvature bounds and the Positive Mass Theorem. We would like to sharpen the Cecchini-Zeidler bandwidth inequality in the case of Kähler metrics and to find new proofs and extensions of the Positive Mass Theorem. One setting of interest is the case of spin^c manifolds equipped with almost-Kähler metrics, particularly in real dimension 4.
onlineProject members:
Hans-Joachim Hein• CRC 1442 - B06: Einstein 4-manifolds with two commuting Killing vectors
We will investigate the existence, rigidity and classification of 4-dimensional Lorentzian and Riemannian Einstein metrics with two commuting Killing vectors. Our goal is to address open questions in the study of black hole uniqueness and gravitational instantons. In the Ricci-flat case, the problem reduces to the analysis of axisymmetric harmonic maps from R^3 to the hyperbolic plane. In the case of negative Ricci curvature, a detailed understanding of the conformal boundary value problem for asymptotically hyperbolic Einstein metrics is required.
onlineProject members:
Hans-Joachim Hein,
Gustav Holzegel• CRC 1442 - D04: Entropy, orbit equivalence, and dynamical tilings
This project aims to advance the theory of rigidity and classification for Bernoulli actions of general groups with respect to orbit equivalence and its quantitative strengthenings. One overarching problem is to determine the extent to which the boundary between rigid and flexible behaviour is reflected in geometric or analytic properties of the group, and specifically, whether such properties intervene in questions of entropy invariance under Shannon orbit equivalence.
onlineProject members:
David Kerr• Global Estimates for non-linear stochastic PDEs
Semi-linear stochastic partial differential equations: global solutions’ behaviours
Partial differential equations are fundamental to describing processes in which one variable is dependent on two or more others – most situations in real life. Stochastic partial differential equations (SPDEs) describe physical systems subject to random effects. In the description of scaling limits of interacting particle systems and in quantum field theories analysis, the randomness is due to fluctuations related to noise terms on all length scales. The presence of a non-linear term can lead to divergencies. Funded by the European Research Council, the GE4SPDE project will describe the global behaviour of solutions of some of the most prominent examples of semi-linear SPDEs, building on the systematic treatment of the renormalisation procedure used to deal with these divergencies.
onlineProject members:
Hendrik Weber