Spaces and Operators

The tannery is a surface with one orbifold singularity. Its unit tangent bundle is foliated by closed geodesics.
© privat

Research Area B

Bartels, Bellissard (until 2021), Böhm, Courtney (2022-2023), Cuntz, Ebert, Echterhoff, Gardam (2022-2023), Gardella (until 2021), Geffen (since 2022), Hein (since 2020), Holzegel (since 2020), Joachim, Kerr (since 2021), Kramer, de Laat, Lohkamp, Löwe, Ludwig (since 2022), Santoro (since 2022), Siffert (2020-2023), Weber (since 2022), Weiss, Wiemeler (since 2020), Wilking, Winter, Wulkenhaar, Zeidler.

In Area B we will study spaces and in particular manifolds, dynamical systems, geometric structures on manifolds, symmetries and automorphisms of manifolds. A central topic is the classification theory of separable nuclear C*-algebras. We will apply and advance a wide range of methods and tools, such as the Ricci flow, heat flow methods, Gromov-Hausdorff convergence of sequences of manifolds, singular foliations, topological and algebraic K-theory, surgery theory, cobordism categories, index theory, notions of dimension and regularity for dynamical systems and C*-algebras, notions of positive and negative curvature, and the isomorphism conjectures of Baum-Connes and Farrell-Jones. We will establish a differentiable diameter sphere theorem and study manifolds of positive curvature and torus actions on them. We will study the topology of spaces of positive scalar curvature metrics on manifolds and the topology of groups of homeomorphisms and diffeomorphisms of manifolds. For nuclear C*-algebras we will attack the UCT problem and quasi-diagonality.

  • B1. Smooth, singular and rigid spaces in geometry.

    Many interesting classes of Riemannian manifolds are precompact in the Gromov–Hausdorff topology. The closure of such a class usually contains singular metric spaces. Understanding the phenomena that occur when passing from the smooth to the singular object is often a first step to prove structure and finiteness results. In some instances one knows or expects to define a smooth Ricci flow coming out of the singular objects. If one were to establish uniqueness of the flow, the differentiable stability conjecture would follow. If a dimension drop occurs from the smooth to the singular object, one often knows or expects that the collapse happens along singular Riemannian foliations or orbits of isometric group actions.

    Rigidity aspects of isometric group actions and singular foliations are another focus in this project. For example, we plan to establish rigidity of quasi-isometries of CAT(0) spaces, as well as rigidity of limits of Type III Ricci flow solutions and of positively curved manifolds with low-dimensional torus actions. We will also investigate area-minimising hypersurfaces by means of a canonical conformal completion of the hypersurface away from its singular set.

  • B2. Topology.

    We will analyse geometric structures from a topological point of view. In particular, we will study manifolds, their diffeomorphisms and embeddings, and positive scalar curvature metrics on them. Via surgery theory and index theory many of the resulting questions are related to topological K-theory of group C*-algebras and to algebraic K-theory and L-theory of group rings.

    Index theory provides a map from the space of positive scalar curvature metrics to the K-theory of the reduced C*-algebra of the fundamental group. We will develop new tools such as parameterised coarse index theory and combine them with cobordism categories and parameterised surgery theory to study this map. In particular, we aim at rationally realising all K-theory classes by families of positive scalar curvature metrics. Important topics and tools are the isomorphism conjectures of Farrell–Jones and Baum–Connes about the structure of the K-groups that appear. We will extend the scope of these conjectures as well as the available techniques, for example from geometric group theory and controlled topology. We are interested in the K-theory of Hecke algebras of reductive p-adic Lie groups and in the topological K-theory of rapid decay completions of complex group rings. Via dimension conditions and index theory techniques we will exploit connections to operator algebras and coarse geometry. Via assembly maps in algebraic K- and L-theory we will develop index-theoretic tools to understand tangential structures of manifolds. We will use these tools to analyse the smooth structure space of manifolds and study diffeomorphism groups. Configuration categories will be used to study spaces of embeddings of manifolds.

  • B3. Operator algebras & mathematical physics.

    The development of operator algebras was largely motivated by physics since they provide the right mathematical framework for quantum mechanics. Since then, operator algebras have turned into a subject of their own. We will pursue the many fascinating connections to (functional) analysis, algebra, topology, group theory and logic, and eventually connect back to mathematical physics via random matrices and non-commutative geometry.

     

Further research projects of Research Area B members

GRK 3027: Rigorous Analysis of Complex Random Systems

The Research Training Group is dedicated to educating mathematicians in the field of complex random systems. It provides a strong platform for the development of both industrial and academic careers for its graduate students. The central theme is a mathematically rigorous understanding of how probabilistic systems, modelled on a microscopic level, behave effectively at a macroscopic scale. A quintessential example for this RTG lies in statistical mechanics, where systems comprising an astronomical number of particles, upwards of 10^{23}, can be accurately described by a handful of observables including temperature and entropy. Other examples come from stochastic homogenisation in material sciences, from the behaviour of training algorithms in machine learning, and from geometric discrete structures build from point processes or random graphs. The challenge to understand these phenomena with mathematical rigour has been and continues to be a source of exciting research in probability theory. Within this RTG we strive for macroscopic representations of such complex random systems. It is the main research focus of this RTG to advance (tools for) both qualitative and quantitative analyses of random complex systems using macroscopic/effective variables and to unveil deeper insights into the nature of these intricate mathematical constructs. We will employ a blend of tools from discrete to continuous probability including point processes, large deviations, stochastic analysis and stochastic approximation arguments. Importantly, the techniques that we will use and the underlying mathematical ideas are universal across projects coming from completely different origin. This particular facet stands as a cornerstone within the RTG, holding significant importance for the participating students. For our students to be able to exploit the synergies between the different projects, they will pass through a structured and rich qualification programme with several specialised courses, regular colloquia and seminars, working groups, and yearly retreats. Moreover, the PhD students will benefit from the lively mathematical community in Münster with a mentoring programme and several interaction and networking activities with other mathematicians and the local industry.

online
Project members: Matthias Löwe, Steffen Dereich, Caterina Zeppieri, Zakhar Kabluchko, Chiranjib Mukherjee, Christian Seis, Arnulf Jentzen, Martin Huesmann, Anna Gusakova, Hendrik Weber

CRC 1442 - B01: Curvature and Symmetry

The question of how far geometric properties of a manifold determine its global topology is a classical problem in global differential geometry. Building on recent breakthroughs we investigate this problem for positively curved manifolds with torus symmetry. We also want to complete the classification of positively curved cohomogeneity one manifolds and obtain structure results for the fundamental groups of nonnegatively curved manifolds. Other goals include structure results for singular Riemannian foliations in nonnegative curvature and a differentiable diameter pinching theorem.

online
Project members: Burkhard Wilking, Michael Wiemeler

CRC 1442 - B02: Geometric evolution equations

Hamilton's Ricci flow is a (weakly parabolic) geometric evolution equation, which deforms a given Riemannian metric in its most natural direction. Over the last decades, it has been used to prove several significant conjectures in Riemannian geometry and topology (in dimension three). In this project we focus on Ricci flow in higher dimensions, in particular on heat flow methods, new Ricci flow invariant curvature conditions and the dynamical Alekseevskii conjecture.

online
Project members: Burkhard Wilking, Christoph Böhm

CRC 1442 - C03: K-theory of group algebras

We will study K-theory of group algebras via assembly maps. A key tool is the Farrell—Jones Conjecture for group rings and its extension to Hecke algebra. We will study in particular integral Hecke algebras, investigate Efimov’s continuous K-theory as an alternative to controlled algebra in the context of the Farrell-Jones conjecture, and study vanishing phenomena for high dimensional cohomology of arithmetic groups.

online
Project members: Arthur Bartels

CRC 1442 - B04: Harmonic maps and symmetry

Many important geometric partial differential equations are Euler–Lagrange equations of natural functionals. Amongst the most prominent examples are harmonic and biharmonic maps between Riemannian manifolds (and their generalisations), Einstein manifolds and minimal submanifolds. Since commonly it is extremely difficult to obtain general structure results concerning existence, index and uniqueness, it is natural to examine these partial differential equations under symmetry assumptions.

online
Project members: Christoph Böhm, Anna Siffert

CRC 1442 - D03: Integrability

We investigate blobbed topological recursion for the general Kontsevich matrix model, as well as the behaviour of Baker–Akhiezer spinor kernels for deformations of the spectral curve and for the quartic Kontsevich model. We study relations between spin structures and square roots of Strebel differentials, respectively between topological recursion and free probability. We examine factorisation super-line bundles on infinite-dimensional Grassmannians and motivic characteristic classes for intersection cohomology sheaves of Schubert varieties.

online
Project members: Jörg Schürmann, Raimar Wulkenhaar, Yifei Zhao

CRC 1442 - D01: Amenable dynamics via C*-algebras

We study Cartan pairs of nuclear C*-algebras through their completely positive approximations. We are particularly interested in Cartan pairs for which the ambient C*-algebra is classifiable by K-theory data, and we explore first steps to classify such pairs themselves, at least under suitable additional conditions.

online
Project members: Wilhelm Winter

CRC 1442 - D05: C*-algebras, groups, and dynamics: beyond amenability

Our project will explore the regularity properties of non-nuclear C*-algebras, with a particular emphasis on stable rank one and strict comparison. We focus on two main classes of examples: C*-algebras associated with non-amenable groups and crossed product C*-algebras arising from non-amenable actions on compact Hausdorff spaces. We intend to leverage dynamical tools, including dynamical comparison and the structure of topological full groups.

online
Project members: Wilhelm Winter, David Kerr

CRC 1442 - B03: Moduli spaces of metrics of positive curvature

We will develop a family version of coarse index theory which encompasses all existing index invariants for the understanding of spaces of positive scalar curvature (psc) metrics—the higher family index and index difference—as well as new ones such as family rho-invariants. This will enable the detection of new non-trivial elements in homotopy groups of certain moduli spaces of psc metrics. We will also further study the concordance space of psc metrics together with appropriate index maps.

online
Project members: Johannes Ebert

CRC 1442 - B05: Scalar curvature between Kähler and spin

This project aims to connect recent developments in Kähler geometry and spin geometry related to lower scalar curvature bounds and the Positive Mass Theorem. We would like to sharpen the Cecchini-Zeidler bandwidth inequality in the case of Kähler metrics and to find new proofs and extensions of the Positive Mass Theorem. One setting of interest is the case of spin^c manifolds equipped with almost-Kähler metrics, particularly in real dimension 4.

online
Project members: Hans-Joachim Hein

CRC 1442 - B06: Einstein 4-manifolds with two commuting Killing vectors

We will investigate the existence, rigidity and classification of 4-dimensional Lorentzian and Riemannian Einstein metrics with two commuting Killing vectors. Our goal is to address open questions in the study of black hole uniqueness and gravitational instantons. In the Ricci-flat case, the problem reduces to the analysis of axisymmetric harmonic maps from R^3 to the hyperbolic plane. In the case of negative Ricci curvature, a detailed understanding of the conformal boundary value problem for asymptotically hyperbolic Einstein metrics is required.

online
Project members: Hans-Joachim Hein, Gustav Holzegel

CRC 1442 - D04: Entropy, orbit equivalence, and dynamical tilings

This project aims to advance the theory of rigidity and classification for Bernoulli actions of general groups with respect to orbit equivalence and its quantitative strengthenings. One overarching problem is to determine the extent to which the boundary between rigid and flexible behaviour is reflected in geometric or analytic properties of the group, and specifically, whether such properties intervene in questions of entropy invariance under Shannon orbit equivalence.

online
Project members: David Kerr

Global Estimates for non-linear stochastic PDEs

Semi-linear stochastic partial differential equations: global solutions’ behaviours
Partial differential equations are fundamental to describing processes in which one variable is dependent on two or more others – most situations in real life. Stochastic partial differential equations (SPDEs) describe physical systems subject to random effects. In the description of scaling limits of interacting particle systems and in quantum field theories analysis, the randomness is due to fluctuations related to noise terms on all length scales. The presence of a non-linear term can lead to divergencies. Funded by the European Research Council, the GE4SPDE project will describe the global behaviour of solutions of some of the most prominent examples of semi-linear SPDEs, building on the systematic treatment of the renormalisation procedure used to deal with these divergencies.

online
Project members: Hendrik Weber