Research Areas
- Reduzierte Basis Methode / Modellreduktion
- Effiziente numerische Simulationen partieller Differentialgleichungen
- Implementierung effizienter Software Bibliotheken für die reduzierte Basis Methode
Doctoral Thesis
Reduced basis model reduction for non-linear evolution equations
- Betreuer
- Professor Dr. Mario Ohlberger
- Doctoral Subject
- Mathematik
- Doctoral Degree
- Dr. rer. nat.
- Awarded by
- Department 10 – Mathematics and Computer Science
CV
Education
- Diplomstudium der Mathematik (Nebenfach: Informatik) an der Westfälischen-Wilhelms-Universität Münster
Position
- Promotionsstudium
-
Teaching
- Praktikum: Practical Class: Scientific Computing [101354]
(in cooperation with Prof. Dr. Mario Ohlberger)
- Praktikum: Course in Programming: Numerical Partial Differential Equations [102660]
(in cooperation with Prof. Dr. Mario Ohlberger)
- Seminar: Diplomandenseminar: Numerik partieller Differentialgleichungen [102695]
(in cooperation with Prof. Dr. Mario Ohlberger)
- Doktorandenseminar: 1.3.1 First academic year [102744]
(in cooperation with Prof. Dr. Mario Ohlberger)
- Praktikum: Practical Class: Scientific Computing [101354]
Projects
- Reduced basis methods for model reduction of nonlinear parameterized evolution equations ( – )
Individual project: DFG - Individual Grants Programme | Project Number: OH 98/2-2 - RBevol – Reduced basis methods for model reduction of nonlinear parameterized evolution equations ( – )
Individual project: DFG - Individual Grants Programme | Project Number: OH 98/2-1
- Reduced basis methods for model reduction of nonlinear parameterized evolution equations ( – )
Publications
- . . ‘Model reduction for multiscale problems.’ Oberwolfach Reports 39: 2228–2230. doi: 10.4171/OWR/2013/39.
- . . ‘Reduced Basis Model Reduction of Parametrized Two-Phase Flow in Porous Media.’ In 7th Vienna International Conference on Mathematical Modelling, 722–727. doi: 10.3182/20120215-3-AT-3016.00128.
- . . ‘Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation.’ SIAM Journal on Scientific Computing 34: A937–A969. doi: 10.1137/10081157X.
- . . ‘Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion Equations.’ In Finite Volumes for Complex Applications VI - Problems & Perspectives, edited by , 369––377.: Springer. doi: 10.1007/978-3-642-20671-9_39.
- . . ‘Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries.’ Contributed to the Proceedings of ALGORITMY 2009.
- . . Reduzierte Basis Methoden für ungesättigte Grundwasserströmungen.