Universität MünsterAngewandte Mathematik Münster
  • zum Inhalt
  • zur Hauptnavigation
  • zur Zielgruppennavigation
  • zur Subnavigation
  • de
  • en
  • The Institute
  • Groups
  • Research
  • Teaching
  • Engwer
  • Holzegel
  • Jentzen
  • Ohlberger
  • Pirner
  • Seis
  • Simon
  • Stevens
  • Weber
  • Wirth
  • Zeppieri
  • Home
    • Group Ohlberger
      • Team
        • Alumni
          • Tobias Leibner
  • Secretary
  • Dmitry Kabanov
  • Hendrik Kleikamp
  • Mario Ohlberger
  • Stephan Rave
  • Lukas Renelt
  • Felix Schindler
  • Julia Schleuß
  • Alumni
    • Julia Brunken
    • Andreas Buhr
    • Barbara Verfürth
    • Christoph Lehrenfeld
    • Patrick Henning
    • Falk Meyer
    • Michael Schaefer
    • Sven Kaulmann
    • Michael Blume
    • Bernhard Haasdonk
    • Martin Drohmann
    • Hendrik Ranocha
    • Tobias Leibner
    • Stefan Wierling
    • Dennis Eickhorn
    • Marie Tacke
    • Maike Schulte
    • Katrin Smetana
    • Christina Stöcker
    • Astrid Heitmann
Dr. Tobias Leibner
© Tobias Leibner
Dr. Tobias Leibner
Scientic Assistant
Institute for Computational and Applied Mathematics
Ohlberger Group
Room 120.021
Einsteinstr. 62
48149 Muenster
Germany
T: +49-(0)251-83-35076
tobias.leibner@uni-muenster.de
 
  • Doctoral AbstractThesis

    Model reduction for kinetic equations: moment approximations and hierarchical approximate proper orthogonal decomposition

    Supervisor
    Professor Dr. Mario Ohlberger
    Doctoral Subject
    Mathematik
    Doctoral Degree
    Dr. rer. nat.
    Awarded by
    Department 10 – Mathematics and Computer Science
  • Publications

    2024

    • Singh, A, Thale, S, Leibner, T, Lamparter, L, Ricker, A, Nüsse, H, Klingauf, J, Galic, M, Ohlberger, M, and Matis, M. 2024. “Dynamic interplay of microtubule and actomyosin forces drive tissue extension.” Nature Communications, № 15 (1): 3198–3198. doi: 10.1038/s41467-024-47596-8.

    2022

    • Leibner, Tobias. 2022. “Model reduction for kinetic equations: moment approximations and hierarchical approximate proper orthogonal decomposition.” Dissertation thesis, Universität Münster.
    • Singh, A, Thale, S, Leibner, T, Ricker, A, Nüsse, H, Klingauf, J, Ohlberger, M, and Matis, M. 2022. “Dynamic interplay of protrusive microtubule and contractile actomyosin forces drives tissue extension.” eLife, № 2022 doi: 10.1101/2022.06.21.496930.

    2021

    • Leibner, T, and Ohlberger, M. 2021. “A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations.” ESAIM: Mathematical Modelling and Numerical Analysis, № 55: 2567–2608. doi: 10.1051/m2an/2021065.
    • Leibner, T, Matis, M, Ohlberger, M, and Rave, S. 2021. “Distributed model order reduction of a model for microtubule-based cell polarization using HAPOD.” arXiv [math.NA], № 2111.00129

    2020

    • Schneider, Florian Leibner Tobias. 2020. “First-order continuous- and discontinuous-Galerkin moment models for a linear kinetic equation: Model derivation and realizability theory.” Journal of Computational Physics, № 416: 109547. doi: 10.1016/j.jcp.2020.109547.

    2019

    • Schneider, Florian Leibner Tobias. 2019. “First-order continuous- and discontinuous-Galerkin moment models for a linear kinetic equation: realizability-preserving splitting scheme and numerical analysis.” arXiv, № 2019

    2018

    • Himpe, C, Leibner, T, and Rave, S. 2018. “Hierarchical Approximate Proper Orthogonal Decomposition.” SIAM Journal on Scientific Computing, № 40 (5): A3267–A3292.
    • Himpe, C, Leibner, T, and Rave, S. 2018. “HAPOD - Fast, Simple and Reliable Distributed POD Computation.” in Vol. 55 of ARGESIM Report doi: 10.11128/arep.55.a55283.

    2017

    • Leibner, T, Milk, R, and Schindler, F. 2017. “Extending DUNE: The dune-xt modules.” Archive of Numerical Software, № 5 (1): 193–216. doi: 10.11588/ans.2017.1.27720.
    • Himpe, C, Leibner, T, Rave, S, and Saak, J. 2017. “Fast Low-Rank Empirical Cross Gramians.” PAMM, № 17 (1): 841–842. doi: 10.1002/pamm.201710388.

    2016

    • Brunken, Julia, Leibner, Tobias, Ohlberger, Mario, and Smetana, Kathrin. 2016. “Problem adapted hierachical model reduction for the Fokker-Planck equation.” in ALGORITMY 2016 Proceedings of contributed papers and posters, edited by Angela Handlovicova and Daniel Sevcovic. Bratislava: Publishing House of Slovak University of Technology.

    2015

    • Leibner, Tobias. 2015. Numerical methods for kinetic equations (Master's thesis)
  • Contacts
MathematicsMuensterCells in MotionSFB 656 MoBilDEMAIN – Developing Mathematics in InteractionCenter for Nonlinear ScienceCenter for Multiscale Theory and ComputationCompetence for Computing in Science
Top of page

Contact

University of Münster
Angewandte Mathematik Münster

Orléans-Ring 10
48149 Münster

Tel: +49 (0) 251 83-35052
Fax: +49 (0) 251 83-32729
seknum@wwu.de
 
living.knowledge
  • Legal Disclosure
  • Privacy Statement
  • Accessibility

© 2025