Dr. Christoph Lehrenfeld

Professorship of Applied Mathematics, especially Numerics (Prof. Ohlberger)
Dr. Christoph Lehrenfeld

Einsteinstr. 62
48149 Münster

Academic Profile

External Profile

  • CV

    Honors

    Borchers-Plakette – RWTH Aachen

    Appointment

    Ruf auf eine Juniorprofessur für Numerische Mathematik (W1), Georg-August-Universität Göttingen
    , Numerische Mathematik (W1) – accepted
  • Publications

    • , , , , , , , , and . . “Numerical and Experimental Analysis of Local Flow Phenomena in Laminar Taylor Flow in a Square Mini-Channel.Physics of Fluids, 28 (1): 012109.
    • , and . . “High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows.Comp. Meth. Appl. Mech. Eng., 2016 doi: 10.1016/j.cma.2016.04.025.
    • , and . . “Optimal Preconditioners for Nitsche-XFEM Discretizations of Interface Problems.Numerische Mathematik, 2016 doi: 10.1007/s00211-016-0801-6.
    • , and . . “L2-estimates for a high order unfitted finite element method for elliptic interface problems.arXiv eprints.
    • . . “High order unfitted finite element methods on level set domains using isoparametric mappings.Comp. Meth. Appl. Mech. Eng., 300 (1): 716733. doi: 10.1016/j.cma.2015.12.005.
    • , and . . “Analysis of a high order unfitted finite element method for elliptic interface problems.arXiv preprint arXiv:1602.02970, 1602.02970
    • . . “The Nitsche XFEM-DG Space-Time Method and its Implementation in Three Space Dimensions.SIAM J. Sci. Comput., 37: A245–A270. doi: 10.1137/130943534.
    • . . “On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems.Dissertation thesis, RWTH Aachen.
    • , and . . “Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport.” in Computational Methods for Complex Liquid-Fluid Interfaces, edited by CRC Press.
    • , , , , , , , and . . “Validation of Interface Capturing and Tracking Techniques with different Surface Tension Treatments against a Taylor Bubble Benchmark Problem.Comput. & Fluids, 102: 336352. doi: 10.1016/j.compfluid.2014.06.030.
    • , and . . “Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes.” in Advanced Finite Element Methods and Applications, Vol.66 of Lecture Notes in Applied and Computational Mechanics, edited by Steinbach Apel Thomas. Düsseldorf: Springer VDI Verlag.
    • , and . . “Analysis of a DG-XFEM Discretization for a Class of Two-Phase Mass Transport Problems.SIAM J. Numer. Anal., 51: 958983. doi: 10.1137/120875260.
    • , , , , and . . “Accuracy of Two-Phase Flow Simulations.” in Proc. Appl. Math. Mech., Vol.13 of Proc. Appl. Math. Mech. Heidelberg: Springer. doi: 10.1002/pamm.201310278.
    • , and . . “Nitsche-XFEM with Streamline Diffusion Stabilization for a Two-Phase Mass Transport Problem.SIAM J. Sci. Comput., 34: 27402759. doi: 10.1137/110855235.
    • , , and . . “Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwells Equations.” in Numerical and Symbolic Scientific Computing: Progress and Prospects, edited by Ulrich PP. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-7091-0794-2_6.
    • . . “Nitsche-XFEM for a Transport Problem in Two- Phase Incompressible Flows.” in Proc. Appl. Math. Mech., Vol.11 New York City: John Wiley & Sons. doi: 10.1002/pamm.201110296.
    • . . Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems,