Crack in porous materials
© Caterina Zeppieri

Wellcome to the website of the

Analysis and Modelling

Applied Mathematics: Institute for Analysis and Numerics
Westfälische Wilhelms-University Münster, Deutschland
Office: Orléansring 10, 48149 Münster
Mail address: Einsteinstr. 62, 48149 Münster


Latest Publications

  • Cagnetti F, Dal Maso G, Scardia L, Zeppieri C I. . ‘Gamma-convergence of free-discontinuity problems.’ Ann. Inst. H. Poincaré Anal. Non Linéaire 36: 1035–1079.
  • Cagnetti F, Dal Maso G, Scardia L, Zeppieri C I. . ‘Stochastic homogenisation of free-discontinuity problems.’ Arch. Ration. Mech. Anal. 233: 935–974.
  • Pellet X, Scardia L, Zeppieri C I. . ‘Homogenization of high-contrast Mumford-Shah energies.’ SIAM J. Math. Anal. 51: 1696–1729.
  • Zeppieri C. I. . ‘Stochastic homogenisation of singularly-perturbed integral functionals.’ Ann. Mat. Pura Appl. 195.
  • Bevan J J, Zeppieri C I. . ‘A simple sufficient condition for the quasiconvexity of elastic stored-energy functions in spaces which allow for cavitation.’ Calc. Var. Partial Diff. Equations 55.
  • Barchiesi M, Lazzaroni G, Zeppieri C I. . ‘A bridging mechanism in the homogenisation of brittle composites with soft inclusions.’ SIAM J. Math. Anal. 48.
  • Burger Martin, Esposito Teresa, Zeppieri Caterina Ida. . ‘Second-order edge-penalization in the Ambrosio-Tortorelli functional.’ Multiscale Model. Simul. 13, No. 4: 1354–1389.
  • Müller Stefan, Scardia Lucia, Zeppieri Caterina Ida. . ‘Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations.’ In Analysis and Computation of Microstructure in Finite Plasticity, edited by Conti Sergio, Hackl Klaus, 175–204.
  • Ansini N, Dal Maso G, Zeppieri C.I. . ‘New results on Γ-limits of integral functionals.’ Ann. Inst. H. Poincaré Anal. Non Linéaire 31: 185–202.
  • Müller S, Scardia L, Zeppieri C.I. . ‘Geometric rigidity for incompatible fields and an application to strain-gradient plasticity.’ Indiana univ. Math. J. 63: 1365–1396.