Simulation of a magnetic skyrmion, created using the Mumax3 software.
© Anne Bernand-Mantel

Wellcome to the website of the

RESEARCH GROUP
Applied Analysis
PROF. DR. THERESA SIMON

Applied Mathematics: Institute for Analysis and Numerics
Westfälische Wilhelms-University Münster, Deutschland
Office: Orléansring 10, 48149 Münster
Mail address: Einsteinstr. 62, 48149 Münster

 

Publications

Published

  • Bernand-Mantel A, Muratov CB, Simon TM. . ‘A quantitative description of skyrmions in ultrathin ferromagnetic films and rigidity of degree ±1 harmonic maps from from R² to S².’ Archive for Rational Mechanics and Analysis 239.
  • Simon TM. . ‘Rigidity of branching microstructures in shape memory alloys.’ Archive for Rational Mechanics and Analysis 241.
  • Simon TM. . ‘Quantitative aspects of the rigidity of branching microstructures in shape memory alloys via H-measures.’ SIAM Journal on Mathematical Analysis 53.
  • Bernand-Mantel A, Muratov CB, Simon TM. . ‘Unraveling the role of dipolar vs. Dzyaloshinskii-Moriya interaction in stabilizing compact magnetic skyrmions.’ Physical Review B 101.
  • Fischer J, Laux T, Simon TM. . ‘Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies.’ SIAM Journal on Mathematical Analysis 52.
  • Muratov CB, Simon TM. . ‘A nonlocal isoperimetric problem with dipolar repulsion.’ Communications in Mathematical Physics 372.
  • Ayala D, Doering CR, Simon TM. . ‘Maximum palinstrophy amplification in the two-dimensional Navier-Stokes equations.’ Journal of Fluid Mechanics 837: 839-857. doi: 10.1017/jfm.2017.874.
  • Laux T, Simon TM. . ‘Convergence of the Allen-Cahn equation to multi-phase mean curvature flow.’ Communications on Pure and Applied Mathematics 71.
  • Simon TM. . Materials Science-inspired problems in the Calculus of Variations: Rigidity of shape memory alloys and multi-phase mean curvature flow Dissertation thesis, Universität Leipzig.

Submitted / Under Review