Simulation of a magnetic skyrmion, created using the Mumax3 software.
© Anne Bernand-Mantel

Wellcome to the website of the

RESEARCH GROUP
Applied Analysis
PROF. DR. THERESA SIMON

Applied Mathematics: Institute for Analysis and Numerics
Westfälische Wilhelms-University Münster, Deutschland
Office: Orléansring 10, 48149 Münster
Mail address: Einsteinstr. 62, 48149 Münster

 

Publications

Published

  • Monteil, A; Muratov, CB; Simon,TM; Slastikov, VV. . Magnetic skyrmions under confinement arXiv. 1st Ed. . doi: 10.48550/arXiv.2208.00058.
  • Rüland, A; Simon, TM. . On Rigidity for the Four-Well Problem Arising in the Cubic-to-Trigonal Phase Transformation arXiv. 1st Ed. . doi: 10.48550/arXiv.2210.04304.
  • Simon TM. . ‘Quantitative aspects of the rigidity of branching microstructures in shape memory alloys via H-measures.’ SIAM Journal on Mathematical Analysis 53.
  • Simon TM. . ‘Rigidity of branching microstructures in shape memory alloys.’ Archive for Rational Mechanics and Analysis 241.
  • Bernand-Mantel A, Muratov CB, Simon TM. . ‘A quantitative description of skyrmions in ultrathin ferromagnetic films and rigidity of degree ±1 harmonic maps from from R² to S².’ Archive for Rational Mechanics and Analysis 239.
  • Fischer J, Laux T, Simon TM. . ‘Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies.’ SIAM Journal on Mathematical Analysis 52.
  • Bernand-Mantel A, Muratov CB, Simon TM. . ‘Unraveling the role of dipolar vs. Dzyaloshinskii-Moriya interaction in stabilizing compact magnetic skyrmions.’ Physical Review B 101.
  • Muratov CB, Simon TM. . ‘A nonlocal isoperimetric problem with dipolar repulsion.’ Communications in Mathematical Physics 372.

Submitted / Under Review