Simulation of a magnetic skyrmion, created using the Mumax3 software.
© Anne Bernand-Mantel

Wellcome to the website of the

Applied Analysis

Applied Mathematics: Institute for Analysis and Numerics
Westfälische Wilhelms-University Münster, Deutschland
Office: Orléansring 10, 48149 Münster
Mail address: Einsteinstr. 62, 48149 Münster



  • Simon TM. . ‘Quantitative aspects of the rigidity of branching microstructures in shape memory alloys via H-measures.’ SIAM J. Math. Anal. 53.
  • Bernand-Mantel A, Muratov CB, Simon TM. . ‘A quantitative description of skyrmions in ultrathin ferromagnetic films and rigidity of degree ±1 harmonic maps from from R² to S².’ Arch. Ration. Mech. Anal. 239.
  • Simon TM. . ‘Rigidity of branching microstructures in shape memory alloys.’ Arch. Ration. Mech. Anal. 241.
  • Fischer J, Laux T, Simon TM. . ‘Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies.’ SIAM J. Math. Anal. 52.
  • Bernand-Mantel A, Muratov CB, Simon TM. . ‘Unraveling the role of dipolar vs. Dzyaloshinskii-Moriya interaction in stabilizing compact magnetic skyrmions.’ Phys. Rev. B. 101.
  • Muratov CB, Simon TM. . ‘A nonlocal isoperimetric problem with dipolar repulsion.’ Comm. Math. Phys. 372.
  • Simon TM. . Materials Science-inspired problems in the Calculus of Variations: Rigidity of shape memory alloys and multi-phase mean curvature flow Doctoral Thesis, Universität Leipzig.
  • Laux T, Simon TM. . ‘Convergence of the Allen-Cahn equation to multi-phase mean curvature flow.’ Comm. Pure Appl. Math. 71.
  • Ayala D, Doering CR, Simon TM. . ‘Maximum palinstrophy amplification in the two-dimensional Navier-Stokes equations.’ J. Fluid Mech. 837: 839-857. doi: 10.1017/jfm.2017.874.