Catalysis for Organic Synthesis

Life without organic molecules (such as pharmaceuticals, crop-protection, chemical industry, energy supply, materials science, nutrition, fragrances and flavors) would be neither convenient nor possible. Thus, the ability to produce any desired organic compound efficiently is of great interest. In this respect, catalysis is a key technology that will become more and more important in the future. Our research program is dedicated to the development and application of new catalytic methods in the area of organic chemistry in order to facilitate the way organic molecules are made. We are driven by the desire to save valuable natural resources and by the need for compounds with high levels of (enantio)selectivity and purity. Our research should facilitate and make significant contributions to the synthesis of important organic molecules like heterocyclic and natural products and to make these processes more environmentally benign. Rational design, serendipitous findings and smart screening strategies are characteristic for our work. Arguably, a unique feature of our group is that we successfully do research in many complementary areas of catalyis:

Our research areas .....

Research-conceptsApplication-concepts

Research-topics

..... are diverse!

The diversification is advantageous for a sound education of the group members and, in addition, enables modern interdisciplinary research projects within the group.

Our main research areas are:

  • C–H Activation

    Icon Ch-activation

    C–H activations and related reactions revolutionize the way organic molecules are made and allow a more efficient use of earth’s natural resources. Despite the rapid progress of the last couple of years, many problems like limited scope, extreme reaction conditions (temperature, excess of reagents) or low reactivities and selectivities remain in many cases. We strive to render C–H activations more practical and milder by developing new synthetic strategies and feel that cooperativity of chemical systems will be key to success. In addition, the application of C–H activation methods for the preparation of important classes of molecules like indoles is one of our main objectives.

     


    X. Wang, T. Gensch, A. Lerchen, C. G. Daniliuc, F. Glorius,
    Cp*Rh(III)/Bicyclic Olefin Cocatalyzed C−H Bond Amidation by Intramolecular Amide Transfer,
    J. Am. Chem. Soc. 2017, 139, 6506-6512.

    Q. Lu, S. Greßies, F. J. R. Klauck, F. Glorius,
    Manganese(I)-Catalyzed Regioselective C–H Allenylation: Direct Access to 2-Allenylindoles,
    Angew. Chem. Int. Ed. 2017, 56, 6660-6664; Angew. Chem.  2017, 129, 6760-6764.

     

    Q. Lu, F. J. R. Klauck, F. Glorius,
    Manganese-Catalyzed Allylation via Sequential C–H and C–C/C–Het Bond Activation,
    Chem. Sci. 2017, 8, 3379-3383.

    X. Wang, A. Lerchen, T. Gensch, T. Knecht, C. G. Daniliuc, F. Glorius,
    Combination of Cp*RhIII-Catalyzed C-H Activation and a Wagner–Meerwein-Type Rearrangement,
    Angew. Chem. Int. Ed. 2017, 56, 1381-1384; Angew. Chem. 2017, 129, 1401-1405. 

    A. Lerchen, T. Knecht, C. G. Daniliuc, F. Glorius,
    Unnatural Amino Acid Synthesis Enabled by the Regioselective Cobalt(III)-Catalyzed Intermolecular Carboamination of Alkenes,
    Angew. Chem. Int. Ed. 2016, 55, 15166-15170; Angew. Chem. 2016, 128, 15391-15395. 

    T. Gensch, F. J. R. Klauck, F. Glorius,
    Cobalt-Catalyzed C−H Thiolation through Dehydrogenative Cross-Coupling,
    Angew. Chem. Int. Ed. 2016, 55, 11287-11291; Angew. Chem. 2016, 128, 11457-11461. 

     

    T. Gensch, M. N. Hopkinson, F. Glorius,* J. Wencel-Delord,*
    Mild metal-catalyzed C–H activation: examples and concepts,
    Chem. Soc. Rev. 2016, 45, 2900-2936. 

    J. H. Kim, S. Greßies, F. Glorius,
    Cooperative Lewis Acid/ Cp*Co(III)-Catalyzed C–H Bond Activation for the Synthesis of Isoquinolin-3-ones,
    Angew. Chem. Int. Ed. 2016, 55, 5577-5581; Angew. Chem. 2016, 128, 5667-5671. 

    A. Lerchen, S. Vásquez-Céspedes, F. Glorius,
    Cobalt(III)-catalyzed redox-neutral synthesis of unprotected indoles featuring an N–N bond cleavage,
    Angew. Chem. Int. Ed. 2016, 55, 3208-3211; Angew. Chem. 2016, 128, 3261-3265. 

    J.  H. Kim, T. Gensch, D. Zhao, L. Stegemann, C. A. Strassert,* F. Glorius,*
    Rh(III)-Catalyzed C-H Activation with Pyridotriazoles: Direct Access to Fluorophores for Metal-Ion Detection,
    Angew. Chem. Int. Ed. 2015, 54, 10975–10979; Angew. Chem. 2015, 127, 11126–11130. 

     

    X. Wang,§ D.-G. Yu,§ F. Glorius,
    Cp*Rh(III)-Catalyzed Arylation of sp3 C−H Bonds,
    Angew. Chem. Int. Ed. 2015, 54, 10280-10283;Angew. Chem. 2015, 127, 10419-10422.
    § Both authors contributed equally. 
     

    S. Vásquez-Céspedes§, A. Ferry§, L. Candish, F. Glorius,
    Heterogeneously Catalyzed Direct C-H Thiolation of Heteroarenes,
    Angew. Chem. Int. Ed. 201554, 5772-5776; Angew. Chem. 2015, 127, 5864-5868.
    § Both authors contributed equally.

     

    N. Schröder, F. Lied, F. Glorius,
    Dual role of Rh(III)-catalyst enables regioselective halogenation of (electron-rich) heterocycles,
    J. Am. Chem. Soc. 2015, 137, 1448-1451. 

    D. Zhao*§, J. H. Kim§, L. Stegemann, C. A. Strassert, F. Glorius,*
    Cobalt(III)-Catalyzed Directed CH Coupling with Diazo Compounds: Straightforward Access towards Extended π-Systems,
    Angew. Chem. Int. Ed. 2015, 54, 4508-4511; Angew. Chem. 2015, 127, 4591-4594.
    § Both authors contributed equally.
     

    D. Zhao,§ S. Vásquez-Céspedes,§ F. Glorius,
    Rhodium(III)-Catalyzed Cyclative Capture Approach to Diverse 1-Aminoindoline Derivatives at Room Temperature,
    Angew. Chem. Int. Ed. 2015, 54, 1657-1661; Angew. Chem. 2015, 127, 1677-1681.
    § Both authors contributed equally.

  • Photocatalyis

    Icon Photocatalysis

    Photoredox catalysis opens up completely new opportunities for synthetic chemistry. Simple fluorescent light bulbs or blue LEDs can serve as cheap and convenient energy sources for novel transformations under remarkably mild reaction conditions. In particular, the combination of photoredox catalysis with other powerful catalyst systems enables the rapid build-up of molecular complexity from readily available starting materials.

     

     

     


    L. Candish, M. Teders, F. Glorius,
    Transition-Metal-Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N‑Hydroxyphthalimide Esters,
    J. Am. Chem. Soc. 2017, 139, 7440-7443.

     

    R. A. Garza-Sanchez, A. Tlahuext-Aca, G. Tavakoli, F. Glorius,
    Visible-Light-Mediated Direct Decarboxylative C−H Functionalization of Heteroarenes,
    ACS Catal. 2017, 7, 4057-4061.

     

    M. Teders, L. Pitzer, S. Buss, F. Glorius,
    Regioselective Synthesis of 2‑Substituted Indoles from Benzotriazoles and Alkynes by Photoinitiated Denitrogenation,
    ACS Catal. 2017, 7, 4053-4056.

     

    L. Candish, M. Freitag, T. Gensch, F. Glorius,
    Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals,
    Chem. Sci. 2017, 8, 3618-3622.

     

    A. Tlahuext-Aca, R. A. Garza-Sanchez, F. Glorius,
    Multicomponent Oxyalkylation of Styrenes Enabled by Hydrogen Bond Assisted Photoinduced Electron Transfer,
    Angew. Chem. Int. Ed. 2017, 56, 3708-3711; Angew. Chem. 2017,129, 3762-3765.

    M. Teders, A. Gómez-Suárez§, L. Pitzer§, M. N. Hopkinson, F. Glorius,
    Diverse Visible-Light-Promoted Functionalizations of Benzotriazoles Inspired by Mechanism-Based Luminescence Screening,
    Angew. Chem. Int. Ed. 2017, 56, 902-906; Angew. Chem. 2017, 129, 921-925.

    S. Mukherjee,§ B. Maji,§ A. Tlahuext-Aca, F. Glorius,
    Visible-Light-Promoted Activation of Unactivated C(sp3)−H Bonds and Their Selective Trifluoromethylthiolation,
    J. Am. Chem. Soc. 2016, 138, 16200-16203.
    § Both authors contributed equally.

     

     

    M. N. Hopkinson, A. Tlahuext-Aca, F. Glorius,
    Merging Visible Light Photoredox and Gold Catalysis,
    Acc. Chem. Res. 2016, 49, 2261-2272.
    Published as part of the Accounts of Chemical Research special issue “Photoredox Catalysis in Organic Chemistry

    A. Tlahuext-Aca, M. N. Hopkinson, C. G. Daniliuc, F. Glorius,
    Oxidative Addition to Gold(I) by Photoredox Catalysis: Straightforward Access to Diverse (C,N)-Cyclometalated Gold(III) Complexes,
    Chem. Eur. J. 2016, 22, 11587-11592. 

     

     M. N. Hopkinson, A. Gomez-Suarez, M. Teders, B. Sahoo, F. Glorius,
    Accelerated Discovery in Photocatalysis using a Mechanism-Based Screening Method,
    Angew. Chem. Int. Ed. 2016, 55, 4361-4366; Angew. Chem. 2016, 128, 4434-4439.
    This paper was selected for the Angewandte front cover image of the issue it appears in. Please, enjoy this "Catalyst Speed Dating!"

    A. Tlahuext-Aca, M. N. Hopkinson,§ R. A. Garza-Sanchez,§ F. Glorius,
    Alkyne Difunctionalization by Dual Gold/Photoredox Catalysis,
    Chem. Eur. J. 2016, 22, 5909-5913.
    § Both authors contributed equally.
     

     

    L. Candish,§ L. Pitzer,§ A. Gomez-Suarez, F. Glorius,
    Visible Light-Promoted Decarboxylative Di- and Trifluoromethylthiolation of Alkyl Carboxylic Acids,
    Chem. Eur. J. 2016, 22, 4753-4756.
    § Both authors contributed equally.
      

     

    R. Honeker, R. A. Garza-Sanchez, M. N. Hopkinson,* F. Glorius,*
    Visible Light-Promoted Trifluoromethylthiolation of Styrenes via Dual Photoredox/Halide Catalysis,
    Chem. Eur. J. 2016, 22, 4395-4399. 

     

    B. Sahoo§, M. N. Hopkinson§, F. Glorius,
    External-Photocatalyst-Free Visible-Light-Mediated Synthesis of Indolizines,
    Angew. Chem. Int. Ed. 2015, 54, 15545-15549; Angew. Chem. 2015, 127, 15766-15770.
    § Both authors contributed equally.
     

     

    B. Sahoo, J.-L. Li, F. Glorius,
    Visible Light Photoredox Catalyzed Semipinacol-Type Rearrangement: Trifluoromethylation/Ring Expansion via a Radical-Polar Mechanism,
    Angew. Chem. Int. Ed. 2015, 54, 11577-11580; Angew. Chem. 2015, 127, 11740-11744

     

     

    M. N. Hopkinson, B. Sahoo, F. Glorius,
    Dual Photoredox and Gold Catalysis: Intermolecular Multicomponent Oxyarylation of Alkenes,
    Adv. Synth. Catal. 2014, 356, 2794-2800.
     

     

     M. N. Hopkinson§, B. Sahoo§, J.-L. Li, F. Glorius,
    Dual Catalysis sees the Light: Combining Photoredox with Organo-, Acid and Transition Metal Catalysis,
    Chem. Eur. J. 2014, 20, 3874-3886.
    § Both authors contributed equally. 

     

    B. Sahoo, M. N. Hopkinson, F. Glorius,
    Combining Gold and Photoredox Catalysis: Visible Light-Mediated Oxy- and Aminoarylation of Alkenes,
    J. Am. Chem. Soc. 2013, 135, 5505–5508. 

  • Screening Methods

    Icon Screening

    The field of organic chemistry has matured and the discovery of fundamentally novel reactivity is increasingly difficult. Smart screening approaches can facilitate the serendipitous discovery of new reactions. Mechanism-based screening can isolate a key step of a catalysis and enable the identification of new catalyst-substrate interactions in the absence of complicating factors that might otherwise obscure this crucial information. In addition, the characterization of a synthetic method is essential for its application and further development. Smart screening strategies can accelerate this investigation and at the same improve the insight by separating interdependent influences.

     


    M. Teders, A. Gómez-Suárez§, L. Pitzer§, M. N. Hopkinson, F. Glorius,
    Diverse Visible-Light-Promoted Functionalizations of Benzotriazoles Inspired by Mechanism-Based Luminescence Screening,
    Angew. Chem. Int. Ed. 2017, 56, 902-906; Angew. Chem. 2017, 129, 921-925.

     

    M. N. Hopkinson, A. Gomez-Suarez, M. Teders, B. Sahoo, F. Glorius,
    Accelerated Discovery in Photocatalysis using a Mechanism-Based Screening Method,
    Angew. Chem. Int. Ed. 2016, 55, 4361-4366; Angew. Chem. 2016, 128, 4434-4439.
    This paper was selected for the Angewandte front cover image of the issue it appears in. Please, enjoy this "Catalyst Speed Dating!"

     

    K. D. Collins, T. Gensch, F. Glorius,
    Contemporary screening approaches to reaction discovery and development,
    Nat. Chem. 2014, 6, 859–871. 

     

     

    K. D. Collins, A. Rühling, F. Glorius,
    Application of a Robustness Screen for the evaluation of synthetic organic methodology,
    Nat. Protoc. 2014, 9, 1348-1353.

     

    K. D. Collins,* A. Rühling, F. Lied, F. Glorius,*
    Rapid Assessment of Protecting Group Stability Using a Robustness Screen,
    Chem. Eur. J. 2014, 20, 3800-3805.

     

    K. D. Collins, F. Glorius,
    A Robustness Screen for the Rapid Assessment of Chemical Reactions,
    Nature Chem. 2013, 5, 597-601.

     

    K. D. Collins, F. Glorius,
    Employing a Robustness Screen: Rapid Assessment of Rhodium(III)-catalysed C-H Activation Reactions,
    Tetrahedron 2013, 69, 7817-7825. 

N-Heterocyclic Carbenes
 

The development of N-heterocyclic carbenes (NHCs) has been transformative in many areas of catalysis. The strong σ-donor properties of NHCs result in metal complexes with high chemical and thermal stability together with remarkable catalytic activity. The ability of NHCs to catalyze umpolung-reactions has established the use of NHCs as versatile and unique organocatalysts. Ligands have been used to tune the properties of surfaces and NHCs offer unique opportunities for tailor-made surfaces with regard to stability, reactivity and (enantio)selectivity. The highly modular nature of NHCs is ideal for a rational design of optimized structures in each of these applications.

Our group has a very strong interest in the design, synthesis and diverse applications of NHCs such as in (asymmetric) catalysis and surface modification.

  • (Asymmetric) Heterogeneous Catalysis and Modification of Surfaces

    Icon Surface

    Heterogeneous catalysis can offer advantages over homogeneous catalysis in terms of price, removal and reusability of the catalysts. We are especially interested in the prospect of unique activity and selectivity that heterogeneous catalysis may exhibit.

    The modification of surfaces – biological and artificial ones – with NHCs is a quickly growing field in which we are pioneering to learn about how and why NHCs are interacting with surfaces. Such understanding allows to improve stability and reactivity of surfaces, leading ultimately to tailor-made membrane modifications and material properties. We are investigating the lipid-like character of NHC salts containing a hydrophobic backbone. The derived gold complexes can be used for micellar catalysis. We are also interested in the behavior of NHCs on atomically pure metal surfaces. Self assembly, templated synthesis of unique metal complexes and dramatic changes of the electronic properties of the surfaces can be observed.


     

    N. Möller§, A. Rühling§, S. Lamping, T. Hellwig, C. Fallnich, B. J. Ravoo,* F. Glorius,*
    Stabilization of High Oxidation State Upconversion Nanoparticles by N-Heterocyclic Carbenes (NHCs),
    Angew. Chem. Int. Ed. 2017, 56, 4356-4360; Angew. Chem. 2017, 129, 4421-4425.

     

     

    A. Rühling, D. Wang, J. B. Ernst, S. Wulff, R. Honeker, C. Richter, A. Ferry, H.-J. Galla,* F. Glorius,*
    Influence of the Headgroup of Azolium-Based Lipids on Their Biophysical Properties and Cytotoxicity,
    Chem. Eur. J. 2017, 23, 5920-5924.

     

     

    P. Drücker, A. Rühling, D. Grill, D. Wang, A. Draeger, V. Gerke, F. Glorius,* H.-J. Galla,*
    Imidazolium Salts Mimicking the Structure of Natural Lipids Exploit Remarkable Properties Forming Lamellar Phases and Giant Vesicles,
    Langmuir 2017, 33, 1333-1342. 

     

     

    G. Wang, A. Rühling, S. Amirjalayer, M. Knor, J. B. Ernst, C. Richter, H.-J. Gao, A. Timmer, H.-Y. Gao, N. L. Doltsinis, F. Glorius,* H. Fuchs,*
    Ballbot-type motion of N-heterocyclic carbenes on gold surfaces,
    Nature Chem. 2017, 9, 152-156. 

     

     

    D. Wang, D. H. de Jong, A. Rühling, V. Lesch, K. Shimizu, S. Wulff, A. Heuer,* F. Glorius,* H.-J. Galla,*
    Imidazolium-Based Lipid Analogues and Their Interaction with Phosphatidylcholine Membranes,
    Langmuir 2016, 32, 12579–12592. 
     

     

     2016 Ernst Jacs 10718

    J. B. Ernst, S. Muratsugu,* F. Wang, M. Tada, F. Glorius,*
    Tunable Heterogeneous Catalysis – N-Heterocyclic Carbenes as Ligands for Supported Heterogeneous Ru/K-Al2O3 Catalysts to Tune Reactivity and Selectivity,
    J. Am. Chem. Soc. 2016, 138, 10718-10721.
     

    2014 Richter Chemcommun 3204

    C. Richter§, K. Schaepe§, F. Glorius,* B. J. Ravoo,*
    Tailor-made N-Heterocyclic Carbenes for Nanoparticle Stabilization,
    Chem. Commun. 2014, 50, 3204-3207.

    § Both authors contributed equally.

  • (Asymmetric) Arene Hydrogenation

    Icon Hydrogenation

    The (asymmetric) hydrogenation of aromatic compounds is one of the most straightforward and benign strategies for the synthesis of saturated compounds. Aliphatic carbo- and heterocycles are highly relevant core structures in biologically active molecules. The de novo synthesis of enantiopure cyclic compounds can be challenging by traditional means. Using H2 as a reagent and a powerful ruthenium NHC catalyst system, diverse aliphatic carbo- and heterocycles can be obtained with high enantioselectivities.

     

     

     


    2017 W Li jacs asap


    W. Li, M. Wiesenfeldt, F. Glorius,
    Ruthenium−NHC−Diamine Catalyzed Enantioselective Hydrogenation of Isocoumarins,
    J. Am. Chem. Soc. 2017, 139, 2585-2588. 
     

    2016 W Li Acie 3300

    W. Li, C. Schlepphorst, C. Daniliuc, F. Glorius,
    Asymmetric Hydrogenation of Vinylthioethers: Access to Optically Active 1,5-Benzothiazepine Derivatives,
    Angew. Chem. Int. Ed. 2016, 55, 3300-3303; Angew. Chem. 2016, 128, 3361-3364.

     

    2014 Wysocki Acie 8751

    J. Wysocki, N. Ortega, F. Glorius,
    Asymmetric Hydrogenation of Disubstituted Furans,
    Angew. Chem. Int. Ed. 2014, 53, 8751-8755; Angew. Chem. 2014, 126, 8896-8900.

     

    2013 Ortega Acie 9500

    N. Ortega, D.-T. D. Tang, S. Urban, D. Zhao, F. Glorius,
    Ruthenium-NHC Catalyzed Asymmetric Hydrogenation of Indolizines: Access to Indolizidine Alkaloids,
    Angew. Chem. Int. Ed. 2013, 52, 9500-9503; Angew. Chem. 2013, 125, 9678-9681.

    2013 Zhao Acie 8454

    D. Zhao, B. Beiring, F. Glorius,
    Ruthenium-NHC Catalyzed Asymmetric Hydrogenation of Flavones and Chromones: General Access to Enantio-enriched Flavanones, Flavanols, Chromanones and Chromanols,
    Angew. Chem. Int. Ed. 2013, 52, 8454-8458; Angew. Chem. 2013, 125, 8612-8616.

  • (Asymmetric) Organocatalysis

    Icon Organocatalysis

    (Asymmetric) NHC organocatalysis is a uniquely powerful tool for umpolung reactions to build up complex molecules in an enantio- and regioselective fashion. The umpolung of the inherent reactivity of a functional group opens up avenues for new transformations. Inspired by nature's use of carbene catalysis (Vitamin B1), we explore additional modes of action including cooperative catalysis.

     

     

     


    C. Guo,* D. Janssen-Müller, M. Fleige, A. Lerchen, C. G. Daniliuc, F. Glorius,*
    Mechanistic Studies on a Cooperative NHC Organocatalysis/Palladium Catalysis System: Uncovering Significant Lessons for Mixed Chiral Pd(NHC)(PR3) Catalyst Design,
    J. Am. Chem. Soc. 2017, 139, 4443-4451.

     

    D. Janssen-Müller,§ S. Singha,§ F. Lied, K. Gottschalk, F. Glorius,
    NHC-Organocatalyzed CAr–O Bond Cleavage: Mild access to 2 Hydroxybenzophenones,
    Angew. Chem. Int. Ed. 2017, 56, 6276-6279; Angew. Chem. 2017, 129, 6373-6376.

     

    2016 Janssen Mueller Orglett 4444

    D. Janssen-Müller, S. Singha, T. Olyschläger, C. G. Daniliuc, F. Glorius,
    Annulation of o-Quinodimethanes (o-QDM) through NHC-Catalysis for the Synthesis of 1-Isochromanones,
    Org. Lett. 2016, 18, 4444-4447.

     

    D. Janssen-Müller, M. Fleige, D. Schlüns, M. Wollenburg, C. G. Daniliuc, J. Neugebauer,* F. Glorius,*
    NHC-Catalyzed Enantioselective Dearomatizing Hydroacylation of Benzofurans and Benzothiophenes for the Synthesis of Spirocycles,
    ACS Catal. 2016, 6, 5735-5739.

    C. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius,
    Cooperative N-Heterocyclic Carbene/Palladium-Catalyzed Enantioselective Umpolung Annulations,
    J. Am. Chem. Soc. 2016, 138, 7840-7843.

     

    2015 Chang Nchem 842

    C. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius,
    Switchable selectivity in an NHC-catalysed dearomatizing annulation reaction,
    Nature Chem. 2015, 7, 842-847.

     

    2015 Janssen Mueller Acie 12492

    D. Janssen-Müller, M. Schedler, M. Fleige, C. G. Daniliuc, F. Glorius,
    Enantioselective Intramolecular Hydroacylation of Unactivated Alkenes: An NHC-Catalyzed Robust and Versatile Formation of Cyclic Chiral Ketones,
    Angew. Chem. Int. Ed. 2015, 54, 12492-12496; Angew. Chem. 2015, 127, 12671-12675. 
     

    2014 Guo Jacs 17402

    C. Guo, B. Sahoo, C. G. Daniliuc, F. Glorius,
    N-Heterocyclic Carbene Catalyzed Switchable Reactions of Enals with Azoalkenes: Formal [4+3] and [4+1] Annulations for the Synthesis of 1,2-Diazepines and Pyrazoles,
    J. Am. Chem. Soc. 2014, 136, 17402-17405.

    2014 Jli Acie 10515

    J.-L. Li, B. Sahoo, C.-G. Daniliuc, F. Glorius,
    Conjugate Umpolung of β,β-Disubstituted Enals by Dual Catalysis with an N-Heterocyclic Carbene and a Brønsted Acid: Facile Construction of Contiguous Quaternary Stereocenters,
    Angew. Chem. Int. Ed. 2014, 53, 10515-10519; Angew. Chem. 2014, 126, 10683-10687.

    2014 Guo Acie 10232

    C. Guo, M. Schedler, C. G. Daniliuc, F. Glorius,
    N-Heterocyclic Carbene Catalyzed Formal [3+2] Annulation Reaction of Enals: An Efficient Enantioselective Access to Spiro-Heterocycles,
    Angew. Chem. Int. Ed. 2014, 53, 10232-10236; Angew. Chem. 2014, 126, 10397-10401.
    Highlighted in Synfacts 2014, 10, 1207.

    M. Schedler, N. E. Wurz, C. G. Daniliuc, F. Glorius,
    N-Heterocyclic Carbene Catalyzed Umpolung of Styrenes: Mechanistic Elucidation and Selective Tail-to-Tail Dimerization,
    Org. Lett. 2014, 16, 3134-3137.
    2013 Schedler Acie 2585

    M. Schedler, D.-S. Wang, F. Glorius,
    NHC-Catalyzed Hydroacylation of Styrenes,
    Angew. Chem. Int. Ed. 2013, 52, 2585-2589; Angew. Chem. 2013, 125, 2645-2649.