Research area B: Spaces and Operators
Unit B1: Smooth, singular and rigid spaces in geometry
Research area C: Models and Approximations
Unit C4: Geometry-based modelling, approximation, and reduction
Further Projects
• Dynamical systems and irregular gradient flows online
• CRC 1442: Geometry: Deformation and Rigidity - Geometric evolution equations online
Selected Publications of Christoph Böhm
$\bullet$ C. Böhm and R. A. Lafuente. The Ricci flow on solvmanifolds of real type. Adv. Math., 352:516–540, 2019.
$\bullet$ C. Böhm, R. Lafuente, and M. Simon. Optimal curvature estimates for homogeneous Ricci flows. Int. Math. Res. Not. IMRN, (14):4431–4468, 2019.
$\bullet$ C. Böhm and R. A. Lafuente. Immortal homogeneous Ricci flows. Invent. Math. 461-529, 2018.
$\bullet$ C. Böhm and R. A. Lafuente. Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds. Geom. Topol., 26(2):899–936, 2022.
$\bullet$ C. Böhm. On the long time behavior of homogeneous Ricci flows. Comment. Math. Helv., 90(3):543–571, 2015.
$\bullet$ C. Böhm and B. Wilking. Manifolds with positive curvature operators are space forms. Ann. of Math. (2), 167(3):1079–1097, 2008.
$\bullet$ C. Böhm and B. Wilking. Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature. Geom. Funct. Anal., 17(3):665–681, 2007.
$\bullet$ C. Böhm, M. Wang, and W. Ziller. A variational approach for compact homogeneous Einstein manifolds. Geom. Funct. Anal., 14(4):681–733, 2004.
$\bullet$ C. Böhm. Homogeneous Einstein metrics and simplicial complexes. J. Differential Geom., 67(1):79–165, 2004.
$\bullet$ C. Böhm. Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces. Invent. Math., 134(1):145–176, 1998.
Current Publications
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds. Geom. Topol., 26(2):899–936, June 2022. doi:10.2140/gt.2022.26.899.
$\bullet $ Christoph Böhm and Megan M. Kerr. Homogeneous Einstein metrics and butterflies. arXiv e-prints, July 2021. arXiv:2107.06609.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. Non-compact Einstein manifolds with symmetry. arXiv e-prints, July 2021. arXiv:2107.04210.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. Real geometric invariant theory. In Differential geometry in the large, volume 463 of London Math. Soc. Lecture Note Ser., pages 11–49. October 2020. doi:10.1017/9781108884136.003.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. The Ricci flow on solvmanifolds of real type. Advances in Mathematics, 352:516–540, August 2019. doi:10.1016/j.aim.2019.06.014.
$\bullet $ Christoph Böhm, Ramiro Lafuente, and Miles Simon. Optimal curvature estimates for homogeneous Ricci flows. International Mathematics Research Notices. IMRN, 2019(14):4431–4468, July 2019. doi:10.1093/imrn/rnx256.