CV |
| ||||
Research Interests | PDE-constrained Parameter Optimization Reduced Basis Methods Multiscale Finite Element Methods Perturbed problems | ||||
Current Talks | • Two-scale Reduced Basis Method for Parameterized Multiscale Problems. New trends in numerical multiscale methods and beyond, invited talk, Institut Mittag-Leffler, Djursholm, Sweden, online Slides • Trust-Region Reduced Basis Methods for Large Scale PDE-Constrained Parameter Optimization: A Non-Conforming Dual Approach. SIAM Conference on Mathematical and Computational Issues in the Geosciences 2021, invited talk, Milano, Italy, online Slides • Adaptive Trust Region Reduced Basis Method in PDE-Constrained Parameter Optimization: A Non-Conforming Dual Approach. GAMM 2021 - 91th Annual Meeting, contributed talk, Kassel, Germany, Online Slides • Advances for Reduced Basis methods for PDE-constrained optimization: a non conforming approach. ALGORITMY 2020, Minisymposium: Advances in Model Order Reduction and its Applications, invited talk, Podbanske, Slovakia, Online Slides • Adaptive Trust Region Reduced Basis method for quadratic PDE-constrained Parameter Optimization. Konstanz Workshop on Optimal Control, invited talk, Konstanz, Germany Slides • The LOD method for perturbed elliptic problems. Oberwolfach Seminar: Beyond Homogenization, participant talks, Oberwolfach, Germany Slides • Numerical Upscaling of Perturbed Diffusion Problems. SIAM Conference on Mathematical Computational Issues in the Geosciences 2019, invited talk, Houston, USA Slides • Numerical upscaling of perturbed diffusion problems. Oberseminar zur Numerik, invited talk, Augsburg, Germany Slides • Localization of multiscale problems with random defects. Master- und Oberseminar zu effizienten numerischen Methoden, Münster, Germany Slides | ||||
Current Publications | • Keil Tim, Ohlberger Mario Model Reduction for Large Scale Systems. Large-Scale Scientific ComputingLecture Notes in Computer Science (LNCS), 2022, pp 16-28 online • Keil T, Kleikamp H, Lorentzen R, Oguntola M, Ohlberger M Adaptive machine learning based surrogate modeling to accelerate PDE-constrained optimization in enhanced oil recovery. arXiv Vol. 2022, 2022 online • Keil Tim, Ohlberger Mario A relaxed localized trust-region reduced basis approach for optimization of multiscale problems. arXiv Vol. 2022, 2022 online • Keil Tim, Ohlberger Mario Model Reduction for Large Scale Systems. Large-Scale Scientific ComputingLecture Notes in Computer Science (LNCS), 2022, pp 16-28 online • Keil T, Mechelli L, Ohlberger M, Schindler F, Volkwein S A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. ESAIM: Mathematical Modelling and Numerical Analysis (M2AN) Vol. 55, 2021, pp 1239–1269 online • Banholzer S, Keil T, Mechelli L, Ohlberger M, Schindler F, Volkwein S An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization. Pure and applied functional analysis Vol. 2021, 2021 online • Keil Tim, Rave Stephan An Online Efficient Two-Scale Reduced Basis Approach for the Localized Orthogonal Decomposition. arXiv Vol. 2021, 2021 online • Keil T, Mechelli L, Ohlberger M, Schindler F, Volkwein S A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. ESAIM: Mathematical Modelling and Numerical Analysis (M2AN) Vol. 55, 2021, pp 1239–1269 online • Banholzer S, Keil T, Mechelli L, Ohlberger M, Schindler F, Volkwein S An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization. Pure and applied functional analysis Vol. 2021, 2021 online | tim dot keil at wwu dot de | |||
Phone | +49 251 83-35056 | ||||
FAX | +49 251 83-32729 | ||||
Room | 120.009 | ||||
Secretary | Sekretariat Wernke Frau Silvia Wernke Telefon +49 251 83-35052 Fax +49 251 83-32729 Zimmer 120.001 | ||||
Address | Herr Tim Keil Angewandte Mathematik Münster: Institut für Analysis und Numerik Fachbereich Mathematik und Informatik der Universität Münster Orléans-Ring 10 48149 Münster | ||||
Diese Seite editieren |