**Prof. Dr. Burkhard WilkingMathematisches InstitutInvestigator in Mathematics MünsterPrincipal Investigator of the SFB Groups, Geometry and ActionsEmail Address: wilking@math.uni-muenster.de**

**Research Interests**

$\bullet$ Ricci flow.

$\bullet$ Group actions on Riemannian manifolds.

$\bullet$ Manifolds of positive curvature.

$\bullet$ Singular spaces and convergence of manifolds to singular spaces.

**Selected Publications of Burkhard Wilking**

$\bullet$
M. Radeschi and B. **Wilking**.
On the Berger conjecture for manifolds all of whose geodesics are
closed.
*Invent. Math.*, 210(3):911–962, 2017.

$\bullet$
E. Cabezas-Rivas and B. **Wilking**.
How to produce a Ricci flow via Cheeger- Gromoll exhaustion.
*J. Eur. Math. Soc. (JEMS)*, 17(12):3153–3194, 2015.

$\bullet$
K. Grove and B. **Wilking**.
A knot characterization and 1-connected nonnegatively curved
4-manifolds with circle symmetry.
*Geom. Topol.*, 18(5):3091–3110, 2014.

$\bullet$
B. **Wilking**.
A Lie algebraic approach to Ricci flow invariant curvature
conditions and Harnack inequalities.
*J. Reine Angew. Math.*, 679:223–247, 2013.

$\bullet$
C. Böhm and B. **Wilking**.
Manifolds with positive curvature operators are space forms.
*Ann. of Math. (2)*, 167(3):1079–1097, 2008.

$\bullet$
B. **Wilking**.
A duality theorem for Riemannian foliations in nonnegative
sectional curvature.
*Geom. Funct. Anal.*, 17(4):1297–1320, 2007.

$\bullet$
C. Böhm and B. **Wilking**.
Nonnegatively curved manifolds with finite fundamental groups admit
metrics with positive Ricci curvature.
*Geom. Funct. Anal.*, 17(3):665–681, 2007.

$\bullet$
B. **Wilking**.
Positively curved manifolds with symmetry.
*Ann. of Math. (2)*, 163(2):607–668, 2006.

$\bullet$
B. **Wilking**.
Torus actions on manifolds of positive sectional curvature.
*Acta Math.*, 191(2):259–297, 2003.

$\bullet$
B. **Wilking**.
Manifolds with positive sectional curvature almost everywhere.
*Invent. Math.*, 148(1):117–141, 2002.

**Current Publications**

$\bullet $ R. Bamler, E. Cabezas-Rivas, and **B. Wilking**.
The Ricci flow under almost non-negative curvature conditions.
*Inventiones Mathematicae*, 217:95–126, July 2019.
URL: https://ui.adsabs.harvard.edu/abs/2019InMat.217...95B, doi:10.1007/s00222-019-00864-7.