Research Interests
$\bullet$ Operator algebras
$\bullet$ Ergodic theory
• Kerr D, Li H Entropy and the variational principle for actions of sofic groups. Invent. Math. Vol. 186, 2011 online
• Kerr D, Li H Soficity, amenability, and dynamical entropy.. Amer. J. Math. Vol. 135, 2013 online
• Conley C, Jackson S, Kerr D, Marks A, Seward B, Tucker-Drob R Følner tilings for actions of amenable groups. Math. Ann. Vol. 371, 2018 online
• Brannan M, Kerr D Quantum groups, property (T), and weak mixing. Comm. Math. Phys. Vol. 360, 2018 online
• Kerr D Dimension, comparison, and almost finiteness. J. Eur. Math. Soc. Vol. 22, 2020 online
• Kerr D, Li H Ergodic Theory: Independence and Dichotomies. , 2016 online
• Kerr D, Li H Entropy, Shannon orbit equivalence, and sparse connectivity. Mathematische Annalen Vol. 380, 2021 online
Current Publications
$\bullet $ David Kerr and Hanfeng Li. Entropy, virtual Abelianness, and Shannon orbit equivalence. arXiv e-prints, February 2022. arXiv:2202.10795.
$\bullet $ David Kerr and Petr Naryshkin. Elementary amenability and almost finiteness. arXiv e-prints, July 2021. arXiv:2107.05273.
$\bullet $ David Kerr and Hanfeng Li. Entropy, Shannon orbit equivalence, and sparse connectivity. Mathematische Annalen, 380(3):1497–1562, May 2021. doi:10.1007/s00208-021-02190-x.
$\bullet $ David Kerr. Dimension, comparison, and almost finiteness. J. Eur. Math. Soc. (JEMS), 22(11):3697–3745, August 2020. doi:10.4171/jems/995.
$\bullet $ David Kerr and Gábor Szabó. Almost finiteness and the small boundary property. Comm. Math. Phys., 374(1):1–31, March 2020. doi:10.1007/s00220-019-03519-z.