Research Interests

Research Interests

$\bullet$ Operator algebras
$\bullet$ Ergodic theory

Selected Publications

Kerr D, Li H Ergodic Theory: Independence and Dichotomies. , 2016 online
Kerr D Dimension, comparison, and almost finiteness. J. Eur. Math. Soc. Vol. 22, 2020 online
Kerr D, Li H Entropy and the variational principle for actions of sofic groups. Invent. Math. Vol. 186, 2011 online
Kerr D, Li H Entropy, Shannon orbit equivalence, and sparse connectivity. Mathematische Annalen Vol. 380, 2021 online
Conley C, Jackson S, Kerr D, Marks A, Seward B, Tucker-Drob R Følner tilings for actions of amenable groups. Math. Ann. Vol. 371, 2018 online
Kerr D, Li H Soficity, amenability, and dynamical entropy.. Amer. J. Math. Vol. 135, 2013 online
Brannan M, Kerr D Quantum groups, property (T), and weak mixing. Comm. Math. Phys. Vol. 360, 2018 online

Current Cluster Publications

Current Cluster Publications of Prof. Dr. David Kerr

$\bullet $ David Kerr and Spyridon Petrakos. McDuff factors from amenable actions and dynamical alternating groups. arXiv e-prints, November 2023. arXiv:2311.08192.

$\bullet $ David Kerr and Robin Tucker-Drob. Dynamical alternating groups, stability, property Gamma, and inner amenability. Annales scientifiques de l'École Normale Supérieure, 56(1):59–90, July 2023. doi:10.24033/asens.2528.

$\bullet $ David Kerr and Hanfeng Li. Entropy, products, and bounded orbit equivalence. Ergodic Theory and Dynamical Systems, 43(3):904–942, March 2023. doi:10.1017/etds.2021.154.

$\bullet $ David Kerr and Hanfeng Li. Entropy, virtual Abelianness, and Shannon orbit equivalence. arXiv e-prints, February 2022. arXiv:2202.10795.

$\bullet $ David Kerr and Petr Naryshkin. Elementary amenability and almost finiteness. arXiv e-prints, July 2021. arXiv:2107.05273.

$\bullet $ David Kerr and Hanfeng Li. Entropy, Shannon orbit equivalence, and sparse connectivity. Mathematische Annalen, 380(3):1497–1562, May 2021. doi:10.1007/s00208-021-02190-x.

$\bullet $ David Kerr. Dimension, comparison, and almost finiteness. J. Eur. Math. Soc. (JEMS), 22(11):3697–3745, August 2020. doi:10.4171/jems/995.

$\bullet $ David Kerr and Gábor Szabó. Almost finiteness and the small boundary property. Comm. Math. Phys., 374(1):1–31, March 2020. doi:10.1007/s00220-019-03519-z.