Hier entsteht eine Seite über die Forschungsaktivitäten am Mathematischen Institut.

 

Publikationen

  • Wulkenhaar R. Integrability in a 4D QFT model.“ contributed to the Recent Mathematical Developments in Quantum Field Theory, Oberwolfach, . doi: 10.4171/OWR/2016/36.
  • Lechner Gandalf, Schlemmer Jan. . ‘Thermal Equilibrium States for Quantum Fields on Non-commutative Spacetimes.’ In Quantum Mathematical Physics, edited by Finster Felix, Kleiner Johannes, Röken Christian, Tolksdorf Jürgen. Basel: Birkhäuser. doi: 10.1007/978-3-319-26902-3. [Im Druck]
  • Grosse H, Wulkenhaar R. . A solvable four-dimensional QFT.’ In Quantum Mathematical Physics - A Bridge between Mathematics and Physics, edited by Finster F, Kleiner J, Röken C, Tolksdorf J, 137-161. Springer International Publishing Switzerland 2016. doi: 10.1007/978-3-319-26902-3_8.
  • Eckstein M, Sitarz A, Wulkenhaar R. . The Moyal Sphere.’ Journal of Mathematical Physics 2016, Nr. 57: 112301. doi: 10.1063/1.4965446.
  • Buss A., Echterhoff S., Willett R. . Exotic crossed products.’ In Operator Algebras and Applications, The Abel Symposium 2015, edited by Carlsen T.M., Larsen N.S., Neshveyev S., Skau C, 61-108.: Springer International Publishing. doi: 10.1007/978-3-319-39286-8-3.
  • Enock M., Timmermann T. . Measured quantum transformation groupoids.’ Journal of Noncommutative Geometry 10, Nr. 3: 1143-1214. doi: 10.4171/JNCG/257.
  • Harvey John. . ‘Convergence of isometries, with semicontinuity of symmetry of Alexandrov spaces.’ Proceedings of the American Mathematical Society 2016. doi: 10.1090/proc/12994. [Im Druck]
  • Barnes D.,Eldred R.,. . ‘Capturing Goodwillie's derivative.’ Journal of Pure and Applied Algebra 220, Nr. 1: 197-222. doi: 10.1016/j.jpaa.2015.06.006.
  • Arasteh Rad Esmail, Hartl Urs. . Langlands-Rapoport Conjecture over Function Fields , . [Eingereicht]
  • Hartl Urs, Singh Rajneesh Kumar. . Periods of Drinfeld modules and local shtukas with complex multiplication , . [Eingereicht]
  • Hartl U., Hüsken S. . ‘A criterion for good reduction of Drinfeld modules and Anderson motives in terms of local shtukas.’ Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 15: 25-43. doi: 10.2422/2036-2145.201304_007.
  • Farah I, Hart B, Lupini M, Robert L, Tikuisis A, Vignati A, Winter W. . ‘The model theory of nuclear C*-algebras.’ arXiv 2016. [Eingereicht]
  • Winter Wilhelm. . ‘Classifying crossed product C*-algebras.’ Amer. J. Math 138: 793-820.
  • Winter W. . Classifying crossed product {$\rm C^*$}-algebras.’ Amer. J. Math. 138, Nr. 3: 793-820. doi: 10.1353/ajm.2016.0029.
  • Schneider Peter, Venjakob Otmar. . ‘Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions.’ In Elliptic Curves, Modular Forms, and Iwasawa Theory, edited by Loeffler D, Zerbes S, 401-468.: Springer.
  • Schneider Peter, Zink Ernst-Wilhelm. . ‘Tempered representations of p-adic groups: Special idempotents and topology.’ Selecta Math. 2016, Nr. 22: 2209-2242.
  • Haagerup U., Knudby S., de Laat T. . ‘A complete characterization of connected Lie groups with the Approximation Property.’ Annales Scientifiques de l'École Normale Supérieure 49, Nr. 4: 927-946.
  • Timmermann Thomas. . ‘Integration on algebraic quantum groupoids.’ Internat. J. Math. 27, Nr. 2. [Im Druck]
  • Buss A., Echterhoff S. . Weakly proper group actions, mansfield’s imprimitivity and twisted landstad duality.’ Transactions of the American Mathematical Society 368, Nr. 1: 249-280.
  • Buss Alcides, Echterhoff Siegfried. . Rieffel proper actions.’ Journal of Operator Theory 75: 49-73. doi: 10.7900/jot.2014oct28.2047.
  • Winter W. . ‘Operator Algebras and Applications.’ In QDQ vs. UCT, 321-342.: Springer.
  • Hartl Urs, Juschka Ann-Kristin. . Pink's Theory of Hodge Structures and the Hodge Conjecture over Function Fields , . [Eingereicht]
  • Hirshberg I, Szabo G, Winter W, Wu J. . ‘Rokhlin dimension for flows.’ Comm. Math. Phys. 2016. [Eingereicht]
  • Maxim Laurentiu, Saito Morihiko, Schürmann Jörg. . ‘Hirzebruch–Milnor Classes and Steenbrink Spectra of Certain Projective Hypersurfaces.’ Contributed to the Arbeitstagung Bonn 2013, Bonn. doi: 10.1007/978-3-319-43648-7_9.
  • Benedetti Gabriele. . On closed orbits for twisted autonomous Tonelli Lagrangian flows.’ In Publicaciones Matemáticas del Uruguay, special issue dedicated to Ricardo Mañé, edited by Maderna Ezequiel, Rifford Ludovic, 1. [Im Druck]
  • Kramer L. . On small abstract quotients of Lie groups and locally compact groups.’ Journal of Geometry null, Nr. null: 1-23. doi: 10.1007/s00022-016-0315-5. [Im Druck]
  • Ohlberger M, Rave S, Schindler F. . ‘Adaptive Localized Model Reduction.’ Oberwolfach Reports 13, Nr. 3: 2406-2409. doi: 10.4171/OWR/2016/42.
  • Reis Rui, Weiss Michael. . ‘Pontryagin classes and functor calculus.’ Journal of the European Mathematical Society 2016: 1769-1811. doi: 10.4171/JEMS/629.
  • Evington Samuel, Pennig Ulrich. . ‘Locally trivial W*-bundles.’ International Journal of Mathematics 2016. [Eingereicht]
  • Nena Röttgen. . ‘Trapped Reeb orbits do not imply periodic ones.’ In Oberwolfach Reports No. 34/2015, edited by Huisken Gerhard.: EMS Publishing House. doi: 10.4171. [Akzeptiert]
  • Milk R, Rave S, Schindler F. . pyMOR - Generic algorithms and interfaces for model order reduction.’ SIAM Journal on Scientific Computing 38, Nr. 5: 194-216. doi: 10.1137/15M1026614.
  • Bartels, Arthur. . On proofs of the Farrell-Jones conjecture.’ In Topology and geometric group theory, edited by Springer, [Cham], 1-31. Springer, [Cham]. doi: 10.1007/978-3-319-43674-6_1.
  • Hartl Urs. . Isogenies of abelian Anderson A-modules and A-motives , . [Eingereicht]
  • Breuil Christophe, Hellmann Eugen, Schraen Benjamin. . ‘Smoothness and classicality on eigenvarieties.’ Inventiones Math --. [Akzeptiert]
  • Breuil Christophe, Hellmann Eugen, Schraen Benjamin. . ‘Une interpretation modulaire de la variete trianguline.’ Math. Annalen --. [Akzeptiert]
  • Brasselet Jean-Paul, Schürmann Jörg, Yokura Shoji. . ‘Motivic and derived motivic Hirzebruch classes.’ Homology Homotopy Appl. 2016. doi: 10.4310/HHA.2016.v18.n2.a16.
  • Hellmann Eugen, Benjamin Schraen. . ‘Density of potentially crystalline representations of fixed weight.’ Compositio Math. 152.
  • Hellmann, Eugen. . ‘Families of p-adic Galois representations and (phi,Gamma)-modules.’ Commentarii Math. Helvetici 91.
  • de Laat T., Mimura M., de la Salle M. . ‘On strong property (T) and fixed point properties for Lie groups.’ Annales de l'Institut Fourier 66, Nr. 5: 1859-1893. doi: 10.5802/aif.3051.
  • de Laat, T.Howe-Moore type theorems for quantum groups and rigid C*-tensor categories.“ contributed to the C*-Algebras, Oberwolfach, Germany, .
  • Geiges Hansjörg, Zehmisch Kai. . ‘The Weinstein conjecture for connected sums.’ International Mathematics Research Notices 2016.
  • Haagerup U., de Laat T. . ‘Simple Lie groups without the Approximation Property II.’ Transactions of the American Mathematical Society 368: 3777-3809. doi: 10.1090/tran/6448.
  • Suhr S., Zehmisch K. . Linking and closed orbits.’ Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 86, Nr. null: 133-150. doi: 10.1007/s12188-016-0118-5.
  • Hansjörg Geiges, Kai Zehmisch. . ‘Reeb dynamics detects odd balls.’ Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15: 663-681.
  • Geiges H., Zehmisch K. . Cobordisms between symplectic fibrations.’ Manuscripta Mathematica null, Nr. null: 1-10. doi: 10.1007/s00229-016-0901-8. [Im Druck]
  • Geiges H., Röttgen N., Zehmisch K. . From a Reeb orbit trap to a Hamiltonian plug.’ Archiv der Mathematik 107, Nr. 4: 397-404. doi: 10.1007/s00013-016-0916-0.
  • Thürigen J. . Group field theories generating polyhedral complexes.’ PoS FFP14: 177. doi: 10.22323/1.224.0177.
  • Grosse H, Wulkenhaar R. . On the fixed point equation of a solvable 4D QFT model.’ Vietnam Journal of Mathematics 2016, Nr. 44: 153-180. doi: 10.1007/s10013-015-0174-7.
  • Grosse H, Wulkenhaar R. . Construction of a quantum field theory in four dimensions.’ Proceedings of Science 224: 151. doi: doi:10.22323/1.224.0151.

  • Deninger C. . ‘Higher regulators and Hecke L-series of imaginary quadratic fields I.’ Invent. math. 96: 1-69.
  • Cuntz J. . ‘Universal extensions and cyclic cohomology.’ C. R. Acad. Sci. Paris Sér. I Math. 309, Nr. 1: 5--8.
  • Deninger C. . Higher regulators and Hecke $L$-series of imaginary quadratic fields. I.’ Invent. Math. 96, Nr. 1: 1--69. doi: 10.1007/BF01393970.
  • Schneider P. . ‘Motivic Iwasawa theory.’ In Algebraic number theory, 421--456. Boston, MA: Academic Press.

  • Cuntz J, Evans DE. . ‘Some remarks on the C*-algebras associated with certain topological Markov chains.’ Math. Scand. 48, Nr. 2: 235--240.
  • Cuntz J. . ‘A class of C*-algebras and topological Markov chains II. Reducible chains and the Ext-functor for C*-algebras.INVENTIONES MATHEMATICAE 63, Nr. 1: 25-40. doi: 10.1007/BF01389192.
  • Cuntz J. . ‘K-theory for certain C*-algebras. II.’ J. Operator Theory 5, Nr. 1: 101--108.
  • Cuntz J. . ‘K-theory for certain C*-algebras.’ ANNALS OF MATHEMATICS 113, Nr. 1: 181-197.

  • Cuntz J, Pedersen GK. . ‘Equivalence and KMS states on periodic C*-dynamical systems.’ J. Funct. Anal. 34, Nr. 1: 79--86. doi: 10.1016/0022-1236(79)90026-0.
  • Cuntz J. . ‘Noncommutative Haar measure and algebraic finiteness conditions for simple C*-algebras.’ In Algébres d'opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), 113--133. Paris: CNRS.
  • Cuntz J, Pedersen GK. . ‘Equivalence and traces on C*-algebras.’ J. Funct. Anal. 33, Nr. 2: 135--164. doi: 10.1016/0022-1236(79)90108-3.
  • Schneider P. . Über gewisse Galoiscohomologiegruppen.’ Math. Z. 168, Nr. 2: 181--205. doi: 10.1007/BF01214195.

  • Cuntz J. . ‘Murray-von\thinspace Neumann equivalence of projections in infinite simple C*-algebras.’ Rev. Roumaine Math. Pures Appl. 23, Nr. 7: 1011--1014.
  • Cuntz J. . ‘Dimension functions on simple C*-algebras.’ Math. Ann. 233, Nr. 2: 145--153. doi: 10.1007/BF01421922.

  • Cuntz J. . ‘The structure of multiplication and addition in simple C*-algebras.’ Mathematica Scandinavica 40, Nr. 2: 215--233.
  • Cuntz J. . ‘Simple C*-algebras generated by isometries.’ COMMUNICATIONS IN MATHEMATICAL PHYSICS 57, Nr. 2: 173-185.

  • Cuntz J. . ‘Locally C*-equivalent algebras.’ J. Functional Analysis 23, Nr. 2: 95--106. doi: 10.1016/0022-1236(76)90068-9.
  • Cuntz J. . ‘On the continuity of semi-norms on operator algebras.’ Math. Ann. 220, Nr. 2: 171--183. doi: 10.1007/BF01351703.
  • Cuntz J. . „Eine Klasse von postliminalen gewichteten Shiftoperatoren.“ Arch. Math. (Basel) 27, Nr. 2: 188--198. doi: 10.1007/BF01224659.
  • Behncke H, Cuntz J. . ‘Local completeness of operator algebras.’ Proc. Amer. Math. Soc. 62, Nr. 1: 95--100.