Research Interests

Research Interests

$\bullet$ Model theory.
$\bullet$ Group theory.
$\bullet$ Groups and geometries.

Selected Publications

Selected Publications of Katrin Tent

$\bullet$ I. Müller and K. Tent. Building-like geometries of finite Morley Rank. J. Eur. Math. Soc. (JEMS) (to appear), 2018.

$\bullet$ E. Rips, Y. Segev, and K. Tent. A sharply 2-transitive group without a non-trivial abelian normal subgroup. J. Eur. Math. Soc. (JEMS), 19(10):2895–2910, 2017.

$\bullet$ E. Rips and K. Tent. Sharply 2-transitive groups of characteristic 0. J. Reine Angew. Math. (ahead of print), 2017. doi.org/10.1515/crelle-2016-0054

$\bullet$ K. Tent. Sharply 3-transitive groups. Adv. Math., 286:722–728, 2016.

$\bullet$ K. Tent. The free pseudospace is n-ample, but not (n+ 1)-ample. The Journal of Symbolic Logic, 79(02):410–428, 2014.

$\bullet$ K. Tent and M. Ziegler. On the isometry group of the Urysohn space. J. Lond. Math. Soc. (2), 87(1):289–303, 2013.

$\bullet$ M. W. Liebeck, D. Macpherson, and K. Tent. Primitive permutation groups of bounded orbital diameter. Proc. Lond. Math. Soc. (3), 100(1):216–248, 2010.

$\bullet$ K. Tent. Split $BN$-pairs of rank 2: the octagons. Adv. Math., 181(2):308–320, 2004.

$\bullet$ K. Tent and H. Van Maldeghem. Moufang polygons and irreducible spherical {BN}-pairs of rank 2, I. Adv. Math., 174(2):254–265, 2003.

$\bullet$ K. Tent. Very homogeneous generalized $n$-gons of finite Morley rank. J. London Math. Soc. (2), 62(1):1–15, 2000.

Current Publications

$\bullet $ T. Clausen and K. Tent. On the geometry of sharply 2-transitive groups. arXiv e-prints, February 2020. arXiv:2002.05187.

$\bullet $ F. Calderoni, A. Kwiatkowska, and K. Tent. Simplicity of the automorphism groups of order and tournament expansions of homogeneous structures. arXiv e-prints, August 2019. arXiv:1908.05249.

$\bullet $ I. Müller and K. Tent. Building-like geometries of finite Morley rank. Journal of the European Mathematical Society (JEMS), 21(12):3739–3757, August 2019. doi:10.4171/jems/912.

$\bullet $ A. Nies, P. Schlicht, and K. Tent. Oligomorphic groups are essentially countable. arXiv e-prints, March 2019. arXiv:1903.08436.