This page will soon contain an overview of our research activities.
Publications
- . . Smooth asymptotics for collapsing Calabi-Yau metrics. [Submitted]
- . . Vergleichsarbeiten 2020. 8. Jahrgangsstufe (VERA-8) Mathematik. Didaktische Handreichung. Berlin: Institut für Qualitätsentwicklung im Bildungswesen (IQB).
- . . „Mathematisches Modellieren vor dem Hintergrund sozialer Herkunft.“ In Beiträge zum Mathematikunterricht 2020, herausgegeben von , 77-80. Münster: WTM. doi: http://dx.doi.org/10.17877/DE290R-21208.
- . . ‘Visual Analysis of Billiard Dynamics Simulation Ensembles.’ In 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020), edited by , 185-192.: SCITEPRESS - Science and Technology Publications, Lda.
- . . Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures. [Submitted]
- . . Perturbative and geometric analysis of the quartic Kontsevich model. [Submitted]
- . . ‘Automatic continuity of abstract homomorphisms between locally compact and Polish groups.’ Transform. Groups 25, No. 1: 1-32. doi: 10.1007/s00031-019-09537-4.
- . ‘Parallel transport for vector bundles on p-adic varieties.’ J. Algebraic Geom. 2020, No. 29: 1-52.
- . . ‘Finite crystallization and Wulff shape emergence for ionic compounds in the square lattice.’ Nonlinearity 33.
- . . Emergence of rigid polycrystals from atomistic systems with Heitmann-Radin sticky disk energy. [Submitted]
- . . ‘Conjugating automorphisms of graph products: Kazhdan's property (T) and SQ-universality.’ Bulletin of the Australian Mathematical Society 2020, No. vol. 101, no. 2: 272-282. doi: 10.1017/S0004972719000844.
- . . ‘Solution of the self-dual \Phi^4 QFT-model on four-dimensional Moyal space.’ Journal of High Energy Physics 01: 081. doi: doi:10.1007/JHEP01(2020)081.
- . . ‘On the classification of ALE Kähler manifolds.’ International Mathematics Research Notices TBD. doi: http://dx.doi.org/10.1093/imrn/rnz376. [In Press]
- . . ‘Higher-order estimates for collapsing Calabi-Yau metrics.’ Cambridge Journal of Mathematics 8. doi: 10.4310/CJM.2020.v8.n4.a1.
- . . Matrix Field Theory Doctoral Thesis, Universität Münster. [Submitted]
- . . ‘On weakly complete group algebras of compact groups.’ J. Lie Theory 30, No. 2: 407-424.
- . . ‘Asymptotic properties of linear field equations in anti-de Sitter space.’ Comm.~Math.~Phys. 374: 1125-1178. doi: 10.1007/s00220-019-03601-6.
- . . ‘A note on locally elliptic actions on cube complexes.’ Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial 18, No. 1: 1-6.
- . . ‘Spectral Hirzebruch–Milnor classes of singular hypersurfaces.’ Mathematische annalen 377, No. 1-2: 281-315. doi: 10.1007/s00208-018-1750-4.
- . . ‘Thom–Sebastiani Theorems for Filtered D-Modules and for Multiplier Ideals.’ International Mathematics Research Notices 2020, No. 1: 91-111. doi: 10.1093/imrn/rny032.
- . . ‘Plethysm and cohomology representations of external and symmetric products.’ Advances in Mathematics 375: 107373. doi: 10.1016/j.aim.2020.107373.
- . . ‘The Leutwyler-Smilga relation on the lattice.’ Mod. Phys. Letters A 35, No. 01: 1950346. doi: doi:10.1142/S0217732319503462.
- . . ‘Lambert-W solves the noncommutative \Phi^4-model.’ Communications in Mathematical Physics 374: 1935-1961. doi: 10.1007/s00220-019-03592-4.
- . . (No) phase transition in tensorial group field theory. [Submitted]
- . . ‘Phase transitions in TGFT: Functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models.’ JHEP 12 (2020): 159. doi: 10.1007/JHEP12(2020)159.
- . ‘Functional renormalization group in TGFT - the cyclic-melonic potential approximation.’ contributed to the Quantum Spacetime and the Renormalization Group 2020, Odense, Dänemark, .
- . . ‘On number of ends of graph products of groups.’ Communications in Algebra 1. doi: 10.1080/00927872.2020.1714637. [In Press]
- . . ‘Width, Largeness and Index Theory.’ SIGMA 16: 15 pages. doi: 10.3842/SIGMA.2020.127.
- . . ‘The Farrell-Jones conjecture for mapping class groups.’ Invent. Math. 215, No. 2: 651-712. doi: 10.1007/s00222-018-0834-9.
- . . ‘Fusion of defects.’ Mem. Amer. Math. Soc. 258, No. 1237: vii+100. doi: 10.1090/memo/1237.
- . . The renormalized volume of a 4-dimensional Ricci-flat ALE space. [Submitted]
- . . ‘The linear stability of the Schwarzschild solution to gravitational perturbations.’ Acta Mathematica 222, No. 1: 1-214. doi: 10.4310/ACTA.2019.v222.n1.a1.
- . . ‘Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case {$|a|\ll M$}.’ Ann. PDE 5, No. 1: Paper No. 2, 118. doi: 10.1007/s40818-018-0058-8.
- . ‘p-adic limits of renormalized logarithmic Euler characteristics.’ Groups, Geometry, and Dynamics 2020. [In Press]
- . ‘ℤR and rings of Witt vectors W_S(R).’ Rend. Semin. Mat. Univ. Padova 2019, No. 142: 93-102.
- . . Slant products on the Higson-Roe exact sequence. [Accepted]
- . . ‘Crystallization in the hexagonal lattice for ionic dimers.’ Math. Models Methods Appl. Sci. 29.
- . . Solution of all quartic matrix models. [Submitted]
- . . A Laplacian to compute intersection numbers on M_{g,n} and correlation functions in NCQFT. [Submitted]
- . . ‘A Liouville theorem for the complex Monge-Ampère equation on product manifolds.’ Communications on Pure and Applied Mathematics 72. doi: 10.1002/cpa.21751.
- . . ‘The Sylow structure of scalar automorphism groups.’ Topology Appl. 263: 26-43. doi: 10.1016/j.topol.2019.05.027.
- . . ‘Bridging the Cognitive Gap. Students' Approaches to Understanding the Proof Construction Task.’ In Proceedings of the 43rd Conference of the International Group for the Psychology of Mathematics Education, edited by , 472–479. Pretoria, South Africa: PME.
- . . ‘Erratum to: ''Homogeneous compact geometries'' [ {MR}3233526].’ Transform. Groups 24, No. 2: 589-596. doi: 10.1007/s00031-019-09524-9.
- . . ‘Abstract homomorphisms from locally compact groups to discrete groups.’ Journal of Algebra 538: 127-139.
- . . ‘Abstract homomorphisms from locally compact groups to discrete groups.’ Journal of Algebra 538. doi: 10.1016/j.jalgebra.2019.07.026.
- . . ‘Multi-critical behaviour of 4-dimensional tensor models up to order 6.’ Nuclear Physics B 941: 600-635. doi: 10.1016/j.nuclphysb.2019.02.026.
- . . ‘The modular pro-p Iwahori-Hecke Ext-algebra.’ In Representations of Reductive Groups, edited by , 255-308. AMS.
- . . ‘On the large N limit of the Schwinger-Dyson equation of rank-3 tensor field theory.’ Journal of Mathematical Physics 60, No. 7: 073502. doi: 10.1063/1.5080306.
- . . Towards integrability of the quartic analogue of the Kontsevich model. [Submitted]
- . . ‘Witt groups of abelian categories and perverse sheaves.’ Annals of K-Theory 2019, No. 4: 621-670. doi: 10.2140/akt.2019.4.621.
- . . ‘Planarity of Cayley graphs of graph products of groups.’ Discrete Mathematics 342, No. 6. doi: 10.1016/j.disc.2019.02.020.
- . . ‘On coherence of graph products of groups and Coxeter groups.’ Discrete Mathematics 342, No. 7. doi: 10.1016/j.disc.2019.04.014.
- . . ‘On hyperbolicity and virtual freeness of automorphism groups.’ Geometriae Dedicata 2020. doi: 10.1007/s10711-019-00486-6. [In Press]
- . . ‘The automorphism group of the universal Coxeter group.’ Expositiones Mathematicae 2019. doi: 10.1016/j.exmath.2019.09.002.
- . . ‘A condition that prevents groups from acting fixed point free on cube complexes.’ Geometriae Dedicata 200, No. 1. doi: 10.1007/s10711-018-0361-2.
- . . ‘Truncated operads and simplicial spaces.’ Tunisian Journal of Mathematics 1, No. 1: 109-126. doi: 10.2140/tunis.2019.1.109.
- . . ‘Quantum field theory on noncommutative spaces.’ In Advances in Noncommutative Geometry, edited by , 607-690. Springer International Publishing. doi: 10.1007/978-3-030-29597-4_11.
- . . Band width estimates via the Dirac operator. [Accepted]
- . . Catalan tables and a recursion relation in noncommutative quantum field theory. [Submitted]
- . . ‘Nonperturbative evaluation of the partition function for the real scalar quartic QFT on the Moyal plane at weak coupling.’ Journal of Mathematical Physics 60, No. 8: 083504. doi: 10.1063/1.5063293.
- 10.1007/s10711-018-0371-0. . ‘Superexpanders from group actions on compact manifolds.’ Geometriae Dedicata 200: 287-302. doi:
- 10.4171/PRIMS/54-2-6. . ‘The Fourier algebra of a rigid C*-tensor category.’ Publications of the Research Institute for Mathematical Sciences 54: 393-410. doi:
- 10.1112/S0010437X17007576. . ‘Howe-Moore type theorems for quantum groups and rigid C*-tensor categories.’ Compositio Mathematica 154, No. 2: 328-341. doi:
- . . ‘Conformal nets IV: The 3-category.’ Algebr. Geom. Topol. 18, No. 2: 897-956. doi: 10.2140/agt.2018.18.897.
- . . ‘Spaces of smooth embeddings and configuration categories.’ J. of Topology 2018, No. 11: 65-143.
- . . ‘The configuration category of a product.’ Proc. Amer. Math. Soc. 2018. [Accepted]
- . . ‘Positive scalar curvature and low-degree group homology.’ Ann. K-Theory 3, No. 3: 565-579. doi: 10.2140/akt.2018.3.565.
- . ‘A remark on the structure of torsors under an affine group scheme.’ Abh. Math. Semin. Univ. Hambg. 2018, No. 88: 189-192.
- Dynamical systems for arithmetic schemes. .
- . . ‘The \Phi^3_4 and \Phi^3_6 matricial QFT models have reflection positive two-point function.’ Nuclear Physics B 926: 20-48. doi: 10.1016/j.nuclphysb.2017.10.022.
- . . ‘How Prof. Zeidler supported our research on exact solution of quantum field theory toy models.’ Vietnam Journal of Mathematics 47: 93-112. doi: 10.1007/s10013-018-0302-2.
- . . ‘Integrability and positivity in quantum field theory on noncommutative geometry.’ Journal of Geometry and Physics 134: 249-262. doi: 10.1016/j.geomphys.2018.08.001.
- . . Crystalline {C}hebotar\"ev Density Theorems. [Submitted]
- . . Nilpotent structures and collapsing Ricci-flat metrics on K3 surfaces. [Submitted]
- . . ‘Noncommutative 3-colour scalar quantum field theory model in 2D.’ The European Physical Journal C 78: 580. doi: 10.1140/epjc/s10052-018-6042-3.
- . . ‘Why Condition-Based Regression Analysis (CRA) is Indeed a Valid Test of Self-Enhancement Effects: A Response to Krueger et al. (2017).’ Collabra: Psychology 4, No. 1. doi: 10.1525/collabra.137.
- . ‘Mini-Workshop: Superexpanders and Their Coarse Geometry, Abstracts from the mini-workshop held April 15 - 21, 2018.’ Contributed to the Superexpanders and Their Coarse Geometry, Oberwolfach, Deutschland.
- . . ‘Theoretical and Empirical Description of Phases in the Proving Processes of Undergraduates.’ In Proceedings of the Second Conference of the International Network for Didactic Research in University Mathematics, 326-335. Kristiansand, Norway: University of Agder and INDRUM.
- . . ‘Characteristic classes of mixed Hodge modules and applications.’ In Schubert varieties, equivariant cohomology and characteristic classes - Impanga 15, edited by , 159-202. doi: 10.4171/182-1/8.
- (Hrsg.): . Forschendes Lernen – The wider view – Eine Tagung des Zentrums für Lehrerbildung der Westfaelischen Wilhelms-Universität Muenster vom 25. bis 27.09.2017. Münster: WTM.
- . . ‘Homotopy theory of symmetric powers.’ Homology, Homotopy and Applications 20. doi: 10.4310/HHA.2018.v20.n1.a20.
- . . ‘Phase transitions in group field theory: The Landau perspective.’ Phys. Rev. D 98: 126006. doi: 10.1103/PhysRevD.98.126006.
- . . ‘Emergence of Spacetime in a restricted Spin-foam model.’ Phys. Rev. D 98: 026013. doi: 10.1103/PhysRevD.98.026013.
- . . ‘Representations of groups with CAT(0) fixed point property.’ Archiv der Mathematik 111, No. 3.
- . . ‘Actions of SAut(Fn).’ Archiv der Mathematik 110, No. 4: 319-325. doi: 10.1007/s00013-017-1138-9.
- . . Configuration categories and homotopy automorphisms , . [Submitted]
- . . ‘The impact of different peripheral suture techniques on the biomechanical stability in flexor tendon repair.’ Archives of Orthopaedic and Trauma Surgery 138, No. 1. doi: 10.1007/s00402-017-2836-2.
- . ‘Lambert-W solves the noncommutative \Phi^4-model.’ contributed to the Non-commutative Geometry, Index Theory and Mathematical Physics, Oberwolfach, . doi: 10.4171/OWR/2018/32.
- 10.1515/crelle-2015-0043. . ‘Approximation properties for noncommutative Lp-spaces of high rank lattices and nonembeddability of expanders.’ Journal für die reine und angewandte Mathematik 737: 49-69. doi:
- ‘Reeb dynamics inspired by Katok’s example in Finsler geometry.’ Mathematische Annalen null, No. null: 1-25. doi: 10.1007/s00208-017-1612-5. [In Press] .
- . . ‘Coarse flow spaces for relatively hyperbolic groups.’ Compos. Math. 153, No. 4: 745-779. doi: 10.1112/S0010437X16008216.
- . . ‘Conformal nets II: Conformal blocks.’ Comm. Math. Phys. 354, No. 1: 393-458. doi: 10.1007/s00220-016-2814-5.
- . ‘Type theory and coefficient systems on the building.’ Bulletin Soc. math. France 145: 97-159.
- . . ‘Immortal homogeneous Ricci flows.’ Invent. Math. 2017. doi: doi.org/10.1007/s00222-017-0771-z.
- . . ‘Optimal Curvature Estimates for Homogeneous Ricci Flows.’ IMRN 2017.
- . . ‘Characteristic classes of symmetric products of complex quasi-projective varieties.’ J. Reine Angew. Math. 2017. doi: 10.1515/crelle-2014-0114.
- K-Theory for Group C*-Algebras and Semigroup C*-Algebras. Cham: Birkhäuser. (Eds.): .
- ‘A remark on the structure of torsors under an affine group scheme.’ Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg null, No. null: 1-4. doi: 10.1007/s12188-017-0179-0. [In Press] .
- ‘The universal deformation of the Witt ring scheme.’ Sbornik Mathematics 208, No. 6: 764-790. doi: 10.1070/SM8730. .
- ‘Finsler geodesics, periodic Reeb orbits, and open books.’ European Journal of Mathematics 3, No. 4: 1058-1075. doi: 10.1007/s40879-017-0158-0. .
- . . ‘Crossed products and the Mackey–Rieffel–Green machine.’ In K-Theory for Group C*-algebras and semigroup C*-algebras, edited by , 5-79. Cham: Birkhäuser.
- . . ‘Bivariant KK-Theory and the Baum-Connes conjecture.’ In K-Theory for Group C*-Algebras and Semigroup C*-Algebras, edited by , 81-147. Cham: Birkhäuser.
- . . ‘The orbit method for the Baum-Connes conjecture for algebraic groups over local function fields.’ Journal of Lie Theory 28, No. 2. [Accepted]
- . . ‘Noncommutative T-duality. The dynamical duality theory and 2-dimensional examples.’ New York Journal of Mathematics 23: 927-986.
- . . ‘Goodwillie Calculus via Adjunction and LS Cocategory.’ Homology, Homotopy and Applications 2017. [Accepted]
- . . ‘Exact solution of matricial \Phi^3_2 quantum field theory.’ Nuclear Physics B 925: 319-347. doi: 10.1016/j.nuclphysb.2017.10.010.
- . . ‘Compact Calabi-Yau manifolds with isolated conical singularities.’ Publications mathématiques de l'IHÉS 126. doi: 10.1007/s10240-017-0092-1.
- . . ‘Unique continuation from infinity in asymptotically anti-de Sitter spacetimes II: Non-static boundaries.’ Communications in Partial Differential Equations 42, No. 12: 1871-1922. doi: 10.1080/03605302.2017.1390677.
- . . ‘Identifying Phases and Activities in the Proving Process of first-year Undergraduates.’ In Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10), 299-300. Dublin, Irland: DCU Institute of Education and ERME.
- . . „Identifizierung von Phasen und Aktivitäten im Beweisprozess von Studienanfänger/innen.“ In Beiträge zum Mathematikunterricht 2017, 1129-1132. Münster: WTM-Verlag.
- . . ‘Strongly transitive actions on Euclidean buildings.’ Israel J. Math. 219, No. 1: 163-170. doi: 10.1007/s11856-017-1476-0.
- . . ‘Equivariant characteristic classes of external and symmetric products of varieties.’ Geometry and Topology 22: 471-515. doi: 10.2140/gt.2018.22.471.
- . . ‘Localized Reduced Basis Approximation of a Nonlinear Finite Volume Battery Model with Resolved Electrode Geometry.’ In Model Reduction of Parametrized Systems, edited by , 201-212. Cham: Springer International Publishing. doi: 10.1007/978-3-319-58786-8_13.
- . . ‘True Error Control for the Localized Reduced Basis Method for Parabolic Problems.’ In Model Reduction of Parametrized Systems, edited by , 169-182. Cham: Springer International Publishing. doi: 10.1007/978-3-319-58786-8_11.
- . . ‘Correlation functions of U(N)-tensor models and their Schwinger-Dyson equations.’ Annales Henri Poincaré D 2017. [In Press]
- . . Galois Representations and (phi,Gamma)-Modules. 1st Ed. : Cambridge University Press.
- . . Motives and homotopy theory Postdoctoral Thesis, Universität Münster.
- . . ‘Chern Classes and Transversality for Singular Spaces.’ Contributed to the Singularities in Geometry, Topology, Foliations and Dynamics, Merida. doi: 10.1007/978-3-319-39339-1.
- ‘Polyfolds, cobordisms, and the strong Weinstein conjecture.’ Advances in Mathematics 305, No. null: 1250-1267. doi: 10.1016/j.aim.2016.06.030. .
- . . ‘Quasidiagonality of nuclear C*-algebras.’ Annals of Mathematics 185, No. 1: 229-284. doi: 10.4007/annals.2017.185.1.4.
- . . ‘Occupants in manifolds.’ In Manifolds and K-theory, edited by , 237-260. Providence, RI, USA: American Mathematical Society. doi: http://dx.doi.org/10.1090/conm/682.
- ‘On duality of algebraic quantum groupoids.’ Advances in Mathematics 309, No. null: 692-746. doi: 10.1016/j.aim.2017.01.009. .
- ‘Multiplier Hopf algebroids: Basic theory and examples.’ Communications in Algebra 0: 39. doi: 10.1080/00927872.2017.1363220. [In Press] .
- . ‘Reflection positivity in large-deformation limits of noncommutative field theories.’ contributed to the Reflection Positivity, Oberwolfach, . doi: 10.4171/OWR/2017/55.
- . . ‘An index obstruction to positive scalar curvature on fiber bundles over aspherical manifolds.’ Algebr. Geom. Topol. 17, No. 5: 3081-3094. doi: 10.2140/agt.2017.17.3081.
- . . The asymptotic volume of diagonal subpolytopes of symmetric stochastic matrices. [Submitted]
- . . Langlands-Rapoport Conjecture over Function Fields , . [Submitted]
- . . ‘Capturing Goodwillie's derivative.’ Journal of Pure and Applied Algebra 220, No. 1: 197-222. doi: 10.1016/j.jpaa.2015.06.006.
- . . ‘On proofs of the Farrell-Jones conjecture.’ In Topology and geometric group theory, edited by , 1-31. Springer, [Cham]. doi: 10.1007/978-3-319-43674-6_1.
- . . ‘On closed orbits for twisted autonomous Tonelli Lagrangian flows.’ In Publicaciones Matemáticas del Uruguay, special issue dedicated to Ricardo Mañé, edited by , 1. [In Press]
- . . ‘Motivic and derived motivic Hirzebruch classes.’ Homology Homotopy Appl. 2016. doi: 10.4310/HHA.2016.v18.n2.a16.
- . . ‘Smoothness and classicality on eigenvarieties.’ Inventiones Math --. [Accepted]
- . . ‘Une interpretation modulaire de la variete trianguline.’ Math. Annalen --. [Accepted]
- ‘Weakly proper group actions, mansfield’s imprimitivity and twisted landstad duality.’ Transactions of the American Mathematical Society 368, No. 1: 249-280. .
- ‘Exotic crossed products.’ In Operator Algebras and Applications, The Abel Symposium 2015, edited by , 61-108.: Springer International Publishing. doi: 10.1007/978-3-319-39286-8-3. .
- . . ‘Rieffel proper actions.’ Journal of Operator Theory 75: 49-73. doi: 10.7900/jot.2014oct28.2047.
- . . ‘The Moyal Sphere.’ Journal of Mathematical Physics 2016, No. 57: 112301. doi: 10.1063/1.4965446.
- ‘Measured quantum transformation groupoids.’ Journal of Noncommutative Geometry 10, No. 3: 1143-1214. doi: 10.4171/JNCG/257. .
- . . ‘Locally trivial W*-bundles.’ International Journal of Mathematics 2016. [Submitted]
- . . ‘The model theory of nuclear C*-algebras.’ arXiv 2016. [Submitted]
- ‘From a Reeb orbit trap to a Hamiltonian plug.’ Archiv der Mathematik 107, No. 4: 397-404. doi: 10.1007/s00013-016-0916-0. .
- ‘Cobordisms between symplectic fibrations.’ Manuscripta Mathematica null, No. null: 1-10. doi: 10.1007/s00229-016-0901-8. [In Press] .
- . . ‘The Weinstein conjecture for connected sums.’ International Mathematics Research Notices 2016.
- . . ‘Construction of a quantum field theory in four dimensions.’ Proceedings of Science 224: 151. doi: doi:10.22323/1.224.0151.
- . . ‘A solvable four-dimensional QFT.’ In Quantum Mathematical Physics - A Bridge between Mathematics and Physics, edited by , 137-161. Springer International Publishing Switzerland 2016. doi: 10.1007/978-3-319-26902-3_8.
- . . ‘On the fixed point equation of a solvable 4D QFT model.’ Vietnam Journal of Mathematics 2016, No. 44: 153-180. doi: 10.1007/s10013-015-0174-7.
- . ‘A complete characterization of connected Lie groups with the Approximation Property.’ Annales Scientifiques de l'École Normale Supérieure 49, No. 4: 927-946.
- 10.1090/tran/6448. . ‘Simple Lie groups without the Approximation Property II.’ Transactions of the American Mathematical Society 368: 3777-3809. doi:
- . . ‘Reeb dynamics detects odd balls.’ Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15: 663-681.
- 10.2422/2036-2145.201304_007. . ‘A criterion for good reduction of Drinfeld modules and Anderson motives in terms of local shtukas.’ Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 15: 25-43. doi:
- . . Isogenies of abelian Anderson A-modules and A-motives , . [Submitted]
- . . Pink's Theory of Hodge Structures and the Hodge Conjecture over Function Fields , . [Submitted]
- . . Periods of Drinfeld modules and local shtukas with complex multiplication , . [Submitted]
- . . ‘Convergence of isometries, with semicontinuity of symmetry of Alexandrov spaces.’ Proceedings of the American Mathematical Society 2016. doi: 10.1090/proc/12994. [In Press]
- . . ‘Mass in Kähler Geometry.’ Communications in Mathematical Physics 347. doi: 10.1007/s00220-016-2661-4.
- . . ‘Families of p-adic Galois representations and (phi,Gamma)-modules.’ Commentarii Math. Helvetici 91.
- . . ‘Density of potentially crystalline representations of fixed weight.’ Compositio Math. 152.
- . . ‘Rokhlin dimension for flows.’ Comm. Math. Phys. 2016. [Submitted]
- . . ‘Conservation laws and flux bounds for gravitational perturbations of the Schwarzschild metric.’ Class. Quantum Grav. 33, No. 20: 205004. doi: 10.1088/0264-9381/33/20/205004.
- . . ‘Unique continuation from infinity in asymptotically {anti-de Sitter} spacetimes.’ Commun. Math. Phys. 347 (3): 1-53. doi: 10.1007/s00220-016-2576-0.
- ‘On small abstract quotients of Lie groups and locally compact groups.’ Journal of Geometry null, No. null: 1-23. doi: 10.1007/s00022-016-0315-5. .
- . . ‘Thermal Equilibrium States for Quantum Fields on Non-commutative Spacetimes.’ In Quantum Mathematical Physics, edited by . Basel: Birkhäuser. doi: 10.1007/978-3-319-26902-3. [In Press]
- . . ‘Hirzebruch–Milnor Classes and Steenbrink Spectra of Certain Projective Hypersurfaces.’ Contributed to the Arbeitstagung Bonn 2013, Bonn. doi: 10.1007/978-3-319-43648-7_9.
- . . ‘pyMOR - Generic algorithms and interfaces for model order reduction.’ SIAM Journal on Scientific Computing 38, No. 5: 194-216. doi: 10.1137/15M1026614.
- . . ‘Trapped Reeb orbits do not imply periodic ones.’ In Oberwolfach Reports No. 34/2015, edited by .: EMS Publishing House. doi: 10.4171.
- . . ‘Adaptive Localized Model Reduction.’ Oberwolfach Reports 13, No. 3: 2406-2409. doi: 10.4171/OWR/2016/42.
- . . ‘Pontryagin classes and functor calculus.’ Journal of the European Mathematical Society 2016: 1769-1811. doi: 10.4171/JEMS/629.
- . . ‘Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions.’ In Elliptic Curves, Modular Forms, and Iwasawa Theory, edited by , 401-468.: Springer.
- . . ‘Tempered representations of p-adic groups: Special idempotents and topology.’ Selecta Math. 2016, No. 22: 2209-2242.
- ‘Linking and closed orbits.’ Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 86, No. null: 133-150. doi: 10.1007/s12188-016-0118-5. .
- . . ‘Group field theories generating polyhedral complexes.’ PoS FFP14: 177. doi: 10.22323/1.224.0177.
- . . ‘Integration on algebraic quantum groupoids.’ Internat. J. Math. 27, No. 2. [In Press]
- . . ‘Operator Algebras and Applications.’ In QDQ vs. UCT, 321-342.: Springer.
- . . ‘Classifying crossed product {$\rm C^*$}-algebras.’ Amer. J. Math. 138, No. 3: 793-820. doi: 10.1353/ajm.2016.0029.
- . . ‘Classifying crossed product C*-algebras.’ Amer. J. Math 138: 793-820.
- . ‘Integrability in a 4D QFT model.’ contributed to the Recent Mathematical Developments in Quantum Field Theory, Oberwolfach, . doi: 10.4171/OWR/2016/36.
- . . ‘Positive scalar curvature and product formulas for secondary index invariants.’ J. Topol. 9, No. 3: 687-724. doi: 10.1112/jtopol/jtw005.
- . . ‘Coarse median structures and homomorphisms from Kazhdan groups.’ Geom. Dedicata 180: 49-68. doi: 10.1007/s10711-015-0090-8.
- ‘Howe-Moore type theorems for quantum groups and rigid C*-tensor categories.’ contributed to the C*-Algebras, Oberwolfach, Germany, .
- 10.5802/aif.3051. . ‘On strong property (T) and fixed point properties for Lie groups.’ Annales de l'Institut Fourier 66, No. 5: 1859-1893. doi:
- . . ‘The Lusternik–Fet theorem for autonomous Tonelli Hamiltonian systems on twisted cotangent bundles.’ Journal of Topology and Analysis 2016. doi: 10.1142/S1793525316500205. [In Press]
- . . ‘Infinitely many periodic orbits in non-exact oscillating magnetic fields on surfaces with genus at least two for almost every low energy level.’ Calculus of Variations and Partial Differential Equations 2015, No. Volume 54, Issue 2: 1525-1545. doi: 10.1007/s00526-015-0834-1.
- . . ‘The K-theory of the compact quantum group SUq(2) for q=-1.’ Internat. J. Math. 00. [Accepted]
- . . ‘The Rokhlin propery vs. Rokhlin dimension 1 on unital Kirchberg algebras.’ J. Noncomm. Geom. 9: 1383-1393.
- . . ‘Conformal nets I: Coordinate-free nets.’ Int. Math. Res. Not. IMRN ?, No. 13: 4975-5052. doi: 10.1093/imrn/rnu080.
- . . ‘Unbased calculus for functors to chain complexes.’ Women in Topology: Collaborations in Homotopy Theory. Contemp. Mathematics 2015, No. 641: 29-48. doi: 10.1090/conm/641.
- . . ‘Cross effects and calculus in an unbased setting (with an Appendix by Rosona Eldred).’ Transactions of the American Mathematical Society 367, No. 9: 6671-6718. doi: 10.1090/S0002-9947-2014-06447-7.
- . . ‘On the existence of periodic orbits for magnetic systems on the two-sphere.’ Journal of Modern Dynamics 2015, No. 9: 141-146. doi: 10.3934/jmd.2015.9.141.
- . . ‘Covering dimension of C*-algebras and 2-coloured classification.’ Mem. Amer. Math. Soc. 2015. [Accepted]
- . . ‘Maximality of dual coactions on sectional C*-algebras of Fell bundles and applications.’ Studia Mathematica 229: 233-262. doi: 10.4064/sm8361-1-2016.
- . . ‘Exotic crossed products and the Baum–Connes conjecture.’ Journal für die reine und angewandte Mathematik 2016. doi: 10.1515/crelle-2015-0061.
- . . ‘On the long time behavior of homogeneous Ricci flows.’ Commentarii Mathematici Helvetici 90, No. 3: 543-571. doi: 10.4171/CMH/364.
- . . ‘Dimensional flow in discrete quantum geometries.’ Phys. Rev. D 91, No. 8: 084047. doi: 10.1103/PhysRevD.91.084047.
- . . ‘Asymptotically conical Calabi-Yau metrics on quasi-projective varieties.’ Geometric and Functional Analysis 25. doi: 10.1007/s00039-015-0319-6.
- . . ‘Witt vector rings and the relative de Rham Witt comples.’ J. Algebra 440: 545-593.
- . . ‘On the K-theory of the C*-algebra generated by the left regular representation of an Ore semigroup.’ Journal of the European Mathematical Society 17, No. 3: 645-687. doi: 10.4171/JEMS/513.
- . . ‘Deformations of nilpotent groups and homotopy symmetric C*-algebras.’ Mathematische Annalen 2016. doi: 10.1007/s00208-016-1379-0.
- . . ‘A Dixmier-Douady Theory for strongly self-absorbing C*-algebras II: the Brauer group.’ Journal of noncommutative geometry 9, No. 4: 1137–1154. doi: 10.4171/JNCG/218.
- . . ‘Purity for graded potentials and quantum cluster positivity.’ Compositio Mathematica 2015. doi: 10.1112/S0010437X15007332.
- ‘Partial compact quantum groups.’ Journal of Algebra 438, No. null: 283-324. doi: 10.1016/j.jalgebra.2015.04.039. .
- ‘Gromov compactness for holomorphic discs with totally real boundary conditions.’ Journal of Fixed Point Theory and Applications 17, No. 3: 521-540. doi: 10.1007/s11784-015-0229-0. .
- ‘Group Algebras Acting on (FORMULA PRESENTED.)-Spaces.’ Journal of Fourier Analysis and Applications 21, No. 6: 1310-1343. doi: 10.1007/s00041-015-9406-1. .
- ‘Banach algebras generated by an invertible isometry of an Lp-space.’ Journal of Functional Analysis 269, No. 6: 1796-1839. doi: 10.1016/j.jfa.2015.05.004. .
- . . ‘Large sieve inequalities with general polynomial moduli.’ Quarterly Journal of Mathematics 66, No. 2: 529-545. doi: 10.1093/qmath/hav011.
- . . Local Shtukas, Hodge-Pink Structures and Galois Representations , . [Submitted]
- . . Local Shtukas and Divisible Local Anderson Modules , . [Submitted]
- ‘Equivariant Alexandrov Geometry and Orbifold Finiteness.’ Journal of Geometric Analysis null, No. null. doi: 10.1007/s12220-015-9614-6. [In Press] .
- . . ‘Asymptotically cylindrical Calabi-Yau manifolds.’ Journal of Differential Geometry 101. doi: 10.4310/jdg/1442364651.
- . . ‘Ricci-flat metrics on A_k singularities.’ Contributed to the Differentialgeometrie im Großen, Oberwolfach. doi: 10.14760/OWR-2015-31.
- . . ‘Remarks on the collapsing of torus fibered Calabi–Yau manifolds.’ Bulletin of the London Mathematical Society 47. doi: 10.1112/blms/bdv067.
- . . ‘Rokhlin dimension and {$C^*$}-dynamics.’ Comm. Math. Phys. 335, No. 2: 637-670. doi: 10.1007/s00220-014-2264-x.
- . . ‘Rokhlin dimension and C*-dynamics.’ Comm. Math. Phys. 335: 637-670.
- . . „Vorkurs kompetenzorientiert - Denk- und Arbeitsstrategien für das Lernen von Mathematik.“ Beitrag präsentiert auf der Arbeitstagung des Kompetenzzentrums Hochschuldidaktik Mathematik 2013, Paderborn. [In Press]
- . . ‘Erratum to Transitive actions of locally compact groups on locally contractible spaces (J. Reine Angew. Math. 702 (2015), 227--243) [ {MR}3341471].’ J. Reine Angew. Math. 702: 245-246. doi: 10.1515/crelle-2013-5001.
- . . ‘Transitive actions of locally compact groups on locally contractible spaces.’ J. Reine Angew. Math. 702: 227-243. doi: 10.1515/crelle-2013-0036.
- ‘Arakelov motivic cohomology I.’ Journal of Algebraic Geometry 24, No. 4: 719-754. doi: 10.1090/jag/648. .
- . . ‘Toric orbifolds associated to Cartan matrices.’ Ann. Inst. Fourier 65: 863-901.
- . . ‘Characteristic Classes of Singular Toric Varieties.’ Communications on Pure and Applied Mathematics 2015. doi: 10.1002/cpa.21553.
- . . ‘Group field theories for all loop quantum gravity.’ New Journal of Physics 17: 023042. doi: 10.1088/1367-2630/17/2/023042.
- . . ‘Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation.’ Classical and Quantum Gravity 32, No. 17: 175012. doi: 10.1088/0264-9381/32/17/175012.
- . . ‘kk-Theory for Banach Algebras II: Equivariance and Green-Julg Type Theorems.’ Journal of Functional Analysis 268, No. 10: 3162-3210.
- . . ‘kk-Theory for Banach Algebras I: The Non-Equivariant Case.’ Journal of Functional Analysis 268, No. 10: 3108-3161.
- . . ‘A noncommutative model for higher twisted K-theory.’ Journal of Topology 2015. doi: 10.1112/jtopol/jtv033.
- . . ‘Crossed module actions on continuous trace C*-algebras.’ Communications in mathematical physics 2015. [Submitted]
- ‘Semiprojectivity with and without a group action.’ Journal of Functional Analysis 268, No. 4: 929-973. doi: 10.1016/j.jfa.2014.11.005. .
- . . ‘Existence of rational points as a homotopy limit problem.’ Journal of Pure and Applied Algebra 220. [Accepted]
- . . ‘Nuclear dimension and {$\CalZ$}}-stability.’ Invent. Math. 202, No. 2: 893-921. doi: 10.1007/s00222-015-0580-1.
- . . ‘Nuclear dimension and Z-stability.’ Invent. Math. 202: 893-921.
- . . ‘Smooth representations and Hecke modules in characteristic p.’ Pacific J. Math. 2015, No. 279: 447-464.
- ‘Arakelov motivic cohomology II.’ Journal of Algebraic Geometry 24, No. 4: 755-786. doi: 10.1090/jag/647. .
- . . ‘Fields and Laplacians on Quantum Geometries.’ In Proceedings, 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG13): Stockholm, Sweden, July 1-7, 2012, 2168-2170. doi: 10.1142/9789814623995_0388.
- . . Discrete quantum geometries and their effective dimension Doctoral Thesis, Humboldt Universität zu Berlin. doi: 10.18452/17309.
- ‘Measured quantum groupoids associated to proper dynamical quantum groups.’ Journal of Noncommutative Geometry 9, No. 1: 35-82. doi: 10.4171/JNCG/187. .
- . . ‘Multiplier Hopf algebroids arising from weak multiplier Hopf algebras.’ In From Poisson brackets to universal quantum symmetries, edited by , 73-110. Warsaw, Poland: Polish Academy of Science, Institute of Mathematics.
- . . ‘{$\CalZ$}}-stability and finite-dimensional tracial boundaries.’ Int. Math. Res. Not. IMRN 2015, No. 10: 2702-2727. doi: 10.1093/imrn/rnu001.
- . . ‘Z-stability and finite dimensional tracial boundaries.’ IMRN 2015: 2702-2727.
- ‘On the transfer reducibility of certain Farrell–Hsiang groups.’ Algebraic and Geometric Topology 15, No. 5: 2921-2948. doi: 10.2140/agt.2015.15.2921. .
- ‘A complete characterization of connected Lie groups with the Approximation Property.’ contributed to the Noncommutative Geometry, Oberwolfach, Deutschland, .
- 10.1112/plms/pdv040. . ‘Strong property (T) for higher rank simple Lie groups.’ Proceedings of the London Mathematical Society 111, No. 4: 936-966. doi:
- . . ‘Square roots of Hamiltonian diffeomorphisms.’ J. Symplectic Geom. 12, No. 3: 427--434. doi: 10.4310/JSG.2014.v12.n3.a1.
- . . ‘Local P-shtukas and their relation to global G-shtukas.’ Muenster Journal of Mathematics 7. doi: 10.17879/58269757072.
- . . On the K-theory of Crossed Product C*-algebras by Actions of Z^n Doctoral Thesis, Universität Münster.
- . . ‘The Rokhlin property vs. Rokhlin dimension 1 on unital Kirchberg algebras.’ J. Noncomm. Geom. 00. [Accepted]
- . . ‘Rokhlin actions of finite groups on UHF-absorbing C*-algebras.’ arxiv preprint math. 00. [Submitted]
- . . ‘Dualizability and index of subfactors.’ Quantum Topol. 5, No. 3: 289-345. doi: 10.4171/QT/53.
- . . ‘The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups.’ J. Amer. Math. Soc. 27, No. 2: 339-388. doi: 10.1090/S0894-0347-2014-00782-7.
- . . ‘K- and L-theory of group rings over GL_n(Z).’ Publ. Math. Inst. Hautes Études Sci. 119: 97-125. doi: 10.1007/s10240-013-0055-0.
- . . ‘The contact property for symplectic magnetic fields on S^2.’ Ergodic Theory Dynamical Systems 2014. doi: 10.1017/etds.2014.82. [In Press]
- . . ‘McKay Correspondence over Non Algebraically Closed Fields.’ In Algebraic and Complex Geometry, 47-75.
- . . ‘Imprimitivity theorems for weakly proper actions of locally compact groups.’ Ergodic Theory and Dynamical Systems 35. doi: 10.1017/etds.2014.36.
- . . ‘Universal and exotic generalized fixed-point algebras for weakly proper actions and duality.’ Indiana Univ. Math. J. 63, No. 8: 1659–1701.
- . . ‘Spectral dimension of quantum geometries.’ Class. Quant. Grav. 31: 135014. doi: 10.1088/0264-9381/31/13/135014.
- . . Asymptotically conical Calabi-Yau manifolds, III. [Submitted]
- . . ‘An alternative to Witt vectors.’ Münster Journal of Mathematics 7: 105-114.
- . . Principles of harmonic analysis (Second Edition).: Springer Verlag. doi: 10.1007/978-3-319-05792-7.
- . . Evaluationsbericht Psychologie 2013: Gemeinsamer Bericht über die Evaluationen im Fach Psychologie im WiSe 12/13 und SoSe 13 , .
- . . ‘Open books and the Weinstein conjecture.’ Quarterly Journal of Mathematics 65, No. 3: 869-885. doi: 10.1093/qmath/hat055.
- . . ‘Structure of crossed products by strictly proper actions on continuous-trace algebras.’ Trans. Amer. Math. Soc. 366, No. 7: 3649–3673.
- . . ‘Absolutely homotopy-cartesian squares.’ An Alpine Expedition through Algebraic Topology 2014, No. 617: 157-164. doi: 10.1090/conm/617/12303.
- . . ‘Trapped Reeb orbits do not imply periodic ones.’ Inventiones Mathematicae 198, No. 1: 211-217. doi: 10.1007/s00222-014-0500-9.
- . . ‘Noncommutative quantum field theory.’ Fortschritte der Physik 62, No. 9-10: 797-811. doi: 10.1002/prop.201400020.
- . . ‘Construction of the \Phi^4_4-quantum field theory on noncommutative Moyal space.’ RIMS Kôkyûroku 2014, No. 1904: 67-104.
- . . ‘Towards a construction of a quantum field theory in four dimensions.’ In Mathematical Structures of the Universe, edited by , 227-258. Kraków: Copernicus Center Press.
- . . Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity. [Submitted]
- . . ‘Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory.’ Communications in Mathematical Physics 329, No. 3: 1069-1130. doi: 10.1007/s00220-014-1906-3.
- . . ‘New logarithmic Sobolev inequalities and an epsilon-regularity theorem for the Ricci flow.’ Communications on Pure and Applied Mathematics 67. doi: 10.1002/cpa.21474.
- (Hrsg.): . Hesse, C.: Über welche räumlichen Orientierungsraster und Ordnungssysteme verfügen Schülerinnen und Schüler am Ende der Sekundarstufe I? Eine empirische Studie an Gymnasien in NRW. (= Münsteraner Arbeiten zur Geographiedidaktik, Band 07).
- (Hrsg.): . Hesse, C. (2014): Über welche räumlichen Orientierungsraster und Ordnungssysteme verfügen Schülerinnen und Schüler am Ende der Sekundarstufe I? Eine empirische Studie an Gymnasien in NRW. Münster. .
- . . ‘Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes.’ Anal. PDE 7, No. 5: 1057-1090. doi: 10.2140/apde.2014.7.1057.
- . . ‘Hodge filtered complex bordism.’ Journal of Topology 8, No. 1. doi: 10.1112/jtopol/jtu021.
- . . ‘{$\CalZ$}} is universal.’ J. Noncommut. Geom. 8, No. 4: 1023-1042. doi: 10.4171/JNCG/176.
- . . ‘Z is universal.’ J. Noncomm. Geom. 8: 1023-1043.
- . . ‘Homogeneous compact geometries.’ Transform. Groups 19, No. 3: 793-852. doi: 10.1007/s00031-014-9278-5.
- . . ‘Coarse equivalences of Euclidean buildings.’ Adv. Math. 253: 1-49. doi: 10.1016/j.aim.2013.10.031.
- . . „Fünftsemester als Mentoren für Erstsemester.“ In Mathematische Vor- und Brückenkurse - Konzepte, Probleme und Perspektive, herausgegeben von . Wiesbaden: Springer.
- . . „Szenen einer Übung - und ihre gemeinsame Analyse.“ Beitrag präsentiert auf der Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 20143, Lübeck.
- . . ‘The Cuntz semigroup and stability of close {$C^\ast$}-algebras.’ Anal. PDE 7, No. 4: 929-952. doi: 10.2140/apde.2014.7.929.
- . . ‘Functor Calculus and the discriminant method.’ The Quarterly Journal of Mathematics 65, No. 3: 1069-1110. doi: 10.1093/qmath/hat057.
- . . ‘Pro-p Iwahori-Hecke algebras are Gorenstein.’ J. Inst. Math. Jussieu 13 2014.
- . . ‘From etale P+-representations to G-equivariant sheaves on G/P.’ Contributed to the Automorphic Forms and Galois Representations, Durham.
- . . ‘Automorphic Forms and Galois Representations, vol. 2.’ Contributed to the Automorphic Forms and Galois Representations, vol. 2, Cambridge.
- . . ‘Motivic bivariant characteristic classes.’ Adv. Math. 250: 611-649. doi: 10.1016/j.aim.2013.09.024.
- . . C*-algebras associated to irreversible semigroup dynamical systems Doctoral Thesis, Universität Münster.
- . . ‘U{HF}-slicing and classification of nuclear {$\rm C^*$}-algebras.’ J. Topol. Anal. 6, No. 4: 465-540. doi: 10.1142/S1793525314500198.
- . . ‘UHF-slicing and classification of nuclear C*-algebras.’ J. Top. Anal. 00, No. 6: 465-540.
- . . ‘The generator problem for {$\scrZ$}}-stable {$C^*$}-algebras.’ Trans. Amer. Math. Soc. 366, No. 5: 2327-2343. doi: 10.1090/S0002-9947-2014-06013-3.
- . . ‘The generator problem for Z-stable C*-algebras.’ Transactions of the American Mathematical Society 366, No. 5: 2327-2343. doi: 10.1090/S0002-9947-2014-06013-3.
- . . ‘Decomposition rank of {${\scr Z}$}}-stable {$\rm C^*$}-algebras.’ Anal. PDE 7, No. 3: 673-700. doi: 10.2140/apde.2014.7.673.
- . . ‘Decomposition rank of Z-stable C*-algebras.’ Analysis & PDE 7, No. 7: 673-700.
- . . ‘Fixed points for actions of Aut(Fn ) on CAT(0) spaces.’ Münster Journal of Mathematics 7: 439-462. doi: 10.17879/58269763367.
- . . ‘Automorphisms of manifolds and algebraic K-theory: Part III.’ Memoirs of the American Mathematical Society 231. doi: 10.1090/memo/1084.
- . . Filtering the Assembly Map in Algebraic K-theory and Transfer Reducibility of Z^n \rtimes Z Doctoral Thesis, Universität Münster.
- . . ‘Localizing the Elliott conjecture at strongly self-absorbing {$C^*$}-algebras.’ J. Reine Angew. Math. 692: 193-231.
- . . ‘Localizing the Elliott conjecture at strongly self-absorbing C*-algebras.’ J. Reine Angew. Math. 692, No. 692: 193-231.
- . . ‘Lagrangian non-squeezing and a geometric inequality.’ Mathematische Zeitschrift 277, No. 1-2: 285-291. doi: 10.1007/s00209-013-1254-6.
- ‘Holomorphic jets in symplectic manifolds.’ Journal of Fixed Point Theory and Applications 17, No. 2: 379-402. doi: 10.1007/s11784-014-0178-z. .
- . . ‘Exponential decay for sc-gradient flow lines.’ J. Fixed Point Theory Appl. 13, No. 2: 571--586. doi: 10.1007/s11784-013-0126-3.
- . . ‘Translated points and Rabinowitz Floer homology.’ J. Fixed Point Theory Appl. 13, No. 1: 201--214. doi: 10.1007/s11784-013-0114-7.
- . . Uniformizing the Stacks of Global G-Shtukas , . [Accepted]
- . . ‘Manifold calculus and homotopy sheaves.’ Homology, Homotopy and Applications 15, No. 2: 361-383. doi: 10.4310/HHA.2013.v15.n2.a20.
- . . ‘Hochschild (co-)homology of schemes with tilting object.’ Transactions of the American Mathematical Society 365, No. 6: 2823-2844.
- . . ‘Laplacians on discrete and quantum geometries.’ Class. Quant. Grav. 30: 125006. doi: 10.1088/0264-9381/30/12/125006.
- . . ‘Characteristic classes of Hilbert schemes of points via symmetric products.’ Geom. Topol. 17: 1165-1198. doi: 10.2140/gt.2013.17.1165.
- . . ‘Asymptotically conical Calabi-Yau manifolds, I.’ Duke Mathematical Journal 162. doi: 10.1215/00127094-2382452.
- . . ‘C*-algebras of Toeplitz type associated with algebraic number fields.’ Mathematische Annalen 1. [Accepted]
- . . ‘C*-algebras of Toeplitz type associated with algebraic number fields.’ Mathematische Annalen 355, No. 4: 1383-1423. doi: 10.1007/s00208-012-0826-9.
- . . ‘C*-Algebras Associated with Endomorphisms and Polymorphisms of Compact Abelian Groups.’ Communications in Mathematical Physics 321, No. 1: 157-179. doi: 10.1007/s00220-012-1647-0.
- . . ‘On the K-theory of crossed products by automorphic semigroup actions.’ The Quarterly Journal of Mathematics 64.
- . . ‘A Dixmier-Douady theory for strongly self-absorbing C*-algebras.’ Journal für die reine und angewandte Mathematik 2014. [Accepted]
- . . ‘Unit spectra of K-theory from strongly self-absorbing C*-algebras.’ Algebraic and Geometric Topology 2015, No. 15: 137-168.
- . . ‘The primitive ideal space of the C*-algebra of the affine semigroup of algebraic integers.’ Math. Proc. Cambridge Philos. Soc. 154, No. 1: 119--126. doi: 10.1017/S0305004112000485.
- . . ‘Cosimplicial models for the limit of the Goodwillie tower.’ Algebraic and Geometric Topology 13, No. 2: 1161-1182. doi: 10.2140/agt.2013.13.1161.
- . . ‘Spectral geometry of the Moyal plane with harmonic propagation.’ Journal of Noncommutative Geometry 7: 939--979. doi: 10.4171/JNCG/140.
- . . ‘How to recognize a 4-ball when you see one.’ Münster Journal of Mathematics 6.
- . . ‘Construction of a Noncommutative Quantum Field Theory.’ In Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday, edited by , 153--163. American Mathematical Society. doi: 10.1090/pspum/087/01442.
- . . Solvable limits of a 4D noncommutative QFT. [Submitted]
- 10.1215/00127094-2087672. . ‘Simple Lie groups without the Approximation Property.’ Duke Mathematical Journal 162, No. 5: 925-964. doi:
- . . ‘Goldbach's problem with primes in arithmetic progressions and in short intervals.’ J. Théor. Nombres Bordeaux 25, No. 2: 331--351.
- . . ‘Partial sums of the Möbius function in arithmetic progressions assuming GRH.’ Functiones et Approximatio 48.1: 61-90.
- . . ‘On a Conjecture of Rapoport and Zink.’ Inventiones Mathematicae 193: 627-696. doi: 10.1007/s00222-012-0437-9.
- . . The universal familly of semi-stable p-adic Galois representations , . [Submitted]
- . . ‘Constructing the Cubus simus and the Dodecaedron simum via paper folding.’ Geometriae Dedicata 166: 1-14. doi: 10.1007/s10711-012-9781-6.
- . . ‘On arithmetic families of filtered phi-modules and crystalline representations.’ J. Inst. Math. Jussieu 12.
- . . ‘Mathematical enculturation - argumentation and proof at the transition from school to university.’ Contributed to the CERME 8, Antalya, 2013, Antalya.
- . . ‘Decay Properties of Klein--Gordon Fields on Kerr--AdS Spacetimes.’ Comm. Pure Appl. Math. 66, No. 11: 1751-1802. doi: 10.1002/cpa.21470.
- . . ‘Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes.’ J. Funct. Anal. 226, No. 4. doi: dx.doi.org/10.1016/j.jfa.2013.10.019.
- . . ‘Quillen's work on the foundations of cyclic cohomology.’ J. K-Theory 2013, No. 11(3): 559-574.
- . . ‘Dilations of semigroup crossed products as crossed products of dilations.’ Proceedings of the American Mathematical Society 141: 1597-1603.
- . . ‘Nuclearity of semigroup C*-algebras and the connection to amenability.’ Advances in Mathematics 244: 626-662.
- . . ‘Hirzebruch-Milnor classes of complete intersections.’ Adv. Math. 241: 220-245. doi: 10.1016/j.aim.2013.04.001.
- . . ‘Characteristic classes of singular toric varieties.’ Electron. Res. Announc. Math. sci. 20: 109-120.
- . . ‘The Spectral Radius in C_0(X)-Banach Algebras.’ Journal of Noncommutative Geometry 7, No. 1: 135-147.
- . . ‘A Generalised Green-Julg Theorem for Proper Groupoids and Banach Algebras.’ Journal of Noncommutative Geometry 7, No. 1: 149-190.
- . . ‘The Bost Conjecture and Proper Banach Algebras.’ Journal of Noncommutative Geometry 7, No. 1: 191-202.
- . . ‘Continuous homotopy fixed points for Lubin-Tate spectra.’ Homology, Homotopy and Applications 15: 32. doi: http://dx.doi.org/10.4310/HHA.2013.v15.n1.a10.
- . . ‘Homotopy theory of smooth compactifications of algebraic varieties.’ New York Journal of Mathematics 19: 12.
- . . ‘Profinite G-spectra.’ Homology, Homotopy and Applications 15: 39. doi: http://dx.doi.org/10.4310/HHA.2013.v15.n1.a9.
- . . Modular Representation Theory of Finite Groups.
- . . ‘SK_1 and Lie algebras.’ Math. Ann. 357 2013.
- . . ‘A splitting for K1 of completed group rings.’ Comment. Math. Helv. 88 2013.
- . . ‘K_1 of certain Iwasawa algebras, after Kakde.’ In Noncommutative Iwasawa Main Conjectures over Totally Real Fields, edited by , 79-123.
- . . ‘Minimal dynamics and K-theoretic rigidity: Elliott's conjecture.’ Geom. Funct. Anal. 23: 467-481.
- 10.1515/FORM.2011.128. . ‘A note on the L-theory of infinite product categories.’ Forum Mathematicum 25, No. 4: 665-676. doi:
- . . ‘The codisc radius capacity.’ Electronic Research Announcements in Mathematical Sciences 20: 77-96. doi: 10.3934/era.2013.20.77.
- . . ‘The annulus property of simple holomorphic discs.’ Journal of Symplectic Geometry 11, No. 1: 135-161.
- . . ‘Discontinuous symplectic capacities.’ Journal of Fixed Point Theory and Applications 14, No. 1: 299-307. doi: 10.1007/s11784-013-0148-x.
- . Approximation properties for Lie groups and noncommutative Lp-spaces Doctoral Thesis, University of Copenhagen.
- 10.1016/j.jfa.2013.02.014. . ‘Approximation properties for noncommutative Lp-spaces associated with lattices in Lie groups.’ Journal of Functional Analysis 264, No. 10: 2300-2322. doi:
- 10.1007/978-3-642-39459-1_10. . ‘On the Grothendieck Theorem for jointly completely bounded bilinear forms.’ In Operator Algebra and Dynamics, edited by , 211-221. Berlin: Springer. doi:
- . . ‘The space of linear anti-symplectic involutions is a homogenous space.’ Arch. Math. (Basel) 99, No. 6: 531--536. doi: 10.1007/s00013-012-0461-4.
- . . A $\Gamma$-structure on Lagrangian Grassmannians.
- . . ‘The Farrell-Hsiang method revisited.’ Mathematische Annalen 354, No. 1: 209-226. doi: 10.1007/s00208-011-0727-3.
- . . ‘The Borel Conjecture for hyperbolic and CAT(0)-groups.’ Annals of Mathematics 175, No. 2: 631-689.
- . . ‘Geodesic flow for CAT(0)-groups.’ Geometry and Topology 16, No. 3: 1345-1391. doi: 10.2140/gt.2012.16.1345.
- . . ‘On the complement of the Richardson orbit.’ Mathematische Zeitschrift 272, No. 1-2: 31-49. doi: 10.1007/s00209-011-0920-9.
- . . ‘An algebraic approach to the radius of comparison.’ Trans. Amer. Math. Soc. 367: 3657-3674.
- . . ‘Equivariant characteristic classes of singular complex algebraic varieties.’ Comm. Pure Appl. Math. 65: 1722-1769. doi: 10.1002/cpa.21427.
- . . ‘Perturbations of nuclear C*-algebras.’ Acta Mathematica 208, No. 1: 93-150. doi: 10.1007/s11511-012-0075-5.
- . . ‘Perturbations of nuclear {$C^*$}-algebras.’ Acta Math. 208, No. 1: 93-150. doi: 10.1007/s11511-012-0075-5.
- . . ‘Erratum to ''C*-algebras associated with integral domains and crossed products by actions on adele spaces''.’ J. Noncommut. Geom. 6, No. 4: 819--821. doi: 10.4171/JNCG/107.
- . . ‘Regulators, entropy and infinite determinants.’ Contemp. Math. 571: 117-134.
- . . ‘Horizontal factorizations of certain Hasse-Weil zeta functions—a remark on a paper by Taniyama.’ Rend. Semin. Mat. Univ. Padova 128: 91-108.
- . . ‘A general Kirillov theory for locally compact nilpotent groups.’ J. Lie Theory 22, No. 3: 601--645.
- . . ‘Symplectic cobordisms and the strong Weinstein conjecture.’ Mathematical Proceedings of the Cambridge Philosophical Society 153, No. 2: 261-279. doi: 10.1017/S0305004112000163.
- . . ‘8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory.’ Journal of Geometry and Physics 62: 1583-1599. doi: 10.1016/j.geomphys.2012.03.005.
- . . ‘Renormalizable noncommutative quantum field theory.’ Journal of Physics: Conference Series 343: 012043. doi: doi:10.1088/1742-6596/343/1/012043.
- . . ‘Renormalization of a noncommutative field theory.’ International Journal of Modern Physics A 27: 1250067. doi: 10.1142/S0217751X12500674.
- . . ‘Renormalization of a noncommutative field theory.’ International Journal of Modern Physics: Conference Series 13: 108-117. doi: 10.1142/S2010194512006770.
- . . ‘Compact totally disconnected Moufang buildings.’ Tohoku Math. J. (2) 64, No. 3: 333-360. doi: 10.2748/tmj/1347369367.
- . . ‘Foliations in deformation spaces of local {$G$}-shtukas.’ Advances in Mathematics 229: 54-78. doi: 10.1016/j.aim.2011.08.011.
- 10.4310/JSG.2012.v10.n3.a5. . ‘On the Regularization of the Kepler Problem.’ Journal of Symplectic Geometry 10, No. 3: 463-473. doi:
- . . ‘Gravitational instantons from rational elliptic surfaces.’ Journal of the American Mathematical Society 25. doi: 10.1090/s0894-0347-2011-00723-6.
- . . ‘The image of the coefficient space in the universal deformation space of a flat Galois representation of a p-adic field.’ Manuscripta Math. 139.
- . . ‘Well-posedness for the massive wave equation on asymptotically anti-de Sitter spacetimes.’ J. Hyperbolic Differ. Equ. 9: 239-261. doi: 10.1142/S0219891612500087.
- . . ‘The similarity problem for Z-stable C*-algebras.’ Bull. Lond. Math. Soc. 00.
- . . ‘The similarity problem for {$\scr Z$}-stable {${\rm C}^\ast$}}-algebras.’ Bull. Lond. Math. Soc. 44, No. 6: 1215-1220. doi: 10.1112/blms/bds048.
- . . ‘Metric properties of Euclidean buildings.’ In Global differential geometry, edited by , 147-159. Springer, Heidelberg. doi: 10.1007/978-3-642-22842-1_6.
- . . ‘The 2-adic ring C*-algebra of the integers and its representations.’ Journal of Functional Analysis 262: 1392-1426.
- . . ‘Semigroup C*-algebras and amenability of semigroups.’ Journal of Functional Analysis 262: 4302-4340.
- . . ‘K-theory for ring C*-algebras attached to function fields with only one infinite place.’ Journal of K-theory 10: 203-231. doi: 10.1017/is011011023jkt177.
- . . ‘K-theory for ring C*-algebras - the case of number fields with higher roots of unity.’ Journal of Topology and Analysis 4: 449-479.
- . . ‘twisted genera of symmetric products.’ Selecta Math. new series 18: 283-317. doi: 10.1007/s00029-011-0072-0.
- . . ‘The Cuntz semigroup and stability of close C*-algebras.’ Analysis & PDE 00, No. 7: 929-952.
- (Ed.): . On complex and symplectic toric stacks. Zürich: European Mathematical Society.
- . . ‘Some remarks on profinite completion of spaces.’ In Galois-Teichmüller Theory and Arithmetic Geometry, edited by , 36. AMS/Mathematical Society of Japan.
- . . ‘On the algebraic L-theory of Δ-sets.’ Pure and Applied Mathematics Quarterly 8, No. 2: 423-449. doi: 10.4310/PAMQ.2012.v8.n2.a3.
- . . ‘Smooth maps to the plane and Pontryagin classes Part I: Local aspects.’ Portugaliae Mathematica 69, No. 1: 41-67. doi: 10.4171/PM/1904.
- . . ‘Robba rings for compact p-adic Lie groups.’ Israel J. Math. 2012.
- . . ‘Nearby cycles and characteristic classes of singular spaces.’ In Singularities in geometry and topology, 181-205. doi: 10.4171/118.
- . . ‘Motivic bivariant characteristic classes and related topics.’ J. Singularities 5: 124-152. doi: 10.5427/jsing.2012.5j.
- . . ‘Grothendieck groups and categorification of additive invariants.’ Internat. J. Math. 23: 1250057-1-37. doi: 10.1142/S0129167X12500577.
- . . ‘A numerical approach to harmonic non-commutative spectral field theory.’ International Journal of Modern Physics A 27: 1250075. doi: doi:10.1142/S0217751X12500753.
- . . ‘{$C^*$}-pseudo-multiplicative unitaries, Hopf {$C^*$}-bimodules and their Fourier algebras.’ J. Inst. Math. Jussieu 11, No. 1: 189-220. doi: 10.1017/S1474748010000290.
- ‘The relative tensor product and a minimal fiber product in the setting of C*-algebras.’ Journal of Operator Theory 68, No. 2: 365-404. .
- . . ‘Free dynamical quantum groups and the dynamical quantum group SU_q(2).’ In Operator Algebras and Quantum Groups, edited by , 311-341. Warsaw, Poland: Polish Academy of Science, Institute of Mathematics.
- . . ‘Energy functionals and soliton equations for G2-forms.’ Ann. Global Anal. Geom. 42, No. 4: 585-610. doi: 10.1007/s10455-012-9328-y.
- . . ‘A heat flow for special metrics.’ Adv. Math. 231, No. 6: 3288–3322. doi: 10.1016/j.aim.2012.08.007.
- . . ‘Nuclear dimension and Z-stability of pure C*-algebras.’ Inventiones Mathematicae 187, No. 2: 259-342. doi: 10.1007/s00222-011-0334-7.
- . . ‘The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces.’ Tohoku Math. J. 63: 581-604.
- . . ‘On generalisations of Losev-Manin moduli spaces for classical root systems.’ Pure Appl. Math. Q. 7.
- . . ‘Cluster-cyclic quivers with three vertices and the Markov equation: With an appendix by Otto Kerner.’ Algebras and Representation Theory 14, No. 1: 97-112. doi: 10.1007/s10468-009-9179-9.
- . . ‘Construction of G-Hilbert schemes.’ Math. Nachr. 284: 953-959.
- . . ‘Pure Anderson Motives and Abelian {$\tau$}-Sheaves.’ Mathematische Zeitschrift 268: 67-100. doi: 10.1007/s00209-009-0661-1.
- . . ‘Quasitraces are traces: a short proof of the finite-nuclear-dimension case.’ C. R. Acad. Sci. Canada 00.
- . . ‘C*-algebras associated with integral domains and crossed products by actions on adele spaces.’ J. Noncommut. Geom. 5, No. 1: 1--37. doi: 10.4171/JNCG/68.
- . . ‘K-theory for ring C*-algebras attached to polynomial rings over finite fields.’ J. Noncommut. Geom. 5, No. 3: 331-349. doi: 10.4171/JNCG/78.
- . . ‘Determinants on von {N}eumann algebras, {M}ahler measures and Ljapunov exponents.’ Journal für die Reine und Angewandte Mathematik. [Crelle's Journal] 651: 165--185.
- . . ‘Structure and K-theory of crossed products by proper actions.’ Expo. Math. 29, No. 3: 300--344. doi: 10.1016/j.exmath.2011.05.001.
- . . ‘Deformations of associative submanifolds with boundary.’ Adv. Math. 226, No. 3: 2351--2370. doi: 10.1016/j.aim.2010.09.014.
- . . ‘Renormalisation of the Grosse-Wulkenhaar model.’ POS QGQGS2011: 011.
- . . ‘Renormalizable noncommutative quantum field theory.’ General Relativity and Gravitation 43: 2491-2498. doi: 10.1007/s10714-010-1065-6.
- . . ‘Period Spaces for Hodge Structures in Equal Characteristic.’ Annals of Mathematics 173, No. 3: 118. doi: 10.4007/annals.2011.173.3.2.
- . . ‘The Newton stratification on deformations of local {$G$}-shtukas.’ Journal für die reine und angewandte Mathematik 656: 87-129. doi: 10.1515/CRELLE.2011.044.
- . . ‘Weighted Sobolev inequalities under lower Ricci curvature bounds.’ Proceedings of the American Mathematical Society 139. doi: 10.1090/s0002-9939-2011-10799-8.
- . . ‘Connectedness of Kisin varieties for GL2.’ Advances in Math. 228.
- . . ‘On families of weakly admissible filtered φ-modules and the adjoint quotient of GLd.’ Documenta Math. 16.
- . . ‘Exceptional sequences of invertible sheaves on rational surfaces.’ Compositio Mathematica 147, No. 4: 1230-1280. doi: 10.1112/S0010437X10005208.
- . . ‘Generalised geometries, constrained critical points and Ramond-Ramond fields.’ Fortschr. Phys. 59, No. 5-6: 494-517.
- . . ‘The topology of a semisimple Lie group is essentially unique.’ Adv. Math. 228, No. 5: 2623-2633. doi: 10.1016/j.aim.2011.07.019.
- . . ‘On the local structure and the homology of CAT}(κ) spaces and Euclidean buildings.’ Adv. Geom. 11, No. 2: 347-369. doi: 10.1515/ADVGEOM.2010.049.
- . . ‘Symmetric products of mixed Hodges modules.’ J. Math. Pures Appl. 96: 462-483. doi: 10.1016/j.matpur.2011.04.003.
- . . ‘Hirzebruch invariants of symmetric products.’ Contributed to the Topology of Algebraic Varieties and Singularities, Jaca, Spanien. doi: 10.1090/conm/538.
- . . ‘Quasi-multipliers of Hilbert and Banach C*-bimodules.’ Mathematica Scandinavica 109, No. 1.
- . . ‘Twisted K-theory and obstructions against positive scalar curvature metrics.’ Journal of K-Theory 2014.
- . . ‘Continuous group actions on profinite spaces.’ Journal of Pure and Applied Algebra 215: 1024-1039.
- . . ‘Torsion algebraic cycles and étale cobordism.’ Adv. Math. 227: 962-985.
- . . p-Adic Lie Groups.
- . . ‘A functor from smooth o-torsion representations to (phi,Gamma)-modules.’ In On certain L-functions, edited by , 525-601.
- . . ‘Characteristic classes of mixed Hodges modules.’ In Topology of stratified spaces, 419-470.
- . . ‘The Fell compactification and non-Hausdorff groupoids.’ Math. Z. 269, No. 3-4: 1105-1111. doi: 10.1007/s00209-010-0779-1.
- . . ‘On the algebraic K-theory of the complex K-theory spectrum.’ Invent. Math. 180, No. 3: 611--668. doi: 10.1007/s00222-010-0239-x.
- . . ‘On crossed product rings with twisted involutions, their module categories and L-theory.’ In Cohomology of groups and algebraic K-theory, edited by , 1--54. Int. Press, Somerville, MA.
- ‘On hyperbolic groups with spheres as boundary.’ Journal of Differential Geometry 86, No. 1: 1-16. .
- . . ‘Hirzebruch classes and motivic Chern classes for singular spaces.’ J. Topol. Anal. 2, No. 1: 1--55. doi: 10.1142/S1793525310000239.
- . . ‘Characteristic classes of complex hypersurfaces.’ Adv. Math. 225, No. 5: 2616--2647. doi: 10.1016/j.aim.2010.05.007.
- . . ‘The regular C*-algebra of an integral domain.’ In Quanta of Maths, edited by , 149-170. Providence: American Mathematics Society.
- . . ‘Representations attached to vector bundles on curves over finite and p-adic fields, a comparison.’ Münster Journal of Mathematics 3: 29--41.
- . . ‘Invariant functions on p-divisible groups and the p-adic corona problem.’ Tokyo Journal of Mathematics 33: 393--406.
- . . ‘The Hilbert-Polya strategy and height pairings.’ In Casimir force, {C}asimir operators and the {R}iemann hypothesis, edited by , 275--283.
- . . ‘Vector bundles on $p$-adic curves and parallel transport II.’, 1--26. Tokyo.
- . . ‘A Lefschetz fixed-point formula for certain orbifold C*-algebras.’ J. Noncommut. Geom. 4, No. 1: 125--155. doi: doi:10.4171/JNCG/51.
- . . ‘The structure of crossed products of irrational rotation algebras byfinite subgroups of ${\rm SL}_2(\Bbb Z)$.’ J. Reine Angew. Math. 639: 173--221. doi: doi:10.1515/CRELLE.2010.015.
- . . ‘Eliashberg's proof of Cerf's theorem.’ Journal of Topology and Analysis 2, No. 4: 543-579. doi: 10.1142/S1793525310000446.
- . . On gravitational instantons Doctoral Thesis, Princeton University.
- . . ‘Non-discrete Euclidean buildings for the Ree and Suzuki groups.’ American Journal of Mathematics 132, No. 4: 1113-1152.
- . . ‘On the massive wave equation on slowly rotating Kerr-AdS spacetimes.’ Commun.Math.Phys. 294: 169-197. doi: 10.1007/s00220-009-0935-9.
- . . ‘Stability and decay rates for the five-dimensional Schwarzschild metric under biaxial perturbations.’ Adv. Theor. Math. Phys. 14, No. 5: 1245-1372. doi: 10.4310/ATMP.2010.v14.n5.a1.
- . . ‘A Maslov cocycle for unitary groups.’ Proc. Lond. Math. Soc. 100, No. 1: 91-115.
- . . ‘Ring C*-algebras.’ Mathematische Annalen 348 (2010): 859-898.
- . . ‘Equivariant Poincaré duality for quantum group actions.’ J. Funct. Anal. 258, No. 5: 1466--1503. doi: 10.1016/j.jfa.2009.10.015.
- . . ‘Stable flatness of nonarchimedean hyperenveloping algebras.’ J. Algebra 323, No. 3: 757--765. doi: 10.1016/j.jalgebra.2009.11.018.
- . . ‘Localizations and completions of skew power series rings.’ American J. Math. 132: 1-36.
- . . ‘Localizations and completions of skew power series rings.’ Amer. J. Math. 132, No. 1: 1--36. doi: 10.1353/ajm.0.0089.
- . . ‘Index formula for MacPherson cycles of affine algebraic varieties.’ Tohoku Math. J. (2) 62, No. 1: 29--44. doi: 10.2748/tmj/1270041025.
- . . ‘Decomposition rank and Z-stability.’ Invent. Math. 00.
- . ‘Quantum field theory on noncommutative geometries.’ contributed to the Noncommutative Geometry and Loop Quantum Gravity: Loops, Algebras and Spectral Triples, Oberwolfach, . doi: 10.4171/OWR/2010/09.
- . . ‘Non-compact spectral triples with finite volume.’ In Quanta of Maths, edited by , 617-648. Providence, RI: American Mathematical Society.
- . . A Metric Splitting of Alexandrov Spaces: Boundary Strata of nonnegatively curved Alexandrov Spaces and a Splitting Theorem.: Südwestdeutscher Verlag für Hochschulschriften.
- . . ‘Topologische Starrheit und Gruppenringe.’ Mitt. Dtsch. Math.-Ver. 17, No. 2: 80--86.
- . . ‘Pure Anderson motives over finite fields.’ J. Number Theory 129, No. 2: 247--283. doi: 10.1016/j.jnt.2008.09.006.
- . . Principles of harmonic analysis. New York: Sringer Verlag.
- . . ‘$p$-adic entropy and a $p$-adic Fuglede-Kadison determinant.’, 423--442. Boston, MA. doi: 10.1007/978-0-8176-4745-2_10.
- . . ‘Mahler measures and Fuglede-Kadison determinants.’ M\"unster J. Math. 2: 45--63.
- . . ‘Fibrations with noncommutative fibers.’ J. Noncommut. Geom. 3, No. 3: 377--417. doi: doi:10.4171/JNCG/41.
- . . ‘An analogue of Serre fibrations for C*-algebra bundles.’ In Noncommutativity and singularities, edited by , 209--221. Tokyo: ath. Soc. Japan.
- . . ‘Principal non-commutative torus bundles.’ Proc. Lond. Math. Soc. (3) 99, No. 1: 1--31. doi: doi:10.1112/plms/pdn050.
- . . ‘Equivariant $K$-theory of finite dimensional real vector spaces.’ M\"unster J. Math. 2: 65--94.
- . . ‘Orbits of parabolic subgroups on metabelian ideals.’ Bull. Sci. Math. 133, No. 1: 82--91. doi: 10.1016/j.bulsci.2008.06.003.
- . . Progress in solving a noncommutative quantum field theory in four dimensions. [Submitted]
- . . ‘A dictionary between Fontaine-theory and its analogue in equal characteristic.’ J. Number Theory 129, No. 7: 1734--1757. doi: 10.1016/j.jnt.2009.01.002.
- . . ‘On the structure of some moduli spaces of finite flat group schemes.’ Moscow Math. Journal 9.
- . . ‘Topological rigidity for non-aspherical manifolds.’ Pure and Applied Mathematics Quarterly 5, No. 3: 873-914.
- . . ‘Analytic vectors in continuous {$p$}-adic representations.’ Compos. Math. 145, No. 1: 247--270. doi: 10.1112/S0010437X08003825.
- . . ‘A definition of compact {$C^*$}-quantum groupoids.’ In Operator structures and dynamical systems, edited by , 267--289. Providence, RI: Amer. Math. Soc.
- . . ‘Chern character for totally disconnected groups.’ Math. Ann. 343, No. 3: 507--540. doi: 10.1007/s00208-008-0281-9.
- . . ‘Completely positive maps of order zero.’ Münster J. Math. 00.
- . ‘Progress in solving a noncommutative QFT in four dimensions.’ contributed to the Noncommutative Geometry, Oberwolfach, . doi: 10.4171/OWR/2009/41.
- . . ‘Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere.’ Doc. Math. 13: 795--801.
- . . ‘Inheritance of isomorphism conjectures under colimits.’ In K-theory and noncommutative geometry, edited by , 41--70. Eur. Math. Soc., Zürich. doi: 10.4171/060-1/2.
- . . ‘On the Farrell-Jones conjecture and its applications.’ J. Topol. 1, No. 1: 57--86. doi: 10.1112/jtopol/jtm008.
- . . ‘Equivariant covers for hyperbolic groups.’ Geom. Topol. 12, No. 3: 1799--1882. doi: 10.2140/gt.2008.12.1799.
- . . ‘The K-theoretic Farrell-Jones conjecture for hyperbolic groups.’ Invent. Math. 172, No. 1: 29-70.
- . . ‘Manifolds with positive curvature operators are space forms.’ Ann. of Math. 167, No. 3: 1079-1097.
- . . ‘C*-algebras associated with the ax+b-semigroup over N.’ In K-theory and noncommutative geometry, edited by , 201-215. Zürich: European Mathematical Society Publishing House.
- . . ‘Trivialization of C(X)-algebras with strongly self-absorbing fibres.’ Bull. Soc. Math. France 00.
- . . ‘Analogies between analysis on foliated spaces and arithmetic geometry.’, 174--190. Cambridge. doi: 10.1017/CBO9780511721410.010.
- . . ‘The $K$-theory of twisted group algebras.’ In C*-algebras and elliptic theory II, 67–86, edited by , 67--86. Basel: Birkhäuser. doi: doi:10.1007/978-3-7643-8604-7_3.
- . . ‘$KK$-theoretic duality for proper twisted actions.’ Math. Ann. 340, No. 4: 839--873. doi: doi:10.1007/s00208-007-0171-6.
- . . ‘Inducing primitive ideals.’ Trans. Amer. Math. Soc. 360, No. 11: 6113--6129. doi: doi:10.1090/S0002-9947-08-04499-1.
- . . ‘The Mackey machine for crossed products: inducing primitive ideals.’ In Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, Contemp. Math., 449, edited by , 129--136. Providence, RI: American Math. Soc.
- . . ‘Calibrations and {$T$}-duality.’ Comm. Math. Phys. 283, No. 2: 543--578. doi: 10.1007/s00220-008-0571-9.
- . . ‘Renormalization of noncommutative quantum field theory.’ In An invitation to noncommutative geometry, edited by , 129-168. World Scientific. doi: 10.1142/9789812814333_0002.
- . . ‘On period spaces for {$p$}-divisible groups.’ C. R. Math. Acad. Sci. Paris 346, No. 21-22: 1123--1128. doi: 10.1016/j.crma.2008.07.003.
- . . ‘On the vacuum states for non-commutative gauge theory.’ European Physical Journal C 56, No. 2: 293-304. doi: 10.1140/epjc/s10052-008-0652-0.
- . . ‘Hodge-theoretic Atiyah-Meyer formulae and the stratified multiplicative property.’ In Singularities I, 145--166. Providence, RI: Amer. Math. Soc.
- . . ‘Buildings: interactions with algebra and geometry.’ Oberwolfach Rep. 5, No. 1: 119--172. doi: 10.4171/OWR/2008/03.
- . . ‘Profinite homotopy theory.’ Doc. Math. 13: 585--612.
- . . ‘Auslander regularity of {$p$}-adic distribution algebras.’ Represent. Theory 12: 37--57. doi: 10.1090/S1088-4165-08-00323-3.
- . . ‘The algebraic theory of tempered representations of {$p$}-adic groups. {II}. Projective generators.’ Geom. Funct. Anal. 17, No. 6: 2018--2065. doi: 10.1007/s00039-007-0647-2.
- . . An invitation to quantum groups and duality.: European Mathematical Society (EMS), Zürich. doi: 10.4171/043.
- . . ‘Equivariant cyclic homology for quantum groups.’ In {$K$}-theory and noncommutative geometry, 151--179. Eur. Math. Soc., Zürich. doi: 10.4171/060-1/6.
- . . ‘A new description of equivariant cohomology for totally disconnected groups.’ J. K-Theory 1, No. 3: 431--472. doi: 10.1017/is007011019jkt020.
- . . ‘Bornological quantum groups.’ Pacific J. Math. 235, No. 1: 93--135. doi: 10.2140/pjm.2008.235.93.
- . . ‘Metric bundles of split signature and type {II} supergravity.’ In Recent developments in pseudo-Riemannian geometry, 455--494. Eur. Math. Soc., Zürich. doi: 10.4171/051-1/12.
- . . ‘Special metrics and triality.’ Adv. Math. 219, No. 6: 1972--2005. doi: 10.1016/j.aim.2008.07.017.
- . . ‘Calabi-Yau manifolds with {$B$}-fields.’ Rend. Semin. Mat. Univ. Politec. Torino 66, No. 1: 1--21.
- . . ‘A motivic version of Pellikaan's two variable zeta function.’, 35--43.
- . . ‘Induction theorems and isomorphism conjectures for K- and L-theory.’ Forum Math. 19, No. 3: 379--406. doi: 10.1515/FORUM.2007.016.
- . . ‘Coefficients for the Farrell-Jones conjecture.’ Adv. Math. 209, No. 1: 337--362. doi: 10.1016/j.aim.2006.05.005.
- . . ‘On the K-theory of groups with finite asymptotic dimension.’ J. Reine Angew. Math. 612: 35--57. doi: 10.1515/CRELLE.2007.083.
- . . ‘On Grothendieck transformations in Fulton-MacPherson's bivariant theory.’ J. Pure Appl. Algebra 211, No. 3: 665--684. doi: 10.1016/j.jpaa.2007.03.004.
- . . ‘On the uniqueness of bivariant Chern class and bivariant Riemann-Roch transformations.’ Adv. Math. 210, No. 2: 797--812. doi: 10.1016/j.aim.2006.07.014.
- . . ‘First steps towards {$p$}-adic Langlands functoriality.’ J. Reine Angew. Math. 610: 149--180. doi: 10.1515/CRELLE.2007.070.
- . . ‘First steps towards p-adic Langlands functoriality.’ J. reine angew. Math. 610: 149-180.
- . . ‘Uniformizable families of {$t$}-motives.’ Trans. Amer. Math. Soc. 359, No. 8: 3933--3972. doi: 10.1090/S0002-9947-07-04136-0.
- . . ‘Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature.’ Geom. Funkt. Anal. 2007: 665-681.
- 10.4171/OWR/2007/43. . ‘Noncommutative geometry.’ Oberwolfach Rep. 4, No. 4: 2543--2607. doi:
- . . Topological and bivariant K-theory. Basel: Birkhäuser Verlag.
- . . ‘Expansive algebraic actions of discrete residually finite amenable groupsand their entropy.’ Ergodic Theory Dynam. Systems 27, No. 3: 769--786. doi: 10.1017/S0143385706000939.
- . . ‘On Tannaka duality for vector bundles on $p$-adic curves.’, 94--111. Cambridge.
- . . ‘Quantum field theory on projective modules.’ Journal of Noncommutative Geometry 1, No. 4: 431-496. doi: 10.4171/JNCG/13.
- . . ‘Calibrations on spaces with {$G\times G$}-structure.’ Fortschr. Phys. 55, No. 5-7: 727--730. doi: 10.1002/prop.200610349.
- . . ‘Prehomogeneous spaces for Borel subgroups of general linear groups.’ Transform. Groups 12, No. 3: 475--498. doi: 10.1007/s00031-006-0052-1.
- . . ‘The orbit structure of Dynkin curves.’ Math. Z. 257, No. 2: 439--451. doi: 10.1007/s00209-007-0141-4.
- . . ‘Mean curvature flow of monotone Lagrangian submanifolds.’ Mathematische Zeitschrift 257, No. 2: 295-327. doi: 10.1007/s00209-007-0126-3.
- . . ‘Noncommutative QFT and renormalization.’ In Quantum Gravity - Mathematical Models and Experimental Bounds, edited by , 315-326. Basel: Birkhäuser-Verlag. doi: 10.1007/978-3-7643-7978-0_16.
- . . ‘Fourier-Mukai transforms.’ In Handbook of tilting theory, 147--177. Cambridge: Cambridge Univ. Press. doi: 10.1017/CBO9780511735134.007.
- . . ‘The classification of non-local chiral {CFT} with {$c<1$}.’ Comm. Math. Phys. 271, No. 2: 375--385. doi: 10.1007/s00220-007-0199-1.
- . . ‘Invariant distributions on {$p$}-adic analytic groups.’ Duke Math. J. 137, No. 1: 19--62. doi: 10.1215/S0012-7094-07-13712-8.
- . . ‘A diffeomorphism classification of manifolds which are like projective planes.’ J. Differential Geom. 77, No. 2: 177-188.
- . . ‘Noncommutative induced gauge theory.’ European Physical Journal C 51, No. 4: 977-987. doi: 10.1140/epjc/s10052-007-0335-2.
- . . ‘Stable étale realization and étale cobordism.’ Adv. Math. 214, No. 2: 730--760. doi: 10.1016/j.aim.2007.03.005.
- . . ‘The algebraic theory of tempered representations of {$p$}-adic groups. I. Parabolic induction and restriction.’ J. Inst. Math. Jussieu 6, No. 4: 639--688. doi: 10.1017/S1474748007000047.
- . . ‘A survey of characteristic classes of singular spaces.’ In Singularity theory, 865--952. World Sci. Publ., Hackensack, NJ. doi: 10.1142/9789812707499_0037.
- . . ‘Pseudo-multiplicative unitaries on {$C^*$}-modules and Hopf {$C^*$}-families. I.’ J. Noncommut. Geom. 1, No. 4: 497--542. doi: 10.4171/JNCG/14.
- . . ‘Equivariant local cyclic homology and the equivariant Chern-Connes character.’ Doc. Math. 12: 313--359 (electronic).
- . . ‘Equivariant periodic cyclic homology.’ J. Inst. Math. Jussieu 6, No. 4: 689--763. doi: 10.1017/S1474748007000102.
- . . ‘A Duality theorem for Riemannian foliations of nonnegatively curved manifolds.’ Geom. Funct. Anal. 17, No. 4: 1297-1320.
- . ‘The harmonic oscillator, its noncommutative dimension and the vacuum of noncommutative gauge theory.’ contributed to the Noncommutative Geometry, Oberwolfach, . doi: doi:10.4171/OWR/2007/43.
- . . ‘A search for higher-dimensional arc planes.’ Abh. Math. Sem. Univ. Hamburg 77: 169--178. doi: 10.1007/BF03173496.
- . . ‘Isomorphism conjecture for homotopy K-theory and groups acting on trees.’ J. Pure Appl. Algebra 205, No. 3: 660--696. doi: 10.1016/j.jpaa.2005.07.020.
- . . ‘Classes de Hirzebruch et classes de Chern motiviques.’ C. R. Math. Acad. Sci. Paris 342, No. 5: 325--328. doi: 10.1016/j.crma.2005.12.022.
- . . ‘Low-dimensional homogeneous Einstein manifolds.’ Trans. Amer. Math. Soc. 358, No. 4: 1455--1468. doi: 10.1090/S0002-9947-05-04096-1.
- . . ‘An algebraic description of boundary maps used in index theory.’ In Operator Algebras: The Abel Symposium 2004, 61--86. Berlin: Springer Verlag. doi: 10.1007/978-3-540-34197-0_3.
- . . ‘Algebraic K-theory and locally convex algebras.’ MATHEMATISCHE ANNALEN 334, No. 2: 339-371. doi: 10.1007/s00208-005-0722-7.
- . . ‘On the nonlinear stability of higher dimensional triaxial Bianchi-{IX} black holes.’ Adv. Theor. Math. Phys. 10, No. 4: 503-523. doi: 10.4310/ATMP.2006.v10.n4.a2.
- . . ‘Fuglede-Kadison determinants and entropy for actions of discrete amenable groups.’ JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY 19, No. 3: 737-758. doi: 10.1090/S0894-0347-06-00519-4.
- . . ‘A categorical approach to imprimitivity theorems for C*-dynamical systems.’ Mem. Amer. Math. Soc. 180, No. 850: viii+169.
- . . ‘Preface [A collection of manuscripts written in honour of John H. Coates].’ Doc. Math. , No. Extra Vol.: 1--2 (electronic).
- . . ‘Noncommutative QFT and renormalization.’ Bulgarian Journal of Physics 33, No. s1: 215-225.
- . . ‘Noncommutative QFT and renormalization.’ Fortschritte der Physik 54, No. 2-3: 116-123. doi: 10.1002/prop.200510260.
- . . ‘Obstructions to nonnegative curvature in cohomogeneity one and Kervaire sphere.’ Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, No. 2: 159-170.
- . . ‘On the volume of a tilting module.’ Abh. Math. Sem. Univ. Hamburg 76: 261--277. doi: 10.1007/BF02960868.
- . . ‘A counterexample to King's conjecture.’ Compos. Math. 142, No. 6: 1507--1521. doi: 10.1112/S0010437X06002260.
- . . Enhancing Stereo Tracking via Adapted Point-based Targets , .
- . . „Renormalisation of noncommutative \phi^4-theory by multi-scale analysis.“ Communications in Mathematical Physics 262, No. 3: 565-594. doi: 10.1007/s00220-005-1440-4.
- . . ‘Continuous representation theory of {$p$}-adic Lie groups.’ In International Congress of Mathematicians. Vol. {II}, 1261--1282. Eur. Math. Soc., Zürich.
- . . ‘Continuous representation theory of p-adic Lie groups.’ Proceedings ICM Madrid 2: 1261-1282.
- . . ‘Banach-Hecke algebras and {$p$}-adic Galois representations.’ Doc. Math. , No. Extra Vol.: 631--684.
- . . ‘On the dimension formula for the hyperfunction solutions of some holonomic {$D$}-modules.’ Publ. Res. Inst. Math. Sci. 42, No. 1: 1--8. doi: 10.2977/prims/1166642055.
- . . ‘Positively curved manifolds with symmetry.’ Annals of Math. 163, No. 2: 607-668.
- . . ‘A note on subhomogeneous C*-algebras.’ Acad. Sci. Canada 00.
- . . ‘Generalised {$G_2$}-manifolds.’ Comm. Math. Phys. 265, No. 2: 275--303. doi: 10.1007/s00220-006-0011-7.
- . ‘Renormalisation scalar quantum field theory on 4D-Moyal plane.’ contributed to the The Rigorous Renormalization Group, Oberwolfach, . doi: doi:10.4171/OWR/2006/17.
- . . ‘Field theories on deformed spaces.’ Journal of Geometry and Physics 56, No. 1: 108-141. doi: 10.1016/j.geomphys.2005.04.019.
- . . ‘Stable planes with a point transitive abelian group.’ Innov. Incidence Geom. 4: 53--61.
- . . ‘Topological Hochschild homology of connective complex {$K$}-theory.’ Amer. J. Math. 127, No. 6: 1261--1313. doi: 10.1353/ajm.2005.0036.
- . . ‘On the Farrell-Jones conjecture for higher algebraic K-theory.’ J. Amer. Math. Soc. 18, No. 3: 501--545 (electronic). doi: 10.1090/S0894-0347-05-00482-0.
- . . ‘Non-existence of homogeneous Einstein metrics.’ Comment. Math. Helv. 80, No. 1: 123--146. doi: 10.4171/CMH/8.
- . . ‘Unstable Einstein metrics.’ Math. Z. 250, No. 2: 279--286. doi: 10.1007/s00209-004-0749-6.
- . . ‘Bivariant K-theory and the Weyl algebra.’ K-THEORY 35, No. 1-2: 93-137. doi: 10.1007/s10977-005-3464-0.
- . . ‘Bivariant K- and cyclic theories.’ In Handbook of K-theory. Vol. 1, 2, 655--702. Berlin: Springer Verlag. doi: 10.1007/978-3-540-27855-9_14.
- . . ‘Exchanging the places p and infinity in the Leopoldt conjecture.’ JOURNAL OF NUMBER THEORY 114, No. 1: 1-17. doi: 10.1016/j.jnt.2005.03.006.
- . . ‘Line bundles and $p$-adic characters.’, 101--131. Boston, MA. doi: 10.1007/0-8176-4447-4_7.
- . . ‘Vector bundles on $p$-adic curves and parallel transport.’ Ann. Sci. \'Ecole Norm. Sup. (4) 38, No. 4: 553--597. doi: 10.1016/j.ansens.2005.05.002.
- . . ‘Renormalisation of scalar quantum field theory on noncommutative R^4.’ Fortschritte der Physik 53, No. 5-6: 634--639. doi: doi:10.1002/prop.200410231.
- . . ‘Renormalisation of \phi^4-theory on noncommutative R^4 in the matrix base.’ Communications in Mathematical Physics 256, No. 2: 305-374. doi: doi:10.1007/s00220-004-1285-2.
- . . ‘Power-counting theorem for non-local matrix models and renormalisation.’ Communications in Mathematical Physics 254, No. 1: 91-127. doi: doi:10.1007/s00220-004-1238-9.
- . . ‘Renormalisation of \phi^4-theory on non-commutative R^4 to all orders.’ Letters in Mathematical Physics 71, No. 1: 13--26. doi: doi:10.1007/s11005-004-5116-3.
- . . ‘Uniformizing the stacks of abelian sheaves.’ In Number fields and function fields---two parallel worlds, 167--222. Boston, MA: Birkhäuser Boston. doi: 10.1007/0-8176-4447-4_9.
- . . ‘Irreducible components, nilpotent classes, and the Auslander algebra of {$k[T]/T^n$}.’ In Representations of algebras and related topics, 161--173. Providence, RI: Amer. Math. Soc.
- . . ‘Generalised {$G_2$}-structures and type {IIB} superstrings.’ J. High Energy Phys. , No. 3: 053, 15 pp. (electronic). doi: 10.1088/1126-6708/2005/03/053.
- . . ‘K- and L-theory of the semi-direct product of the discrete 3-dimensional Heisenberg group by Z/4.’ Geom. Topol. 9: 1639-1676.
- . . ‘Equivariant cohomological Chern characters.’ J. Algebra Comput. 15: 1025-1052.
- . . ‘The Burnside ring and equivariant stable cohomotopy for infinite groups.’ Pure Appl. Math. Q. 1, No. 3: 479-541.
- . . ‘Duality for admissible locally analytic representations.’ Representation Theory 9: 297-326.
- . . ‘On the codimension of modules over skew power series rings with applications to Iwasawa algebras.’ J. Pure Appl. Algebra 204: 349-367.
- . . ‘Lectures on characteristic classes of constructible functions.’ In Topics in cohomological studies of algebraic varieties, 175--201. Basel: Birkhäuser. doi: 10.1007/3-7643-7342-3_7.
- . . ‘Spherical Rank Rigidity and Blaschke Manifolds.’ Duke Math. J. 128, No. 1: 65-81.
- . . ‘Euclidean quantum field theory on commutative and noncommutative spaces.’ In Geometric and Topological Methods for Quantum Field Theory, edited by , 59--100. Berlin: Springer-Verlag. doi: doi:10.1007/11374060_2.
- . . ‘On the isomorphism conjecture in algebraic K-theory.’ Topology 43, No. 1: 157--213. doi: 10.1016/S0040-9383(03)00032-6.
- . . ‘Noncommutative U(1) super-Yang-Mills theory: perturbative self-energy corrections.’ International Journal of Modern Physics A 19, No. 25: 4231-4249. doi: doi:10.1142/S0217751X04018221.
- . . ‘Homogeneous Einstein metrics and simplicial complexes.’ J. Differential Geom. 67, No. 1: 79--165.
- . . ‘A variational approach for compact homogeneous Einstein manifolds.’ Geom. Funct. Anal. 14, No. 4: 681--733. doi: 10.1007/s00039-004-0471-x.
- . . ‘Going-down functors, the Künneth formula, and the Baum-Connes conjecture.’ Geom. Funct. Anal. 14, No. 3: 491--528. doi: doi:10.1007/s00039-004-0467-6.
- . . Noncommutative geometry. Berlin: Springer Verlag.
- . . ‘Cyclic theory and the bivariant Chern-Connes character.’ In Noncommutative geometry, 73--135. Berlin: Springer Verlag.
- . . „Laudatio auf Prof. Friedrich Hirzebruch.“ Mitt. Dtsch. Math.-Ver. 12, No. 4: 287.
- . . ‘Cyclic theory, bivariant K-theory and the bivariant Chern-Connes character.’ In Cyclic homology in non-commutative geometry, 1--71. Berlin: Springer Verlag.
- . . Cyclic homology in non-commutative geometry.: Springer-Verlag.
- . . ‘Torus actions on homotopy complex projective spaces.’ Math. Z. 247, No. 3: 505-511.
- . . ‘Maximal coactions.’ Internat. J. Math. 15, No. 1: 47--61. doi: doi:10.1142/S0129167X04002107.
- . . ‘IR singularities in noncommutative perturbative dynamics?’ Europhysics Letters 67, No. 2: 186-190. doi: doi:10.1209/epl/i2003-10285-9.
- . . ‘Renormalisation group approach to noncommutative quantum field theory.’ In Particle Physics and the Universe, edited by , 197-208. Springer-Verlag. doi: doi:10.1007/3-540-26798-0_19.
- . . ‘Renormalisation of noncommutative scalar field theories.’ In Lie Theory and its Applications in Physics V, edited by , 109-123. World Scientific. doi: doi:10.1142/9789812702562_0006.
- . . ‘Renormalisation of noncommutative quantum field theories.’ Czechoslovak Journal of Physics 54, No. 11: 1305-1311. doi: doi:10.1007/s10582-004-9793-z.
- . . ‘Regularization and renormalization of quantum field theories on noncommutative spaces.’ Journal of Nonlinear Mathematical Physics 11, No. suppl.: 9-20. doi: doi:10.2991/jnmp.2004.11.s1.2.
- . . ‘The \beta-function in duality-covariant non-commutative \phi^4-theory.’ European Physical Journal C 35, No. 2: 277-282. doi: doi:10.1140/epjc/s2004-01853-x.
- . . ‘Vector bundles with a Frobenius structure on the punctured unit disc.’ Compos. Math. 140, No. 3: 689--716. doi: 10.1112/S0010437X03000216.
- . . ‘Exceptional sequences of line bundles on toric varieties.’ In Mathematisches Institut, Georg-August-Universität Göttingen: Seminars 2003/2004, 175--190. Universitätsdrucke Göttingen, Göttingen.
- . . ‘Partial flags and parabolic group actions.’ AMA Algebra Montp. Announc. : Paper 1, 6 pp. (electronic).
- . . ‘Buildings and curvature.’ Oberwolfach Rep. 1, No. 2: 1233--1283. doi: 10.4171/OWR/2004/23.
- . . ‘Correction to: ``{$p$}-adic boundary values'' [Astérisque No. 278 (2002), 51--125; MR1922824].’ Astérisque , No. 295: 291--299.
- . . ‘A general intersection formula for Lagrangian cycles.’ Compos. Math. 140, No. 4: 1037--1052. doi: 10.1112/S0010437X04000272.
- . ‘Renormalisation of noncommutative \phi^4-theory to all orders.’ contributed to the Nichtkommutative Geometrie, Oberwolfach, . doi: doi:10.4171/OWR/2004/45.
- . . ‘A foliated squeezing theorem for geometric modules.’ In High-dimensional manifold topology, 1--21. World Sci. Publ., River Edge, NJ. doi: 10.1142/9789812704443_0001.
- . . ‘On the domain of the assembly map in algebraic K-theory.’ Algebr. Geom. Topol. 3: 1037--1050. doi: 10.2140/agt.2003.3.1037.
- . . ‘Squeezing and higher algebraic K-theory.’ K-Theory 28, No. 1: 19--37. doi: 10.1023/A:1024166521174.
- . . ‘Space/time non-commutative field theories and causality.’ European Physical Journal C 29, No. 1: 133-141. doi: doi:10.1140/epjc/s2003-01210-9.
- . . ‘The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups.’ Publ. Math. Inst. Hautes \'Etudes Sci. 97: 239--278. doi: doi:10.1007/s10240-003-0014-2.
- . . ‘Shapiro's lemma for topological $K$-theory of groups.’ Comment. Math. Helv. 78, No. 1: 203--225.
- . . ‘Links between cyclotomic and {${\rm GL}_2$}} Iwasawa theory.’ Doc. Math. , No. Extra Vol.: 187--215 (electronic).
- . . ‘Modules over Iwasawa algebras.’ J. Inst. Math. Jussieu 2: 73-108.
- . . ‘A dynamical Lefschetz trace formula for algebraic Anosov diffeomorphisms.’ Abh. Math. Sem. Univ. Hamburg 73: 81--98. doi: 10.1007/BF02941270.
- . . ‘Two-variable zeta functions and regularized products%Z Kazuya Kato's fiftieth birthday.’ Doc. Math. , No. Extra Vol.: 227--259 (electronic).
- . . ‘Renormalisation of \phi^4-theory on noncommutative R^2 in the matrix base.’ Journal of High Energy Physics 03, No. 12: 019. doi: doi:10.1088/1126-6708/2003/12/019.
- . . ‘Regularisation and renormalisation of quantum field theories on noncommutative spaces.’ In Modern Mathematical Physics, edited by , 29-46.: Belgrade Institute of Physics.
- . . ‘Semi-stable models for rigid-analytic spaces.’ Manuscripta Math. 110, No. 3: 365--380. doi: 10.1007/s00229-002-0349-x.
- . . ‘Semi-stable models for curves with cusps.’ Math. Z. 243, No. 1: 1--23. doi: 10.1007/s00209-002-0436-4.
- . . ‘Quivers, cones and polytopes.’ Linear Algebra Appl. 365: 215--237. doi: 10.1016/S0024-3795(02)00406-8.
- . . ‘Variation on a theme of Richardson.’ Linear Algebra Appl. 365: 239--246. doi: 10.1016/S0024-3795(02)00401-9.
- . . ‘The quasi-hereditary algebra associated to the radical bimodule over a hereditary algebra.’ Colloq. Math. 98, No. 2: 201--211. doi: 10.4064/cm98-2-6.
- . . ‘Projective planes and their look-alikes.’ J. Differential Geom. 64, No. 1: 1-55.
- . . ‘Two-transitive Lie groups.’ J. Reine Angew. Math. 563: 83-113.
- . . ‘Seiberg-Witten map for noncommutative super Yang-Mills theory.’ International Journal of Modern Physics A 18, No. 19: 3325-3334. doi: doi:10.1142/S0217751X03015246.
- . . ‘Algebras of p-adic distributions and admissible representations.’ Invent. Math. 153: 145-196.
- . . Topology of singular spaces and constructible sheaves. Basel: Birkhäuser Verlag. doi: 10.1007/978-3-0348-8061-9.
- . . ‘Torus actions on manifolds of positive sectional curvature.’ Acta Mathematica 191: 259-297.
- . . ‘Conformal properties of harmonic spinors and lightlike geodesics in signature {$(1,1)$}.’ J. Geom. Phys. 46, No. 1: 74--97. doi: 10.1016/S0393-0440(02)00151-1.
- . . ‘Algebraic {$K$}-theory of topological {$K$}-theory.’ Acta Math. 188, No. 1: 1--39. doi: 10.1007/BF02392794.
- . . ‘Equivariant-bivariant Chern character for profinite groups.’ $K$-Theory 25, No. 4: 313--353. doi: 10.1023/A:1016036724442.
- . . ‘Noncommutative Lorentz symmetry and the origin of the Seiberg-Witten map.’ European Physical Journal C 24: 491-494. doi: doi:10.1007/s100520100857.
- . . ‘Perturbative analysis of the Seiberg-Witten map.’ International Journal of Modern Physics A 17, No. 16: 2219-2231. doi: doi:10.1142/S0217751X02010649.
- . . ‘Noncommutative simplicial complexes and the Baum-Connes conjecture.’ GEOMETRIC AND FUNCTIONAL ANALYSIS 12, No. 2: 307-329. doi: 10.1007/s00039-002-8248-6.
- . . ‘A note on arithmetic topology and dynamical systems.’, 99--114. Providence, RI.
- . . ‘On the nature of the ``explicit formulas'' in analytic number theory---asimple example.’, 97--118. Dordrecht.
- . . ‘Real polarizable hodge structures arising from foliations.’ ANNALS OF GLOBAL ANALYSIS AND GEOMETRY 21, No. 4: 377-399. doi: 10.1023/A:1015652906096.
- . . ‘Full duality for coactions of discrete groups.’ Math. Scand. 90, No. 2: 267--288.
- . . ‘Central twisted transformation groups and group C*-algebras ofcentral group extensions.’ Indiana Univ. Math. J. 51, No. 6: 1277--1304. doi: doi:10.1512/iumj.2002.51.2193.
- . . ‘The energy-momentum tensor on noncommutative spaces -- some pedagogical comments.’ Ukrainian Journal of Physics 47, No. 3: 219-225.
- . . ‘Noncommutative spin-1/2 representations.’ European Physical Journal C 24, No. 3: 491--494. doi: doi:10.1007/s10052-002-0938-6.
- . . ‘Quantisation of \theta-expanded non-commutative QED.’ European Physical Journal C 26, No. 1: 139-151. doi: doi:10.1140/epjc/s2002-01038-9.
- . . ‘Line bundles on rigid analytic spaces.’ In Valuation theory and its applications, Vol. I (Saskatoon, {SK}, 1999), 205--217. Providence, RI: Amer. Math. Soc.
- . . ‘Minimal infinite configurations for strictly filtered {$k[T]/T^n$}-modules and parabolic groups actions.’ In Representations of algebra. Vol. I, {II}, 214--224. Beijing Norm. Univ. Press, Beijing.
- . . ‘Reflexive polytopes in dimension 2 and certain relations in {${\rm SL}_2(\Bbb Z)$}}.’ J. Algebra Appl. 1, No. 2: 159--173. doi: 10.1142/S0219498802000124.
- . . ‘Stable representations of quivers.’ J. Pure Appl. Algebra 172, No. 2-3: 205--224. doi: 10.1016/S0022-4049(01)00167-0.
- . . Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces.
- . . ‘The relation between the Baum-Connes Conjecture and the Trace Conjecture.’ Inventiones Math. 149: 123-152.
- . . L2-Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 44. Heidelberg: Springer Verlag.
- . . ‘Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry.’ Journal of Mathematical Physics 43, No. 1: 182-204. doi: 10.1063/1.1418012.
- . . Nonarchimedean functional analysis. Berlin: Springer-Verlag.
- . . ‘Locally analytic distributions and {$p$}-adic representation theory, with applications to {${\rm GL}_2$}}.’ J. Amer. Math. Soc. 15, No. 2: 443--468 (electronic). doi: 10.1090/S0894-0347-01-00377-0.
- . . ‘{$p$}-adic boundary values.’ Astérisque , No. 278: 51--125.
- . . ‘Banach space representations and Iwasawa theory.’ Israel J. Math. 127: 359-380.
- . . ‘Manifolds with positive sectional curvature almost everywhere.’ Invent. Math. 148, No. 1: 117-141.
- . . ‘Introduction to Hopf algebras in renormalization and noncommutative geometry.’ In Noncommutative geometry and the standard model of elementary particle physics, edited by , 313-324. Berlin: Springer-Verlag. doi: doi:10.1007/3-540-46082-9_17.
- . . ‘Non-renormalizability of \theta-expanded non-commutative QED.’ Journal of High Energy Physics 02, No. 03: 024. doi: doi:10.1088/1126-6708/2002/03/024.
- . . Quantum field theories on noncommutative R^4 versus \theta-expanded quantum field theories. [Submitted]
- . . ‘Integral cohomology and Chern classes of the special linear group over the ring of integers.’ Math. Proc. Cambridge Philos. Soc. 131, No. 3: 445--457.
- . . ‘An introduction to algebraic {$K$}-theory.’ In Proceedings of the 20th Winter School ``Geometry and Physics'' (Srní, 2000), 11--28.
- . . ‘On the Hurewicz map and Postnikov invariants of {$K\Bbb Z$}.’ In Cohomological methods in homotopy theory (Bellaterra, 1998), 11--20. Basel: Birkhäuser.
- . . ‘Higher dimensional links are singular slice.’ Math. Ann. 320, No. 3: 547--576. doi: 10.1007/PL00004486.
- . . ‘Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map.’ Journal of High Energy Physics 01, No. 06: 013. doi: doi:10.1088/1126-6708/2001/06/013.
- . . Deformed QED via Seiberg-Witten map. [Submitted]
- . . ‘Finiteness for parabolic group actions in classical groups.’ Arch. Math. (Basel) 76, No. 2: 81--87. doi: 10.1007/s000130050545.
- . . ‘Twisted equivariant $KK$-theory and the Baum-Connes conjecture for group extensions.’ $K$-Theory 23, No. 2: 157--200. doi: doi:10.1023/A:1017916521415.
- . . ‘Permanence properties of the Baum-Connes conjecture.’ Doc. Math. 6: 127--183 (electronic).
- . . ‘Deux remarques sur l'application de Baum-Connes.’ C. R. Acad. Sci. Paris S\'er. I Math. 332, No. 7: 607--610. doi: doi:10.1016/S0764-4442(01)01889-4.
- . . ‘Quantum spaces and their noncommutative topology.’ Notices Amer. Math. Soc. 48, No. 8: 793--799.
- . . ‘On the $\Gamma$-factors of motives. II.’ Doc. Math. 6: 69--97 (electronic).
- . . ‘Number theory and dynamical systems on foliated spaces.’ Jahresber. Deutsch. Math.-Verein. 103, No. 3: 79--100.
- . . -RIS- A counterexample to smooth leafwise hodge decomposition for general foliations and to a type of dynamical trace formulas -TEST-.
- . . ‘A counterexample to smooth leafwise Hodge decomposition for generalfoliations and to a type of dynamical trace formulas.’ Ann. Inst. Fourier (Grenoble) 51, No. 1: 209--219.
- . . ‘A note on dynamical trace formulas.’, 41--55. Providence, RI.
- . . ‘The structure of the Brauer group and crossed products of $C_0(X)$-linear group actions on $C_0(X,\scr K)$.’ Trans. Amer. Math. Soc. 353, No. 9: 3685--3712 (electronic). doi: doi:10.1090/S0002-9947-01-02794-5.
- . . ‘Locally inner actions on $C_0(X)$-algebras.’ J. Operator Theory 45, No. 1: 131--160.
- . . ‘Semi-stability and base change.’ Arch. Math. (Basel) 77, No. 3: 215--221. doi: 10.1007/PL00000484.
- . . ‘Distinguished slopes for quiver representations.’ Bol. Soc. Mat. Mexicana (3) 7, No. 1: 73--83.
- . . ‘{$p$}-adic Fourier theory.’ Doc. Math. 6: 447--481 (electronic).
- . . ‘{$U({\germ g})$}}-finite locally analytic representations.’ Represent. Theory 5: 111--128 (electronic). doi: 10.1090/S1088-4165-01-00109-1.
- . . ‘Index parity of closed geodesics and rigidity of Hopf fibrations.’ Invent Math. 144, No. 2: 281-295.
- . . ‘The superfield formalism applied to the non-commutative Wess-Zumino model.’ Journal of High Energy Physics 00, No. 10: 046. doi: doi:10.1088/1126-6708/2000/10/046.
- . . ‘Finite, tame, and wild actions of parabolic subgroups in GL(V) on certain unipotent subgroups.’ Journal of Algebra 226, No. 1: 347-360. doi: 10.1006/jabr.1999.8180.
- . . ‘Matrices over upper triangular bimodules and {$\Delta$}-filtered modules over quasi-hereditary algebras.’ Colloq. Math. 83, No. 2: 295--303.
- . . ‘Actions of parabolic subgroups in {${\rm GL}_n$}} on unipotent normal subgroups and quasi-hereditary algebras.’ Colloq. Math. 83, No. 2: 281--294.
- . . ‘Finite, tame, and wild actions of parabolic subgroups in {${\rm GL}(V)$}} on certain unipotent subgroups.’ J. Algebra 226, No. 1: 347--360. doi: 10.1006/jabr.1999.8180.
- . . ‘How to recover an $L$-series from its values at almost all positiveintegers. Some remarks on a formula of Ramanujan.’ Proc. Indian Acad. Sci. Math. Sci. 110, No. 2: 121--132. doi: 10.1007/BF02829486.
- . . ‘On dynamical systems and their possible significance for arithmeticgeometry.’, 29--87. Boston, MA.
- . . ‘How to recover an L-series from its values at almost all positive integers. Some remarks on a formula of Ramanujan.’ PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES 110, No. 2: 121-132. doi: 10.1007/BF02829486.
- . . ‘Naturality and induced representations.’ Bull. Austral. Math. Soc. 61, No. 3: 415--438. doi: doi:10.1017/S0004972700022449.
- . . ‘Induced C*-algebras, coactions and equivariance in the symmetricimprimitivity theorem.’ Math. Proc. Cambridge Philos. Soc. 128, No. 2: 327--342. doi: doi:10.1017/S030500419900417X.
- . . Renormalization of noncommutative Yang-Mills theories: A simple example. [Submitted]
- . . ‘On rigid-analytic Picard varieties.’ J. Reine Angew. Math. 528: 101--148. doi: 10.1515/crll.2000.087.
- . . ‘The Picard functor.’ In Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998), 33--41. Basel: Birkhäuser.
- . . ‘Perturbative quantum gauge fields on the noncommutative torus.’ International Journal of Modern Physics A 15, No. 7: 1011-1029. doi: doi:10.1142/S0217751X00000495.
- . . ‘The point and line space of a compact projective plane are homeomorphic.’ Math. Z. 234, No. 1: 83-102.
- (Eds.): . C*-algebras. Berlin: Springer Verlag.
- . . „Slavnov-Taylor identity in noncommutative geometry.“ International Journal of Modern Physics B 14, No. 22-23: 2503-2509. doi: doi:10.1142/S0217979200002053.
- . . ‘Strong exceptional sequences provided by quivers.’ Algebr. Represent. Theory 2, No. 1: 1--17. doi: 10.1023/A:1009990727521.
- . . ‘All two-dimensional links are null homotopic.’ Geom. Topol. 3: 235--252 (electronic). doi: 10.2140/gt.1999.3.235.
- . . ‘p-adic Mahler measures - Dedicated to the memory of Jurgen Neukirch.’ JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK 517: 19-50. doi: 10.1515/crll.1999.093.
- . . ‘$p$-adic Mahler measures.’ J. Reine Angew. Math. 517: 19--50. doi: 10.1515/crll.1999.093.
- . . ‘The △-Filtered Modules Without Self-Extensions for the Auslander Algebra of k[T]/〈Tn〉.’ Algebras and Representation Theory 2, No. 3: 295-312. doi: 10.1023/A:1009999006899.
- . . ‘The {$\Delta$}-filtered modules without self-extensions for the Auslander algebra of {$k[T]/\langle T^n\rangle$}.’ Algebr. Represent. Theory 2, No. 3: 295--312. doi: 10.1023/A:1009999006899.
- . . ‘The Bruhat-Chevalley order of parabolic group actions in general linear groups and degeneration for {$\Delta$}-filtered modules.’ Adv. Math. 148, No. 2: 203--242. doi: 10.1006/aima.1999.1851.
- . . ‘Non-compact cohomogeneity one Einstein manifolds.’ Bull. Soc. Math. France 127, No. 1: 135--177.
- . . ‘Non-existence of cohomogeneity one Einstein metrics.’ Math. Ann. 314, No. 1: 109--125. doi: 10.1007/s002080050288.
- . . ‘Induced coactions of discrete groups on C*-algebras.’ Canad. J. Math. 51, No. 4: 745--770. doi: doi:10.4153/CJM-1999-032-1.
- . . ‘A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical.’ Transform. Groups 4, No. 1: 35--52. doi: 10.1007/BF01236661.
- . . ‘On Kreimer's Hopf algebra structure of Feynman graphs.’ European Physical Journal C 7, No. 4: 697-708. doi: doi:10.1007/s100520050439.
- . . ‘Simple groups of finite Morley rank and Tits buildings.’ Israel J. Math. 109: 189-224.
- . . ‘Compact ovoids in quadrangles. I. Geometric constructions.’ Geom. Dedicata 78, No. 3: 279--300. doi: 10.1023/A:1005236017364.
- . . ‘{$K$}-types for the tempered components of a {$p$}-adic general linear group.’ J. Reine Angew. Math. 517: 161--208. doi: 10.1515/crll.1999.092.
- . . ‘On compact Riemannian manifolds with noncompact holonomy groups.’ J. Differential Geom. 52: 223-257.
- . . ‘On Feynman graphs as elements of a Hopf algebra.’ In Quantum Groups, Noncommutative Geometry and Fundamental Physical Interactions, edited by , 233-242. Nova Science Publishers.
- . . ‘SO(10)-unification in noncommutative geometry revisited.’ International Journal of Modern Physics A 14, No. 4: 559-588. doi: doi:10.1142/S0217751X99000282.
- . . ‘Gauge theories with graded differential Lie algebras.’ Journal of Mathematical Physics 40, No. 2: 787-794. doi: doi:10.1063/1.532685.
- . . On the Connes-Moscovici Hopf algebra associated to the diffeomorphisms of a manifold. [Submitted]
- . . ‘Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces.’ Invent. Math. 134, No. 1: 145--176. doi: 10.1007/s002220050261.
- . . ‘Morita invariance in cyclic homology for nonunital algebras.’ K-Theory 15, No. 4: 301--305. doi: 10.1023/A:1007738112225.
- . . ‘A general construction of bivariant K-theories on the category of C*-algebras.’ In Operator algebras and operator theory (Shanghai, 1997), 31--43. Providence, R.I.: Amer. Math. Soc.
- . . ‘Some analogies between number theory and dynamical systems on foliated spaces.’ Doc. Math. J. DMV. Extra Volume ICM 1: 23-46.
- . . ‘Some analogies between number theory and dynamical systems on foliatedspaces.’ Doc. Math. , No. Extra Vol. I: 163--186 (electronic).
- . . ‘Crossed products by dual coactions of groups and homogeneous spaces.’ J. Operator Theory 39, No. 1: 151--176.
- . . ‘Crossed products by $C_0(X)$-actions.’ J. Funct. Anal. 158, No. 1: 113--151. doi: doi:10.1006/jfan.1998.3295.
- . . ‘Toric quiver varieties.’ In Algebras and modules, {II} (Geiranger, 1996), 311--325. Providence, RI: Amer. Math. Soc.
- . . ‘Homogeneous vector bundles and Koszul algebras.’ Math. Nachr. 191: 189--195. doi: 10.1002/mana.19981910109.
- . . ‘Hochschild and cyclic homology of finite type algebras.’ Selecta Math. (N.S.) 4, No. 2: 321--359. doi: 10.1007/s000290050034.
- . . ‘Dimension theory of arbitrary module over finite von Neumann algebras and L2-Betti numbers.’ Crelle's Journal für reine und angewandte Mathematik 495: 135-162.
- . . ‘Verdier duality on the building.’ J. Reine Angew. Math. 494: 205--218. doi: 10.1515/crll.1998.008.
- . . ‘Equivariant homology for totally disconnected groups.’ J. Algebra 203, No. 1: 50--68. doi: 10.1006/jabr.1997.7309.
- . . ‘Basic notions of rigid analytic geometry.’ In Galois representations in arithmetic algebraic geometry (Durham, 1996), 369--378. Cambridge: Cambridge Univ. Press. doi: 10.1017/CBO9780511662010.010.
- . . ‘Graded differential Lie algebras and SU(5) x U(1)-grand unification.’ International Journal of Modern Physics A 13, No. 15: 2627-2692. doi: doi:10.1142/S0217751X98001359.
- . . ‘Graded differential Lie algebras and model building.’ Journal of Geometry and Physics 25, No. 3-4: 305-325. doi: doi:10.1016/S0393-0440(97)00029-6.
- . . ‘Gauge field theories in terms of graded differential Lie algebras.’ In Lie Theory and its Applications in Physics II, edited by , 310-321. World Scientific. doi: doi:10.1142/3852.
- . . ‘Bivariante K-Theorie für lokalkonvexe Algebren und der Chern-Connes-Charakter.’ Documenta Mathematica 2: 139--182 (electronic).
- . . ‘Excision in periodic cyclic theory for topological algebras.’ In Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), 43--53. Providence, R.I.: Amer. Math. Soc.
- . . ‘Excision in bivariant periodic cyclic cohomology.’ INVENTIONES MATHEMATICAE 127, No. 1: 67-98.
- . . ‘Motivic $L$-functions and regularized determinants. II.’, 138--156. Cambridge.
- . . ‘Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions.’ Journal of the AMS 10, No. 2: 259-281.
- . . ‘Extensions of motives associated to symmetric powers of elliptic curvesand to Hecke characters of imaginary quadratic fields.’, 99--137. Cambridge.
- . . ‘On extensions of mixed motives%Z Journ\'ees Arithm\'etiques (Barcelona, 1995).’ Collect. Math. 48, No. 1-2: 97--113.
- . . ‘Deligne periods of mixed motives, $K$-theory and the entropy of certain${\bf Z}^n$-actions.’ J. Amer. Math. Soc. 10, No. 2: 259--281. doi: 10.1090/S0894-0347-97-00228-2.
- . . ‘On parabolic subgroups of classical groups with a finite number of orbits on the unipotent radial.’ C. R. Acad. Sci. Paris Sér. I Math. 325, No. 5: 465--470. doi: 10.1016/S0764-4442(97)88890-8.
- (Eds.): . Cyclic cohomology and noncommutative geometry - Proceedings of the workshop held in Waterloo, ON, June 14–18, 1995. Providence, RI: American Mathematical Society.
- . . ‘Representation theory and sheaves on the Bruhat-Tits building.’ Inst. Hautes Études Sci. Publ. Math. , No. 85: 97--191. doi: 10.1007/BF02699536.
- . . ‘Representation theory and sheaves on the Bruhat-Tits building.’ Publ. Math. IHES 85: 97-191.
- . . ‘An integral transform for {$p$}-adic symmetric spaces.’ Duke Math. J. 86, No. 3: 391--433. doi: 10.1215/S0012-7094-97-08612-9.
- . . ‘Embeddings of Stein spaces into affine spaces of minimal dimension.’ Math. Ann. 307, No. 3: 381--399. doi: 10.1007/s002080050040.
- . . ‘Noncommutative geometry with graded differential Lie algebras.’ Journal of Mathematical Physics 38, No. 6: 3358-3390. doi: doi:10.1063/1.532048.
- . . ‘The standard model within non-associative geometry.’ Physics Letters B 390, No. 1-4: 119-127. doi: doi:10.1016/S0370-2693(96)01336-6.
- . . ‘Yang-Mills-Higgs models arising from L-cycles.’ In GROUP 21, edited by , 597-601. World Scientific. doi: doi:10.1142/3473.
- . . Gyros as geometry of the standard model. [Submitted]
- . . Kohomogenität eins Einstein-Mannigfaltigkeiten. Augsburg: Dr. Bernd Wiß ner.
- . . ‘Crossed products with continuous trace.’ Mem. Amer. Math. Soc. 123, No. 586: viii+134.
- . . ‘The stabilisation trick for coactions.’ J. Reine Angew. Math. 470: 181--215.
- . . ‘Tilting line bundles and moduli of thin sincere representations of quivers.’ An. ç Stiinç t. Univ. Ovidius Constanç ta Ser. Mat. 4, No. 2: 76--82.
- . . ‘Examples of distinguished tilting sequences on homogeneous varieties.’ In Representation theory of algebras (Cocoyoc, 1994), 317--342. Providence, RI: Amer. Math. Soc.
- . . ‘Holomorphic polygons.’ Math. Z. 223, No. 2: 333-341.
- . . ‘Global an local curvatures.’ Riemannian geometry, Fields Inst. Monogr. 4: 23-51.
- . . ‘Graded Lie algebras with derivation and model building.’ In Lie Theory and its Applications in Physics, edited by , 149-158. World Scientific. doi: doi:10.1142/3301.
- . . ‘On certain graded Lie algebras arising in noncommutative geometry.’ Acta Physica Polonica B 27, No. 10: 2755-2762.
- . . ‘On the structure of a differential algebra used by Connes and Lott.’ Reports in Mathematical Physics 38, No. 1: 45-66. doi: doi:10.1016/0034-4877(96)87677-4.
- . . ‘On a certain construction of graded Lie algebras with derivation.’ Journal of Geometry and Physics 20, No. 2-3: 107-141. doi: doi:10.1016/0393-0440(95)00048-8.
- . . ‘Gebäude in der Darstellungstheorie über lokalen Zahlkörpern.’ Jahresber. Deutsch. Math.-Verein. 98, No. 3: 135--145.
- . . ‘The cyclic homology of {$p$}-adic reductive groups.’ J. Reine Angew. Math. 475: 39--54. doi: 10.1515/crll.1996.475.39.
- . . ‘Deriving the standard model from the simplest two-point K-cycle.’ Journal of Mathematical Physics 37, No. 8: 3797-3814. doi: doi:10.1063/1.531602.
- . . ‘Cyclic homology and nonsingularity.’ JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY 8, No. 2: 373-442.
- . . ‘Algebra extensions and nonsingularity.’ JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY 8, No. 2: 251-289. doi: 10.1090/S0894-0347-1995-1303029-0.
- . . ‘Operators on noncommutative differential forms and cyclic homology.’ In Geometry, topology, & physics, 77--111. Cambridge, MA: Int. Press.
- . . ‘Isogenies of abelian varieties with multiplications and Fitting ideals.’ Abh. Math. Sem. Univ. Hamburg 65: 249--257. doi: 10.1007/BF02953332.
- . . ‘Higher order operations in Deligne cohomology.’ Invent. math. 120: 289-315.
- . . ‘On ${\rm Ext}^2$ of motives over arithmetic curves.’ Amer. J. Math. 117, No. 3: 601--625. doi: 10.2307/2375082.
- . . ‘A distribution-theoretic proof of Guinand's functional equation forCram\'er's $V$-function and generalizations.’ J. London Math. Soc. (2) 52, No. 1: 48--60.
- . . ‘Multipliers of imprimitivity bimodules and Morita equivalence of crossed products.’ Math. Scand. 76, No. 2: 289--309.
- . . ‘Fine structure of the Mackey machine for actions of abelian groups with constant Mackey obstruction.’ Pacific J. Math. 170, No. 1: 17--52.
- . . ‘Crossed products whose primitive ideal spaces are generalized trivial$\hat G$-bundles.’ Math. Ann. 302, No. 2: 269--294. doi: doi:10.1007/BF01444496.
- . . ‘Flag-homogeneous compact connected polygons.’ Geom. Dedicata 55, No. 1: 95--114. doi: 10.1007/BF02179088.
- . . ‘Flag-homogeneous compact connected polygons.’ Geom. Dedicata 55, No. 1: 95-114.
- . . ‘Consistent algebras and special tilting sequences.’ Math. Z. 220, No. 2: 189--205. doi: 10.1007/BF02572609.
- . . ‘Curvature h-principles.’ Annals of Mathematics 142, No. 3: 457-498. doi: 10.2307/2118552.
- . . ‘Endlichkeits- und Verschwindungssätze für (schwach-) konstruierbare Garbenkomplexe auf komplexen Räumen.’ J. Reine Angew. Math. 466: 27--43. doi: 10.1515/crll.1995.466.27.
- . . ‘Points and topologies in rigid geometry.’ Math. Ann. 302, No. 1: 81--103. doi: 10.1007/BF01444488.
- . . ‘On excision in periodic cyclic cohomology. II. The general case.’ C. R. Acad. Sci. Paris Ser. I Math. 318, No. 1: 11--12.
- . . ‘Evidence for a cohomological approach to analytic number theory.’, 491--510. Basel.
- . . ‘Motivic $\epsilon$-factors at infinity and regularized dimensions.’ Indag. Math. (N.S.) 5, No. 4: 403--409. doi: 10.1016/0019-3577(94)90015-9.
- . . ‘Motivic $L$-functions and regularized determinants.’, 707--743. Providence, RI.
- . . ‘$L$-functions of mixed motives.’, 517--525. Providence, RI.
- . . ‘Duality of induction and restriction for abelian twisted covariantsystems.’ Math. Proc. Cambridge Philos. Soc. 116, No. 2: 301--315. doi: doi:10.1017/S0305004100072595.
- . . ‘Morita equivalent twisted actions and a new version of the Packer-Raeburnstabilization trick.’ J. London Math. Soc. (2) 50, No. 1: 170--186.
- . . ‘On transformation group C*-algebras with continuous trace.’ Trans. Amer. Math. Soc. 343, No. 1: 117--133. doi: doi:10.2307/2154524.
- . . ‘Metrics of negative Ricci curvature.’ Annals of Mathematics 140, No. 2: 655-683.
- . . ‘{$p$}-adic points of motives.’ In Motives (Seattle, {WA}, 1991), 225--249. Providence, RI: Amer. Math. Soc.
- . . ‘Quantized differential forms in noncommutative topology and geometry.’ In Representation theory of groups and algebras, 65--78. Providence, R.I.: Amer. Math. Soc.
- . . ‘A survey of some aspects of noncommutative geometry.’ Jahresber. Deutsch. Math.-Verein. 95, No. 2: 60--84.
- . . ‘Regular actions of Hopf algebras on the C*-algebra generated by a Hilbert space.’ In Operator algebras, mathematical physics, and low-dimensional topology (Istanbul, 1991), 87--100. Wellesley, MA: A K Peters.
- . . ‘On excision in periodic cyclic cohomology.’ C. R. Acad. Sci. Paris Ser. I Math. 317, No. 10: 917--922.
- . . ‘Lefschetz trace formulas and explicit formulas in analytic number theory.’ J. Reine Angew. Math. 441: 1--15. doi: 10.1515/crll.1993.441.1.
- . . ‘Regularizations of twisted covariant systems and crossed products withcontinuous trace.’ J. Funct. Anal. 116, No. 2: 277--313. doi: doi:10.1006/jfan.1993.1114.
- . . ‘Points of rigid analytic varieties.’ J. Reine Angew. Math. 434: 127--157. doi: 10.1515/crll.1993.434.127.
- . . ‘Resolutions for smooth representations of the general linear group over a local field.’ J. Reine Angew. Math. 436: 19--32.
- . . ‘Representations of quantized differential forms in non-commutative geometry.’ In Mathematical physics, X (Leipzig, 1991), 237--251. Berlin: Springer Verlag.
- . . ‘Local $L$-factors of motives and regularized determinants.’ Invent. Math. 107, No. 1: 135--150. doi: 10.1007/BF01231885.
- . . ‘Local L-factors of motives and regularized determinants.’ Invent. math. 107: 135-150.
- . . ‘The primitive ideal space of twisted covariant systems with continuouslyvarying stabilizers.’ Math. Ann. 292, No. 1: 59--84. doi: doi:10.1007/BF01444609.
- . . ‘Erratum to: ''On induced covariant systems'' [Proc. Amer. Math. Soc. 108 (1990), no. 3, 703--706; MR0994776 (90f:46105)].’ Proc. Amer. Math. Soc. 116, No. 2: 581. doi: doi:10.2307/2159771.
- . . ‘The cohomology of local systems on {$p$}-adically uniformized varieties.’ Math. Ann. 293, No. 4: 623--650. doi: 10.1007/BF01444738.
- . . Einbettungen Steinscher Räume in affine Räume minimaler Dimension. Münster: Universität Münster Mathematisches Institut.
- . . ‘Differential Banach algebra norms and smooth subalgebras of C*-algebras.’ J. Operator Theory 26, No. 2: 255--282.
- . . ‘Cyclic cohomology and K-homology.’ In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 969--978. Tokyo: Math. Soc. Japan.
- . . ‘Higher order operations in Deligne cohomology.’, 27. M\"unster. doi: 10.1007/BF01241130.
- . . ‘On the Gamma-factors attached to motives.’ Invent. math. 104: 245-261. doi: 10.1007/BF01245075.
- . . ‘Motivic decomposition of abelian schemes and the Fourier transform.’ J. Reine Angew. Math. 422: 201--219.
- . . ‘The Be\u\i linson conjectures.’, 173--209. Cambridge. doi: 10.1017/CBO9780511526053.007.
- . . ‘A qualitative uncertainty principle for certain locally compact groups.’ Forum Math. 3, No. 4: 355--369. doi: doi:10.1515/form.1991.3.355.
- . . ‘The cohomology of {$p$}-adic symmetric spaces.’ Invent. Math. 105, No. 1: 47--122. doi: 10.1007/BF01232257.
- . . ‘Higher regulators and Hecke $L$-series of imaginary quadratic fields. II.’ Ann. of Math. (2) 132, No. 1: 131--158. doi: 10.2307/1971502.
- . . ‘Higher regulators and Hecke L-series of imaginary quadratic fields II.’ Ann. Math. 132: 131-158.
- . . ‘Formal groups and $L$-series.’ Comment. Math. Helv. 65, No. 2: 318--333. doi: 10.1007/BF02566610.
- . . ‘On maximal prime ideals in certain group $C^*$-algebras and crossedproduct algebras.’ J. Operator Theory 23, No. 2: 317--338.
- . . ‘On induced covariant systems.’ Proc. Amer. Math. Soc. 108, No. 3: 703--706. doi: doi:10.2307/2047790.
- . . ‘Universal extensions and cyclic cohomology.’ C. R. Acad. Sci. Paris Sér. I Math. 309, No. 1: 5--8.
- . . ‘Higher regulators and Hecke $L$-series of imaginary quadratic fields. I.’ Invent. Math. 96, No. 1: 1--69. doi: 10.1007/BF01393970.
- . . ‘Higher regulators and Hecke L-series of imaginary quadratic fields I.’ Invent. math. 96: 1-69.
- . . ‘Motivic Iwasawa theory.’ In Algebraic number theory, 421--456. Boston, MA: Academic Press.
- . . ‘Quasi homomorphismes, cohomologie cyclique et positivit.’ Comm. Math. Phys. 114, No. 3: 515--526. doi: 10.1007/BF01242141.
- . . ‘Higher regulators of elliptic curves with complex multiplication.’, 111--128. Boston, MA.
- . . ‘A proper base change theorem for nontorsion sheaves in \'etale cohomology.’ J. Pure Appl. Algebra 50, No. 3: 231--235. doi: 10.1016/0022-4049(88)90102-8.
- . . ‘On the cohomology of nilpotent Lie algebras.’ Bull. Soc. Math. France 116, No. 1: 3--14.
- . . ‘On the Be\u\i linson conjectures for elliptic curves with complexmultiplication.’, 249--272. Boston, MA.
- . . ‘Certain group extensions and twisted covariance algebras with generalizedcontinuous trace.’ In Harmonic analysis: Proceedings of the International Symposium Held at the Centre Universitaire de Luxembourg, Sept. 7-11, 1987, edited by , 159--169. Berlin. doi: doi:10.1007/BFb0086596.
- . . ‘Introduction to the Be\uı linson conjectures.’ In Be\uı linson's conjectures on special values of {$L$}-functions, 1--35. Boston, MA: Academic Press.
- . . ‘Einladung zur Arbeitsgemeinschaft in Oberwolfach über ``Die Be\uı linson-Vermutung''.’ In Be\uı linson's conjectures on special values of {$L$}-functions, ix--xvi. Boston, MA: Academic Press.
- . . ‘On the classification of noncommutative tori. III.’ In Operator algebras and mathematical physics (Iowa City, Iowa, 1985), 503--526. Providence, R.I.: Amer. Math. Soc.
- . . ‘A New Look at KK-Theory.’ K-THEORY 1, No. 1: 31-51. doi: 10.1007/BF00533986.
- . . ‘Kuiper's theorem for Hilbert modules.’ In Operator algebras and mathematical physics (Iowa City, Iowa, 1985), 429--435. Amer. Math. Soc.
- . . ‘Duality in the \'etale cohomology of one-dimensional proper schemes andgeneralizations.’ Math. Ann. 277, No. 3: 529--541. doi: doi:10.1007/BF01458330.
- . . ‘$l$-adic Lefschetz numbers of arithmetic schemes.’ J. Reine Angew. Math. 375/376: 326--345. doi: 10.1515/crll.1987.375-376.326.
- . . ‘Polyhedra of three quasilattices associated with the icosahedral group.’ Acta Cryst. Sect. A 43, No. 4: 574--587. doi: 10.1107/S0108767387098970.
- . . ‘The {$μ$}-invariant of isogenies.’ J. Indian Math. Soc. (N.S.) 52: 159--170 (1988).
- . . ‘Arithmetic of formal groups and applications. I. Universal norm subgroups.’ Invent. Math. 87, No. 3: 587--602. doi: 10.1007/BF01389244.
- . . ‘The classification problem for the C*-algebras {${\scr O}_A$}}.’ In Geometric methods in operator algebras (Kyoto, 1983), 145--151. Harlow: Longman Sci. Tech.
- . . ‘Mapping cones and exact sequences in KK-theory.’ J. Operator Theory 15, No. 1: 163--180.
- . . ‘An extension of Artin-Verdier duality to nontorsion sheaves.’ J. Reine Angew. Math. 366: 18--31. doi: 10.1515/crll.1986.366.18.
- . . ‘Artin-Verdier duality for $n$-dimensional local fields involving higheralgebraic $K$-sheaves.’ J. Pure Appl. Algebra 43, No. 3: 243--255. doi: 10.1016/0022-4049(86)90066-6.
- . . ‘On the classification of noncommutative tori. II.’ C. R. Math. Rep. Acad. Sci. Canada 7, No. 3: 189--194.
- . . ‘On explicit bases in Sobolev spaces.’ Exposition. Math. 3, No. 1: 25--39.
- . . ‘On the $d$-invariant of compact solvmanifolds.’ J. Reine Angew. Math. 361: 47--49. doi: 10.1515/crll.1985.361.47.
- . . ‘$p$}-adic height pairings. {II.’ Invent. Math. 79, No. 2: 329--374. doi: 10.1007/BF01388978.
- . . ‘On the homotopy groups of the space of endomorphisms of a C*-algebra (with applications to topological Markov chains).’ In Operator algebras and group representations, Vol. I (Neptun, 1980), 124--137. Boston, MA: Pitman.
- . . ‘K-theory and C*-algebras.’ In Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), 55--79. Berlin: Springer Verlag. doi: 10.1007/BFb0072018.
- . . ‘On Artin-Verdier duality for function fields.’ Math. Z. 188, No. 1: 91--100. doi: 10.1007/BF01163876.
- . . ‘On the analogue of the formula of Chowla and Selberg for real quadraticfields.’ J. Reine Angew. Math. 351: 171--191. doi: 10.1515/crll.1984.351.171.
- . . ‘The $e$-invariant and the spectrum of the Laplacian for compactnilmanifolds covered by Heisenberg groups.’ Invent. Math. 78, No. 1: 101--112. doi: 10.1007/BF01388716.
- . . ‘The e-invariant and the spectrum of the Laplacian for compact nilmanifolds covered by Heisenberg groups.’ Invent. math. 78: 101-112.
- . . ‘The Iwasawa theoretic version of the conjecture of Birch and Swinnerton-Dyer.’ In Seminar on number theory, Paris 1982--83 (Paris, 1982/1983), 275--281. Boston, MA: Birkhäuser Boston.
- . . ‘Rigid-analytic {$L$}-transforms.’ In Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), 216--230. Berlin: Springer. doi: 10.1007/BFb0099455.
- . . ‘Generalized homomorphisms between C*-algebras and KK-theory.’ In Dynamics and processes (Bielefeld, 1981), 31--45. Springer Verlag. doi: 10.1007/BFb0072109.
- . . ‘K-theoretic amenability for discrete groups.’ J. Reine Angew. Math. 344: 180--195. doi: 10.1515/crll.1983.344.180.
- . . ‘Iwasawa {$L$}-functions of varieties over algebraic number fields. A first approach.’ Invent. Math. 71, No. 2: 251--293. doi: 10.1007/BF01389099.
- . . ‘The structure of stable algebraically simple C*-algebras.’ Amer. J. Math. 104, No. 4: 813--822. doi: 10.2307/2374206.
- . . ‘The K-groups for free products of C*-algebras.’ In Operator algebras and applications, Part I (Kingston, Ont., 1980), 81--84. Providence, R.I.: Amer. Math. Soc.
- . . ‘The internal structure of simple C*-algebras.’ In Operator algebras and applications, Part I (Kingston, Ont., 1980), 85--115. Providence, R.I.: Amer. Math. Soc.
- . . ‘Height pairings in the Iwasawa theory of abelian varieties.’ In Seminar on Number Theory, Paris 1980-81 (Paris, 1980/1981), 309--316. Mass.: Birkhäuser Boston.
- . . ‘Zur Vermutung von Birch und Swinnerton-Dyer über globalen Funktionenkörpern.’ Math. Ann. 260, No. 4: 495--510. doi: 10.1007/BF01457028.
- . . ‘On the values of the zeta function of a variety over a finite field.’ Compositio Math. 46, No. 2: 133--143.
- . . ‘{$p$}-adic height pairings. I.’ Invent. Math. 69, No. 3: 401--409. doi: 10.1007/BF01389362.
- . . ‘K-theory for certain C*-algebras.’ ANNALS OF MATHEMATICS 113, No. 1: 181-197.
- . . ‘A class of C*-algebras and topological Markov chains II. Reducible chains and the Ext-functor for C*-algebras.’ INVENTIONES MATHEMATICAE 63, No. 1: 25-40. doi: 10.1007/BF01389192.
- . . ‘K-theory for certain C*-algebras. II.’ J. Operator Theory 5, No. 1: 101--108.
- . . ‘Some remarks on the C*-algebras associated with certain topological Markov chains.’ Math. Scand. 48, No. 2: 235--240.
- . . ‘Automorphisms of certain simple C*-algebras.’ In Quantum fields - algebras, processes (Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978), 187--196. Vienna: Springer Verlag.
- . . ‘A class of C*-algebras and topological Markov chains.’ INVENTIONES MATHEMATICAE 56, No. 3: 251-268. doi: 10.1007/BF01390048.
- . . ‘Topological Markov chains with dicyclic dimension groups.’ J. Reine Angew. Math. 320: 44--51. doi: 10.1515/crll.1980.320.44.
- . . ‘Über die Werte der Riemannschen Zetafunktion an den ganzzahligen Stellen.’ J. Reine Angew. Math. 313: 189--194. doi: 10.1515/crll.1980.313.189.
- . . ‘Noncommutative Haar measure and algebraic finiteness conditions for simple C*-algebras.’ In Algébres d'opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), 113--133. Paris: CNRS.
- . . ‘Equivalence and traces on C*-algebras.’ J. Funct. Anal. 33, No. 2: 135--164. doi: 10.1016/0022-1236(79)90108-3.
- . . ‘Equivalence and KMS states on periodic C*-dynamical systems.’ J. Funct. Anal. 34, No. 1: 79--86. doi: 10.1016/0022-1236(79)90026-0.
- . . ‘Über gewisse Galoiscohomologiegruppen.’ Math. Z. 168, No. 2: 181--205. doi: 10.1007/BF01214195.
- . . ‘Dimension functions on simple C*-algebras.’ Math. Ann. 233, No. 2: 145--153. doi: 10.1007/BF01421922.
- . . ‘Murray-von\thinspace Neumann equivalence of projections in infinite simple C*-algebras.’ Rev. Roumaine Math. Pures Appl. 23, No. 7: 1011--1014.
- . . ‘Simple C*-algebras generated by isometries.’ COMMUNICATIONS IN MATHEMATICAL PHYSICS 57, No. 2: 173-185.
- . . ‘The structure of multiplication and addition in simple C*-algebras.’ Mathematica Scandinavica 40, No. 2: 215--233.
- . . ‘Local completeness of operator algebras.’ Proc. Amer. Math. Soc. 62, No. 1: 95--100.
- . . ‘On the continuity of semi-norms on operator algebras.’ Math. Ann. 220, No. 2: 171--183. doi: 10.1007/BF01351703.
- . . „Eine Klasse von postliminalen gewichteten Shiftoperatoren.“ Arch. Math. (Basel) 27, No. 2: 188--198. doi: 10.1007/BF01224659.
- . . ‘Locally C*-equivalent algebras.’ J. Functional Analysis 23, No. 2: 95--106. doi: 10.1016/0022-1236(76)90068-9.