This page will soon contain an overview of our research activities.

 

Publications

  • Weiss, Michael. . ‘Truncated operads and simplicial spaces.’ Tunisian Journal of Mathematics 2019, No. 1: 109-126. doi: 10.2140/tunis.2019.1.109. [Accepted]

  • Varghese O. . Dr. Archiv der Mathematik 110, No. 4: 319-325.
  • Boavida de Brito Pedro, Weiss Michael. . Spaces of smooth embeddings and configuration categories.’ J. of Topology 2018, No. 11: 65-143.
  • de Laat T., Vigolo F. . ‘Superexpanders from group actions on compact manifolds.’ Geometriae Dedicata -. doi: 10.1007/s10711-018-0371-0.
  • Arano Y., de Laat T., Wahl J. . ‘The Fourier algebra of a rigid C*-tensor category.’ Publications of the Research Institute for Mathematical Sciences 54: 393-410. doi: 10.4171/PRIMS/54-2-6.
  • de Laat T., de la Salle M. . ‘Approximation properties for noncommutative Lp-spaces of high rank lattices and nonembeddability of expanders.’ Journal für die reine und angewandte Mathematik 737: 49-69. doi: 10.1515/crelle-2015-0043.
  • Arano Y., de Laat T., Wahl J. . ‘Howe-Moore type theorems for quantum groups and rigid C*-tensor categories.’ Compositio Mathematica 154, No. 2: 328-341. doi: 10.1112/S0010437X17007576.
  • Boavida de Brito Pedro, Weiss Michael. . The configuration category of a product.’ Proc. Amer. Math. Soc. 2018. [Accepted]
  • Weiss Michael. . Configuration categories and homotopy automorphisms , . [Submitted]
  • Neuber Nils, Paravicini Walther, Stein Martin (Hrsg.): . Forschendes Lernen – The wider view – Eine Tagung des Zentrums für Lehrerbildung der Westfaelischen Wilhelms-Universität Muenster vom 25. bis 27.09.2017. Münster: WTM.
  • Kürten R, Wess R, Greefrath G. . „Potentialorientierter Umgang mit Heterogenität durch reflektierte Praxiserfahrung: Professionalisierung von Lehramtsstudierenden im mathematikdidaktischen Lehr-Labor.“ In Beiträge zum Mathematikunterricht 2018, 1119-1122. Münster: WTM-Verlag.
  • Kirsten K. . „Validieren im Beweisprozess - Formen des Validierens und ihre Relevanz für studentische Beweiskonstruktionen.“ In Beiträge zum Mathematikunterricht 2018. Münster: WTM-Verlag. [In Press]
  • Kirsten K. . ‘Theoretical and Empirical Description of Phases in the Proving Processes of Undergraduates.’ In PROCEEDINGS of INDRUM 2018 Second conference of the International Network for Didactic Research in University Mathematics, edited by Durand-Guerrier V, Hochmuth R, Goodchild S, Hogstad N, 326-335. Kristiansand, Norway: University of Agder and INDRUM.
  • Humberg Sarah, Dufner Michael, Schönbrodt Felix, Geukes Katharina, Hutteman Roos, van Zalk Maarten, Denissen Jaap, Nestler Steffen, Back Mitja. . Why Condition-Based Regression Analysis (CRA) is Indeed a Valid Test of Self-Enhancement Effects: A Response to Krueger et al. (2017).’ Collabra: Psychology 4, No. 1. doi: 10.1525/collabra.137.
  • Grosse H, Sako A, Wulkenhaar R. . The \Phi^3_4 and \Phi^3_6 matricial QFT models have reflection positive two-point function.’ Nucl. Phys. B 926: 20-48. doi: 10.1016/j.nuclphysb.2017.10.022.

  • Wulkenhaar R. Integrability in a 4D QFT model.’ contributed to the Oberwolfach workshop Recent Mathematical Developments in Quantum Field Theory, Oberwolfach, . doi: 10.4171/OWR/2016/36.
  • Lechner Gandalf, Schlemmer Jan. . ‘Thermal Equilibrium States for Quantum Fields on Non-commutative Spacetimes.’ In Quantum Mathematical Physics, edited by Finster Felix, Kleiner Johannes, Röken Christian, Tolksdorf Jürgen. Basel: Birkhäuser. doi: 10.1007/978-3-319-26902-3. [In Press]
  • Grosse H, Wulkenhaar R. . A solvable four-dimensional QFT.’ In Quantum Mathematical Physics - A Bridge between Mathematics and Physics, edited by Finster F, Kleiner J, Röken C, Tolksdorf J, 137-161. Springer International Publishing Switzerland 2016. doi: 10.1007/978-3-319-26902-3_8.
  • Eckstein M, Sitarz A, Wulkenhaar R. . The Moyal Sphere.’ J. Math. Phys. 2016, No. 57: 112301. doi: 10.1063/1.4965446.
  • Buss A., Echterhoff S., Willett R. . Exotic crossed products.’ In Operator Algebras and Applications, The Abel Symposium 2015, edited by Carlsen T.M., Larsen N.S., Neshveyev S., Skau C, 61-108.: Springer International Publishing. doi: 10.1007/978-3-319-39286-8-3.
  • Milk R, Rave S, Schindler F. . pyMOR - Generic algorithms and interfaces for model order reduction.’ SIAM Journal on Scientific Computing 38, No. 5: 194-216. doi: 10.1137/15M1026614.
  • Harvey John. . ‘Convergence of isometries, with semicontinuity of symmetry of Alexandrov spaces.’ Proceedings of the American Mathematical Society 2016. doi: 10.1090/proc/12994. [In Press]
  • Barnes D.,Eldred R.,. . ‘Capturing Goodwillie's derivative.’ Journal of Pure and Applied Algebra 220, No. 1: 197-222. doi: 10.1016/j.jpaa.2015.06.006.
  • Arasteh Rad Esmail, Hartl Urs. . Langlands-Rapoport Conjecture over Function Fields , . [Submitted]
  • Maxim Laurentiu, Saito Morihiko, Schürmann Jörg. . ‘Hirzebruch–Milnor Classes and Steenbrink Spectra of Certain Projective Hypersurfaces.’ Contributed to the Arbeitstagung Bonn 2013, Bonn. doi: 10.1007/978-3-319-43648-7_9.
  • Hartl U., Hüsken S. . ‘A criterion for good reduction of Drinfeld modules and Anderson motives in terms of local shtukas.’ Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 15: 25-43. doi: 10.2422/2036-2145.201304_007.
  • Winter Wilhelm. . ‘Classifying crossed product C*-algebras.’ Amer. J. Math 138: 793-820.
  • Winter W. . Classifying crossed product {$\rm C^*$}-algebras.’ Amer. J. Math. 138, No. 3: 793-820. doi: 10.1353/ajm.2016.0029.
  • Schneider Peter, Venjakob Otmar. . ‘Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions.’ In Elliptic Curves, Modular Forms, and Iwasawa Theory, edited by Loeffler D, Zerbes S, 401-468.: Springer.
  • Schneider Peter, Zink Ernst-Wilhelm. . ‘Tempered representations of p-adic groups: Special idempotents and topology.’ Selecta Math. 2016, No. 22: 2209-2242.
  • Haagerup U., Knudby S., de Laat T. . ‘A complete characterization of connected Lie groups with the Approximation Property.’ Annales Scientifiques de l'École Normale Supérieure 49, No. 4: 927-946.
  • Timmermann Thomas. . ‘Integration on algebraic quantum groupoids.’ Internat. J. Math. 27, No. 2. [In Press]
  • Enock M., Timmermann T. . Measured quantum transformation groupoids.’ Journal of Noncommutative Geometry 10, No. 3: 1143-1214. doi: 10.4171/JNCG/257.
  • Buss A., Echterhoff S. . Weakly proper group actions, mansfield’s imprimitivity and twisted landstad duality.’ Transactions of the American Mathematical Society 368, No. 1: 249-280.
  • Buss Alcides, Echterhoff Siegfried. . Rieffel proper actions.’ Journal of Operator Theory 75: 49-73. doi: 10.7900/jot.2014oct28.2047.
  • Farah I, Hart B, Lupini M, Robert L, Tikuisis A, Vignati A, Winter W. . ‘The model theory of nuclear C*-algebras.’ arXiv 2016. [Submitted]
  • Hartl Urs, Juschka Ann-Kristin. . Pink's Theory of Hodge Structures and the Hodge Conjecture over Function Fields , . [Submitted]
  • Winter W. . ‘Operator Algebras and Applications.’ In QDQ vs. UCT, 321-342.: Springer.
  • Hartl Urs. . Isogenies of abelian Anderson A-modules and A-motives , . [Submitted]
  • Hirshberg I, Szabo G, Winter W, Wu J. . ‘Rokhlin dimension for flows.’ Comm. Math. Phys. 2016. [Submitted]
  • Kramer L. . On small abstract quotients of Lie groups and locally compact groups.’ Journal of Geometry null, No. null: 1-23. doi: 10.1007/s00022-016-0315-5. [In Press]
  • Bastian P, Engwer C, Fahlke J, Geveler M, Göddeke D, Iliev O, Ippisch O, Milk R, J M, Müthing S, Ohlberger M, Ribbrock D, Turek S. . ‘Advances concerning multiscale methods and uncertainty quantification in EXA-DUNE.’ In Software for Exascale Computing - SPPEXA 2013-2015, edited by Hans-Joachim Bungartz, Philipp Neumann, Wolfgang E. Nagel, 25-43. doi: 10.1007/978-3-319-40528-5_2.
  • Reis Rui, Weiss Michael. . ‘Pontryagin classes and functor calculus.’ Journal of the European Mathematical Society 2016: 1769-1811. doi: 10.4171/JEMS/629.
  • Evington Samuel, Pennig Ulrich. . ‘Locally trivial W*-bundles.’ International Journal of Mathematics 2016. [Submitted]
  • Benedetti Gabriele. . On closed orbits for twisted autonomous Tonelli Lagrangian flows.’ In Publicaciones Matemáticas del Uruguay, special issue dedicated to Ricardo Mañé, edited by Maderna Ezequiel, Rifford Ludovic, 1. [In Press]
  • Ohlberger M, Rave S, Schindler F. . ‘Adaptive Localized Model Reduction.’ Oberwolfach Reports 13, No. 3: 2406-2409. doi: 10.4171/OWR/2016/42.
  • Nena Röttgen. . ‘Trapped Reeb orbits do not imply periodic ones.’ In Oberwolfach Reports No. 34/2015, edited by Huisken Gerhard.: EMS Publishing House. doi: 10.4171. [Accepted]
  • Hartl Urs, Singh Rajneesh Kumar. . Periods of Drinfeld modules and local shtukas with complex multiplication , . [Submitted]
  • Breuil Christophe, Hellmann Eugen, Schraen Benjamin. . ‘Smoothness and classicality on eigenvarieties.’ Inventiones Math --. [Accepted]
  • Brasselet Jean-Paul, Schürmann Jörg, Yokura Shoji. . ‘Motivic and derived motivic Hirzebruch classes.’ Homology Homotopy Appl. 2016. doi: 10.4310/HHA.2016.v18.n2.a16.
  • Hellmann, Eugen. . ‘Families of p-adic Galois representations and (phi,Gamma)-modules.’ Commentarii Math. Helvetici 91.
  • Breuil Christophe, Hellmann Eugen, Schraen Benjamin. . ‘Une interpretation modulaire de la variete trianguline.’ Math. Annalen --. [Accepted]
  • de Laat T., Mimura M., de la Salle M. . ‘On strong property (T) and fixed point properties for Lie groups.’ Annales de l'Institut Fourier 66, No. 5: 1859-1893. doi: 10.5802/aif.3051.
  • Hellmann Eugen, Benjamin Schraen. . ‘Density of potentially crystalline representations of fixed weight.’ Compositio Math. 152.
  • Geiges Hansjörg, Zehmisch Kai. . ‘The Weinstein conjecture for connected sums.’ International Mathematics Research Notices 2016.
  • Haagerup U., de Laat T. . ‘Simple Lie groups without the Approximation Property II.’ Transactions of the American Mathematical Society 368: 3777-3809. doi: 10.1090/tran/6448.
  • Hansjörg Geiges, Kai Zehmisch. . ‘Reeb dynamics detects odd balls.’ Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15: 663-681.
  • Suhr S., Zehmisch K. . Linking and closed orbits.’ Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 86, No. null: 133-150. doi: 10.1007/s12188-016-0118-5.
  • Geiges H., Zehmisch K. . Cobordisms between symplectic fibrations.’ Manuscripta Mathematica null, No. null: 1-10. doi: 10.1007/s00229-016-0901-8. [In Press]
  • Geiges H., Röttgen N., Zehmisch K. . From a Reeb orbit trap to a Hamiltonian plug.’ Archiv der Mathematik 107, No. 4: 397-404. doi: 10.1007/s00013-016-0916-0.
  • Grosse H, Wulkenhaar R. . On the fixed point equation of a solvable 4D QFT model.’ Vietnam Journal of Mathematics 2016, No. 44: 153-180. doi: 10.1007/s10013-015-0174-7.

  • Cuntz J, Vershik A. . C*-Algebras Associated with Endomorphisms and Polymorphisms of Compact Abelian Groups.’ Communications in Mathematical Physics 321, No. 1: 157-179. doi: 10.1007/s00220-012-1647-0.
  • Cuntz J, Deninger C, Laca M. . C*-algebras of Toeplitz type associated with algebraic number fields.’ Mathematische Annalen 355, No. 4: 1383-1423. doi: 10.1007/s00208-012-0826-9.
  • Buchweitz R-O, Hille L. . Hochschild (co-)homology of schemes with tilting object.’ Transactions of the American Mathematical Society 365, No. 6: 2823-2844.
  • Winges, C. . ‘A note on the L-theory of infinite product categories.’ Forum Mathematicum 25, No. 4: 665-676. doi: 10.1515/FORM.2011.128.
  • Eldred,Rosona R.,. . Cosimplicial models for the limit of the Goodwillie tower.’ Algebraic and Geometric Topology 13, No. 2: 1161-1182. doi: 10.2140/agt.2013.13.1161.
  • Zehmisch,Kai K.,. . ‘The annulus property of simple holomorphic discs.’ Journal of Symplectic Geometry 11, No. 1: 135-161.
  • Cuntz Joachim, Echterhoff Siegfried, Li Xin. . ‘On the K-theory of crossed products by automorphic semigroup actions.’ The Quarterly Journal of Mathematics 64.
  • Zehmisch,Kai K.,Ziltener,Fabian F.,. . ‘Discontinuous symplectic capacities.’ Journal of Fixed Point Theory and Applications 14, No. 1: 299-307. doi: 10.1007/s11784-013-0148-x.
  • Hartl Urs, Kwickert Klaudia. . ‘Constructing the Cubus simus and the Dodecaedron simum via paper folding.’ Geometriae Dedicata 166: 1-14. doi: 10.1007/s10711-012-9781-6.
  • Halupczok K, Suger B. . ‘Partial sums of the Möbius function in arithmetic progressions assuming GRH.’ Functiones et Approximatio 48.1: 61-90.
  • Cappell Sylvain, Maxim Laurentiu, Ohmoto Toru, Schürmann Jörg, Yokura Shoji. . ‘Characteristic classes of Hilbert schemes of points via symmetric products.’ Geom. Topol. 17: 1165-1198. doi: 10.2140/gt.2013.17.1165.
  • Arasteh Rad Esmail, Hartl Urs. . Uniformizing the Stacks of Global G-Shtukas , . [Accepted]
  • Albers P, Frauenfelder U. . Exponential decay for sc-gradient flow lines.’ J. Fixed Point Theory Appl. 13, No. 2: 571--586. doi: 10.1007/s11784-013-0126-3.
  • Albers P, Merry WJ. . Translated points and Rabinowitz Floer homology.’ J. Fixed Point Theory Appl. 13, No. 1: 201--214. doi: 10.1007/s11784-013-0114-7.
  • Schneider P, Venjakob O. . ‘A splitting for K1 of completed group rings.’ Comment. Math. Helv. 88 2013.
  • Toms A S, Winter Wilhelm. . ‘Minimal dynamics and K-theoretic rigidity: Elliott's conjecture.’ Geom. Funct. Anal. 23: 467-481.
  • Schneider P, Venjakob O. . ‘SK_1 and Lie algebras.’ Math. Ann. 357 2013.
  • Schneider P, Venjakob O. . ‘K_1 of certain Iwasawa algebras, after Kakde.’ In Noncommutative Iwasawa Main Conjectures over Totally Real Fields, edited by Coates, Schneider, Sujatha, Venjakob, 79-123.
  • Schneider P. . Modular Representation Theory of Finite Groups.
  • de Laat T. . ‘Approximation properties for noncommutative Lp-spaces associated with lattices in Lie groups.’ Journal of Functional Analysis 264, No. 10: 2300-2322. doi: 10.1016/j.jfa.2013.02.014.
  • Dadarlat Marius, Pennig Ulrich. . A Dixmier-Douady theory for strongly self-absorbing C*-algebras.’ Journal für die reine und angewandte Mathematik 2014. [Accepted]
  • Haagerup U., de Laat T. . ‘Simple Lie groups without the Approximation Property.’ Duke Mathematical Journal 162, No. 5: 925-964. doi: 10.1215/00127094-2087672.
  • Dadarlat Marius, Pennig Ulrich. . Unit spectra of K-theory from strongly self-absorbing C*-algebras.’ Algebraic and Geometric Topology 2015, No. 15: 137-168.
  • Echterhoff S, Laca M. . The primitive ideal space of the C*-algebra of the affine semigroup of algebraic integers.’ Math. Proc. Cambridge Philos. Soc. 154, No. 1: 119--126. doi: 10.1017/S0305004112000485.
  • Hoffkamp Andrea, Schnieder Jörn, Paravicini Walther. . ‘Mathematical enculturation - argumentation and proof at the transition from school to university.’ Contributed to the CERME 8, Antalya, 2013, Antalya.
  • Hartl Urs. . ‘On a Conjecture of Rapoport and Zink.’ Inventiones Mathematicae 193: 627-696. doi: 10.1007/s00222-012-0437-9.
  • Paravicini Walther. . ‘A Generalised Green-Julg Theorem for Proper Groupoids and Banach Algebras.’ Journal of Noncommutative Geometry 7, No. 1: 149-190.
  • Hartl Urs, Hellmann Eugen. . The universal familly of semi-stable p-adic Galois representations , . [Submitted]
  • Larsen Nadia, Li Xin. . ‘Dilations of semigroup crossed products as crossed products of dilations.’ Proceedings of the American Mathematical Society 141: 1597-1603.
  • Halupczok K. . ‘Goldbach's problem with primes in arithmetic progressions and in short intervals.’ J. Théor. Nombres Bordeaux 25, No. 2: 331--351.
  • Li Xin. . ‘Nuclearity of semigroup C*-algebras and the connection to amenability.’ Advances in Mathematics 244: 626-662.
  • Paravicini Walther. . ‘The Spectral Radius in C_0(X)-Banach Algebras.’ Journal of Noncommutative Geometry 7, No. 1: 135-147.
  • Gayral V, Wulkenhaar R. . ‘Spectral geometry of the Moyal plane with harmonic propagation.’ J. Noncommut. Geom 7: 939--979. doi: 10.4171/JNCG/140.
  • Paravicini Walther. . ‘The Bost Conjecture and Proper Banach Algebras.’ Journal of Noncommutative Geometry 7, No. 1: 191-202.
  • Maxim Laurentiu, Schürmann Jörg. . Characteristic classes of singular toric varieties.’ Electron. Res. Announc. Math. sci. 20: 109-120.
  • Boavida de Brito P, Weiss M. . ‘Manifold calculus and homotopy sheaves.’ Homology, Homotopy and Applications 15, No. 2: 361-383. doi: 10.4310/HHA.2013.v15.n2.a20.
  • Joachim Cuntz. . ‘Quillen's work on the foundations of cyclic cohomology.J. K-Theory 2013, No. 11(3): 559-574.
  • Grosse H, Wulkenhaar R. . ‘Construction of a Noncommutative Quantum Field Theory.’ In Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday, edited by Holden H, Simon B, Teschl G, 153--163. American Mathematical Society.
  • Cuntz J, Deninger C, Laca M. . ‘C*-algebras of Toeplitz type associated with algebraic number fields.’ Mathematische Annalen 1. [Accepted]
  • Zehmisch,Kai K.,. . ‘The codisc radius capacity.’ Electronic Research Announcements in Mathematical Sciences 20: 77-96. doi: 10.3934/era.2013.20.77.
  • Quick, Gereon. . ‘Profinite G-spectra.’ Homology, Homotopy and Applications 15: 39. doi: http://dx.doi.org/10.4310/HHA.2013.v15.n1.a9.
  • Geiges, Hansjörg; Zehmisch, Kai. . ‘How to recognize a 4-ball when you see one.’ Münster Journal of Mathematics 6.
  • Quick, Gereon. . ‘Continuous homotopy fixed points for Lubin-Tate spectra.’ Homology, Homotopy and Applications 15: 32. doi: http://dx.doi.org/10.4310/HHA.2013.v15.n1.a10.
  • de Laat T. . ‘On the Grothendieck Theorem for jointly completely bounded bilinear forms.’ In Operator Algebra and Dynamics, edited by T.M. Carlsen et al., 211-221. Berlin: Springer. doi: 10.1007/978-3-642-39459-1_10.
  • Quick, Gereon. . ‘Homotopy theory of smooth compactifications of algebraic varieties.’ New York Journal of Mathematics 19: 12.
  • Hellmann, Eugen. . ‘On arithmetic families of filtered phi-modules and crystalline representations.’ J. Inst. Math. Jussieu 12.
  • Maxim Laurentiu, Saito Morihiko, Schürmann Jörg. . ‘Hirzebruch-Milnor classes of complete intersections.’ Adv. Math. 241: 220-245. doi: 10.1016/j.aim.2013.04.001.

  • Deninger C. . ‘Higher regulators and Hecke L-series of imaginary quadratic fields I.’ Invent. math. 96: 1-69.
  • Cuntz J. . ‘Universal extensions and cyclic cohomology.’ C. R. Acad. Sci. Paris Sér. I Math. 309, No. 1: 5--8.
  • Deninger C. . Higher regulators and Hecke $L$-series of imaginary quadratic fields. I.’ Invent. Math. 96, No. 1: 1--69. doi: 10.1007/BF01393970.
  • Schneider P. . ‘Motivic Iwasawa theory.’ In Algebraic number theory, 421--456. Boston, MA: Academic Press.

  • Cuntz J, Evans DE. . ‘Some remarks on the C*-algebras associated with certain topological Markov chains.’ Math. Scand. 48, No. 2: 235--240.
  • Cuntz J. . ‘A class of C*-algebras and topological Markov chains II. Reducible chains and the Ext-functor for C*-algebras.INVENTIONES MATHEMATICAE 63, No. 1: 25-40. doi: 10.1007/BF01389192.
  • Cuntz J. . ‘K-theory for certain C*-algebras. II.’ J. Operator Theory 5, No. 1: 101--108.
  • Cuntz J. . ‘K-theory for certain C*-algebras.’ ANNALS OF MATHEMATICS 113, No. 1: 181-197.

  • Cuntz J, Pedersen GK. . ‘Equivalence and KMS states on periodic C*-dynamical systems.’ J. Funct. Anal. 34, No. 1: 79--86. doi: 10.1016/0022-1236(79)90026-0.
  • Cuntz J. . ‘Noncommutative Haar measure and algebraic finiteness conditions for simple C*-algebras.’ In Algébres d'opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), 113--133. Paris: CNRS.
  • Cuntz J, Pedersen GK. . ‘Equivalence and traces on C*-algebras.’ J. Funct. Anal. 33, No. 2: 135--164. doi: 10.1016/0022-1236(79)90108-3.
  • Schneider P. . Über gewisse Galoiscohomologiegruppen.’ Math. Z. 168, No. 2: 181--205. doi: 10.1007/BF01214195.

  • Cuntz J. . ‘Murray-von\thinspace Neumann equivalence of projections in infinite simple C*-algebras.’ Rev. Roumaine Math. Pures Appl. 23, No. 7: 1011--1014.
  • Cuntz J. . ‘Dimension functions on simple C*-algebras.’ Math. Ann. 233, No. 2: 145--153. doi: 10.1007/BF01421922.

  • Cuntz J. . ‘The structure of multiplication and addition in simple C*-algebras.’ Mathematica Scandinavica 40, No. 2: 215--233.
  • Cuntz J. . ‘Simple C*-algebras generated by isometries.’ COMMUNICATIONS IN MATHEMATICAL PHYSICS 57, No. 2: 173-185.

  • Cuntz J. . ‘Locally C*-equivalent algebras.’ J. Functional Analysis 23, No. 2: 95--106. doi: 10.1016/0022-1236(76)90068-9.
  • Cuntz J. . ‘On the continuity of semi-norms on operator algebras.’ Math. Ann. 220, No. 2: 171--183. doi: 10.1007/BF01351703.
  • Cuntz J. . „Eine Klasse von postliminalen gewichteten Shiftoperatoren.“ Arch. Math. (Basel) 27, No. 2: 188--198. doi: 10.1007/BF01224659.
  • Behncke H, Cuntz J. . ‘Local completeness of operator algebras.’ Proc. Amer. Math. Soc. 62, No. 1: 95--100.