Research Interests

Research Interests

$\bullet$ Geometry
$\bullet$ Lie groups and locally compact groups
$\bullet$ Geometric group theory
$\bullet$ Nonpositive curvature

Selected Publications

Hofmann KH, Kramer L Transitive actions of locally compact groups on locally contractible spaces. Journal für die reine und angewandte Mathematik Vol. 702, 2015, pp 227-243 online
Kramer L The topology of a semisimple Lie group is essentially unique. Advances in Mathematics Vol. 228 (5), 2011, pp 2623-2633 online
Kramer L, Lytchak A Homogeneous compact geometries. Transformation Groups Vol. 19 (3), 2014, pp 793-852 online
Kramer L Two-transitive Lie groups. Journal für die reine und angewandte Mathematik Vol. 563, 2003 online
Grundhöfer T, Kramer L, Van Maldeghem H, Weiss RM Compact totally disconnected Moufang buildings. Tohoku Mathematical Journal Vol. 64 (3), 2012, pp 333-360 online
Kramer L, Weiss RM Coarse equivalences of Euclidean buildings. Advances in Mathematics Vol. 253, 2014, pp 1-49 online
Kramer L, Stolz S A diffeomorphism classification of manifolds which are like projective planes. Journal of Differential Geometry Vol. 77 (2), 2007 online
Kramer L Projective planes and their look-alikes. Journal of Differential Geometry Vol. 64 (1), 2003 online

Current Cluster Publications

Current Cluster Publications of Prof. Dr. Linus Kramer

$\bullet $ Christopher Deninger, Theo Grundhöfer, and Linus Kramer. Weyl tensors, strongly regular graphs, multiplicative characters, and a quadratic matrix equation. J. Algebra, 656:170–195, October 2024. doi:10.1016/j.jalgebra.2023.08.028.

$\bullet $ Linus Kramer and Raquel Murat García. Fibrations and coset spaces for locally compact groups. arXiv e-prints, August 2024. arXiv:2408.03843.

$\bullet $ Christopher Deninger, Theo Grundhöfer, and Linus Kramer. Weyl tensors, strongly regular graphs, multiplicative characters, and a quadratic matrix equation. Journal of Algebra, September 2023. doi:10.1016/j.jalgebra.2023.08.028.

$\bullet $ Corina Ciobotaru, Linus Kramer, and Petra Schwer. Polyhedral compactifications, I. Advances in Geometry, 23(3):413–436, August 2023. doi:10.1515/advgeom-2023-0018.

$\bullet $ Martin R. Bridson, Cornelia Druţu Badea, Linus Kramer, and Bertrand Rémy. Geometric structures in group theory. Oberwolfach Reports, 19(1):517–576, March 2023. doi:10.4171/owr/2022/11.

$\bullet $ Linus Kramer and Markus J. Stroppel. Hodge operators and exceptional isomorphisms between unitary groups. Journal of Lie Theory, 33(1):329–360, January 2023. URL: www.heldermann.de/JLT/JLT33/JLT331/jlt33015.htm.

$\bullet $ Linus Kramer. Some remarks on proper actions, proper metric spaces, and buildings. Adv. Geom., 22(4):541–559, October 2022. doi:10.1515/advgeom-2022-0018.

$\bullet $ Karl Heinrich Hofmann and Linus Kramer. On weakly complete universal enveloping algebras: a Poincaré-Birkhoff-Witt theorem. J. Lie Theory, 32(3):601–642, October 2022.

$\bullet $ Linus Kramer and Markus J. Stroppel. Hodge operators and groups of isometries of diagonalizable symmetric bilinear forms in characteristic two. arXiv e-prints, August 2022. arXiv:2208.11326.

$\bullet $ Linus Kramer. A note on commutators in compact semisimple Lie algebras. arXiv e-prints, April 2022. arXiv:2204.09913.

$\bullet $ Linus Kramer, Peter Kramer, and Vladimir Man’ko. A new product on $2 \times 2$ matrices. J. Phys. Conf. Ser., 1612(1):012018, August 2020. doi:10.1088/1742-6596/1612/1/012018.

$\bullet $ Karl Heinrich Hofmann and Linus Kramer. On weakly complete group algebras of compact groups. J. Lie Theory, 30(2):407–424, June 2020.

$\bullet $ Oskar Braun, Karl H. Hofmann, and Linus Kramer. Automatic continuity of abstract homomorphisms between locally compact and polish groups. Transform. Groups, 25(1):1–32, March 2020. doi:10.1007/s00031-019-09537-4.

$\bullet $ Linus Kramer and Olga Varghese. Abstract homomorphisms from locally compact groups to discrete groups. J. Algebra, 538:127–139, November 2019. doi:10.1016/j.jalgebra.2019.07.026.

$\bullet $ Karl Heinrich Hofmann and Linus Kramer. Group algebras of compact groups. arXiv e-prints, September 2019. arXiv:1904.00806.

$\bullet $ Wolfgang Herfort, Karl H. Hofmann, Linus Kramer, and Francesco G. Russo. The Sylow structure of scalar automorphism groups. Topology Appl., 263:26–43, August 2019. doi:10.1016/j.topol.2019.05.027.

$\bullet $ Linus Kramer and Alexander Lytchak. Erratum to: “Homogeneous compact geometries”. Transform. Groups, 24(2):589–596, April 2019. doi:10.1007/s00031-019-09524-9.