Recent Publications of PD Dr. Michael Wiemeler
$\bullet $ Michael Wiemeler.
Witten genera of complete intersections.
arXiv e-prints, October 2024.
arXiv:2410.21412.
$\bullet $ Johannes Ebert and Michael Wiemeler.
On the homotopy type of the space of metrics of positive scalar curvature.
Journal of the European Mathematical Society, 26(9):3327–3363, July 2024.
doi:10.4171/JEMS/1333.
$\bullet $ Michael Wiemeler.
On a conjecture of Stolz in the toric case.
Proceedings of the American Mathematical Society, 152(8):3617–3621, June 2024.
doi:10.1090/proc/16823.
$\bullet $ Anusha M. Krishnan and Michael Wiemeler.
$10$-dimensional positively curved manifolds with $t^3$-symmetry.
arXiv e-prints, October 2023.
arXiv:2310.12689.
$\bullet $ Michael Wiemeler.
On circle actions with exactly three fixed points.
arXiv e-prints, March 2023.
arXiv:2303.15396.
$\bullet $ Michael Wiemeler.
Rigidity of elliptic genera for non-spin manifolds.
arXiv e-prints, December 2022.
arXiv:2212.01059.
$\bullet $ Lee Kennard, Michael Wiemeler, and Burkhard Wilking.
Positive curvature, torus symmetry, and matroids.
arXiv e-prints, December 2022.
arXiv:2212.08152.
$\bullet $ Michael Wiemeler.
Smooth classification of locally standard $T^k$-manifolds.
Osaka J. Math, 59(3):549–557, July 2022.
doi:10.18910/88486.
$\bullet $ Wilderich Tuschmann and Michael Wiemeler.
On the topology of moduli spaces of non-negatively curved Riemannian metrics.
Math. Ann., 384(3–4):1629–1651, December 2021.
doi:10.1007/s00208-021-02327-y.
$\bullet $ Oliver Goertsches and Michael Wiemeler.
Non-negatively curved GKM orbifolds.
Math. Z., September 2021.
doi:10.1007/s00209-021-02853-0.
$\bullet $ Lee Kennard, Michael Wiemeler, and Burkhard Wilking.
Splitting of torus representations and applications in the Grove symmetry program.
arXiv e-prints, June 2021.
arXiv:2106.14723.
$\bullet $ Michael Wiemeler.
On moduli spaces of positive scalar curvature metrics on highly connected manifolds.
Int. Math. Res. Notices, January 2020.
doi:10.1093/imrn/rnz386.
$\bullet $ Michael Wiemeler.
Classification of rationally elliptic toric orbifolds.
Arch. Math. (Basel), 114(6):641–647, January 2020.
doi:10.1007/s00013-019-01430-6.
$\bullet $ Wilderich Tuschmann and Michael Wiemeler.
Smooth stability and sphere theorems for manifolds and Einstein manifolds with positive scalar curvature.
Comm. Anal. Geom., 27(2):491–509, August 2019.
doi:10.4310/CAG.2019.v27.n2.a8.
$\bullet $ Michael Wiemeler.
$S^1$-Equivariant bordism, invariant metrics of positive scalar curvature, and rigidity of elliptic genera.
J. Topol. Anal., pages 1–54, January 2019.
doi:10.1142/s1793525319500766.
$\bullet $ Bernhard Hanke and Michael Wiemeler.
An equivariant Quillen theorem.
Adv. Math., 340:48–75, December 2018.
doi:10.1016/j.aim.2018.10.009.
$\bullet $ Fernando Galaz-García, Martin Kerin, Marco Radeschi, and Michael Wiemeler.
Torus orbifolds, slice-maximal torus actions, and rational ellipticity.
Int. Math. Res. Not. IMRN, pages 5786–5822, March 2018.
doi:10.1093/imrn/rnx064.
$\bullet $ Anand Dessai and Michael Wiemeler.
Complete intersections with $S^1$-action.
Transform. Groups, 22(2):295–320, June 2017.
doi:10.1007/s00031-017-9418-9.
$\bullet $ Michael Wiemeler.
Circle actions and scalar curvature.
Trans. Amer. Math. Soc., 368(4):2939–2966, January 2016.
doi:10.1090/tran/6666.
$\bullet $ Michael Wiemeler.
Torus manifolds and non-negative curvature.
J. Lond. Math. Soc. (2), 91(3):667–692, April 2015.
doi:10.1112/jlms/jdv008.
$\bullet $ Oliver Goertsches and Michael Wiemeler.
Positively curved GKM-manifolds.
Int. Math. Res. Not. IMRN, pages 12015–12041, February 2015.
doi:10.1093/imrn/rnv046.
$\bullet $ Michael Wiemeler.
Exotic torus manifolds and equivariant smooth structures on quasitoric manifolds.
Math. Z., 273(3-4):1063–1084, April 2013.
doi:10.1007/s00209-012-1044-6.
$\bullet $ Michael Wiemeler.
Dirac operators and symmetries of quasitoric manifolds.
Algebr. Geom. Topol., 13(1):277–312, February 2013.
doi:10.2140/agt.2013.13.277.
$\bullet $ Michael Wiemeler.
Torus manifolds with non-abelian symmetries.
Trans. Amer. Math. Soc., 364(3):1427–1487, January 2012.
doi:10.1090/S0002-9947-2011-05463-2.