Research Interests

Research Interests

$\bullet$ Operator algebras associated with groups.
$\bullet$ Geometric and analytic group theory.
$\bullet$ Expander graphs.

Selected Publications

Selected Publications of Tim de Laat

$\bullet$ Y. Arano, T. de Laat, and J. Wahl. Howe–moore type theorems for quantum groups and rigid $c^{\ast}$-tensor categories. Compositio Mathematica, 154(2):328–341, 2018.

$\bullet$ T. de Laat, M. Mimura, and M. de la Salle. On strong property ( T) and fixed point properties for Lie groups. Ann. Inst. Fourier (Grenoble), 66(5):1859–1893, 2016.

$\bullet$ U. Haagerup and T. de Laat. Simple Lie groups without the Approximation Property {II}. Trans. Amer. Math. Soc., 368(6):3777–3809, 2016.

$\bullet$ U. Haagerup, S. Knudby, and T. de Laat. A complete characterization of connected Lie groups with the Approximation Property. Ann. Sci. \'Ec. Norm. Supér. (4), 49(4):927–946, 2016.

$\bullet$ T. de Laat and M. de la Salle. Approximation properties for noncommutative $L^p$-spaces of high rank lattices and nonembeddability of expanders. J. Reine Angew. Math. (ahead of print), 2015+. {doi:10.1515/crelle-2015-0043}

$\bullet$ T. de Laat and M. de la Salle. Strong property ( T) for higher-rank simple Lie groups. Proc. Lond. Math. Soc. (3), 111(4):936–966, 2015.

$\bullet$ T. de Laat. On the Grothendieck theorem for jointly completely bounded bilinear forms. In Operator algebra and dynamics, volume 58 of Springer Proc. Math. Stat., pages 211–221. Springer, Heidelberg, 2013.

$\bullet$ T. de Laat. Approximation properties for noncommutative $L^p$-spaces associated with lattices in Lie groups. J. Funct. Anal., 264(10):2300–2322, 2013.

$\bullet$ U. Haagerup and T. de Laat. Simple Lie groups without the Approximation Property. Duke Math. J., 162(5):925–964, 2013.

$\bullet$ G. Heckman and T. de Laat. On the regularization of the Kepler problem. J. Symplectic Geom., 10(3):463–473, 2012.

Current Publications

$\bullet $ T. de Laat and T. Siebenand. Exotic group $C^*$-algebras of simple Lie groups with real rank one. arXiv e-prints, December 2019. arXiv:1912.02128.

$\bullet $ T. de Laat and F. Vigolo. Superexpanders from group actions on compact manifolds. Geometriae Dedicata, 200(1):287–302, June 2019. doi:10.1007/s10711-018-0371-0.