Private Homepagehttps://www.uni-muenster.de/Arithm/hellmann/index.html
Research InterestsArithmetische Algebraische Geometrie
Langlands Programm
p-adische Hodge Theorie und p-adische Galoisdarstellungen
p-adische automorphe Formen und p-adisches Langlands Programm
Project membership
Mathematics Münster


A: Arithmetic and Groups

A1: Arithmetic, geometry and representations
Current PublicationsHellmann, Eugen On the derived category of the Iwahori-Hecke algebra. Compositio Mathematica Vol. 159 (5), 2023 online
Hellmann, Eugen Density of automorphicpoints in deformation rings of polarized global Galois representations. Duke Mathematical Journal Vol. 171 (13), 2022 online
Hellmann, Eugen Hartl, Urs The universal family of semi-stable p-adic Galois representations. Algebra and Number Theory Vol. 14 (5), 2020 online
Hellmann, Eugen A local model for the triangulate variety and applications. Publications Mathématiques de L'IHÉS Vol. 130, 2019 online
Current ProjectsCRC 1442: Geometry: Deformation and Rigidity - A01: Automorphic forms and the p-adic Langlands programme The p-adic Langlands programme aims to establish a relation between p-adic representations of p-adic reductive groups and p-adic representations of Galois groups of p-adic local fields. We plan an in depth study of the smooth mod p representation theory of reductive groups on the level of derived categories. In first relevant test cases we want to construct functors from representations of reductive groups to sheaves on deformation spaces of Galois representations. online
CRC 1442: Geometry: Deformation and Rigidity - A02: Moduli spaces of p-adic Galois representations p-adic Galois representations in finite Zp-modules are equivalent to (phi,Gamma)-modules for Qp. In this project, we develop the theory of (phi,Gamma)-modules further in the direction of finite extensions of Qp and their function field analogues. We will also use (phi,Gamma)-modules to construct moduli spaces of p-adic Galois representations. We aim to decompose special fibres on these moduli spaces into cycles in a way that mirrors multiplicity formulas in representation theory. online
EXC 2044 - A1: Arithmetic, geometry and representations The Langlands programme relates representations of (the adele valued points of) reductive groups G over Q - so-called automorphic representations - with certain representations of the absolute Galois group of Q. This programme includes the study of these objects over general global fields (finite extension of Q or Fp (t)) and local fields as well. In its local form the classical programme onlyconsidered l-adic Galois representations of p-adic fields for unequal primes l neq p. In order to allow for a p-adic variation of the objects, it is absolutely crucial to extend it to the case l = p. In the global situation, the automorphic representations in question can often be realised in (or studied via) the cohomology of a tower of Shimura varieties (or related moduli spaces) attached to the group G. We will focus on the following directions within this programme: The p-adic and mod p Langlands programme asks for an extension of such a correspondence involving certain continuous representations with p-adic respectively mod p coefficients. Broadening the perspective to p-adic automorphic forms should, for example, enable us to capture all Galois representations, not just those having a particular Hodge theoretic behaviour at primes dividing p. This extended programme requires the introduction of derived categories. We will study differential graded Hecke algebras and their derived categories on the reductive group side. On the Galois side, we hope to use derived versions of the moduli spaces of p-adic Galois representations introduced by Emerton and Gee. The geometric Langlands programme is a categorification of the Langlands programme. We plan to unify the different approaches using motivic methods. In another direction, we study the geometry and arithmetic of moduli stacks of global G-shtukas over function fields. Their cohomology has been the crucial tool to establish large parts of the local and global Langlands programme over function fields. Variants of G-shtukas are also used to construct and investigate families of p-adic Galois representations.

Cohomology theories are a universal tool pervading large parts of algebraic and arithmetic geometry. We will develop and study cohomology theories, especially in mixed characteristic, that generalise and unify étale cohomology, crystalline cohomology and de Rham cohomology as well as Hochschild cohomology in the non-commutative setting. Developing (topological) cyclic homology in new contexts is an important aim. A main goal is to construct a cohomology theory that can serve the same purposes for arithmetic schemes as the l-adic or crystalline cohomology with their Frobenius actions for varieties over finite fields. Ideas from algebraic geometry, algebraic topology, operator algebras and analysis blend in these investigations. online
E-Maile.hellmann@uni-muenster.de
Phone+49 251 83-33723
FAX+49 251 83-33786
Room318
Secretary   Sekretariat Harenbrock/Reckermann
Frau Ina Reckermann
Telefon +49 251 83-33700
Fax +49 251 83-33786
Zimmer 316
AddressProf. Dr. Eugen Hellmann
Mathematisches Institut
Fachbereich Mathematik und Informatik der Universität Münster
Einsteinstrasse 62
48149 Münster
Deutschland
Diese Seite editieren