Forschungsschwerpunkte Calculus of Variations Elliptic PDEs Gamma-convergence Homogenization Free-discontinuity problems Nonlinear elasticity Plasticity and dislocations in crystals
Publikationen AuswahlGesamtlisteAuswahlRuf, Matthias; Zeppieri, Caterina Ida. 2023. „Stochastic homogenization of degenerate integral functionals with linear growth.“ Calculus of Variations and Partial Differential Equations 62 (138) 138. doi: 10.1007/s00526-023-02476-9.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2022. „A global method for deterministic and stochastic homogenisation in BV.“ Annals of PDE 8 (1): 8–8. doi: 10.1007/s40818-022-00119-4.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2019. „Γ-convergence of free-discontinuity problems.“ Annales de l'Institut Henri Poincaré C. Analyse non linéaire 36 (4): 1035–1079. doi: 10.1016/j.anihpc.2018.11.003.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2019. „Stochastic homogenisation of free-discontinuity problems.“ Archive for Rational Mechanics and Analysis 233 (2): 935–974. doi: 10.1007/s00205-019-01372-x.Barchiesi, Marco, Lazzaroni, Giuliano, und Zeppieri, Caterina Ida. 2016. „A bridging mechanism in the homogenisation of brittle composites with soft inclusions.“ SIAM Journal on Mathematical Analysis 48 (2): 1178–1209. doi: 10.1137/15M1007343.Ansini, Nadia, Dal Maso, Gianni, und Zeppieri, Caterina Ida. 2014. „New results on Γ-limits of integral functionals.“ Annales de l'Institut Henri Poincaré C. Analyse non linéaire 31: 185–202.Müller, Stefan, Scardia, Lucia, und Zeppieri, Caterina Ida. 2014. „Geometric rigidity for incompatible fields and an application to strain-gradient plasticity.“ Indiana University Mathematics Journal 63 (5): 1365–1396. doi: 10.1512/iumj.2014.63.5330.Scardia, Lucia, und Zeppieri, Caterina Ida. 2012. „Line-tension model for plasticity as the Γ-limit of a nonlinear dislocation energy.“ SIAM Journal on Mathematical Analysis 44 (4): 2372–2400. doi: 10.1137/110824851.Ansini, Nadia, und Zeppieri, Caterina Ida. 2012. „Asymptotic analysis of nonsymmetric linear operators via Γ-convergence.“ SIAM Journal on Mathematical Analysis 44 (3): 1617–1635. doi: 10.1137/110834330.Cicalese, Marco, Spadaro, Emanuele Nunzio, und Zeppieri, Caterina Ida. 2011. „Asymptotic analysis of a second-order singular perturbation model for phase transitions.“ Calculus of Variations and Partial Differential Equations 41 (1-2): 127–150. doi: 10.1007/s00526-010-0356-9.GesamtlisteForschungsartikel (Zeitschriften)Lazzaroni, Giuliano; Wozniak, Piotr; Zeppieri, Caterina Ida. 2025. „Strong approximation of special functions of bounded variation functions with prescribed jump direction.“ Mathematical News / Mathematische Nachrichten 298 (1): 312–327. doi: 10.1002/mana.202300346.Bach, A.; Marziani, R.; Zeppieri, C.I.. 2023. „Γ-convergence and stochastic homogenisation of singularly-perturbed elliptic functionals.“ Calculus of Variations and Partial Differential Equations 62 (199).Bach, A.; Esposito, T.; Marziani, R; Zeppieri, C.I.. 2023. „Gradient Damage Models for Heterogeneous Materials.“ SIAM Journal on Mathematical Analysis 55 (4). doi: 10.1137/22M1499145.Ruf, Matthias; Zeppieri, Caterina Ida. 2023. „Stochastic homogenization of degenerate integral functionals with linear growth.“ Calculus of Variations and Partial Differential Equations 62 (138) 138. doi: 10.1007/s00526-023-02476-9.D'Onofrio, C.; Zeppieri, C.I.. 2023. „Gamma-convergence and stochastic homogenisation of degenerate integral functionals in weighted Sobolev spaces.“ Proceedings of the Royal Society of Edinburgh. Section A: Mathematics 153 (2).Pellet, X.; Scardia, L.; Zeppieri, C.I.. 2023. „Stochastic homogenisation of free-discontinuity functionals in randomly perforated domains.“ Advances in Calculus of Variations 17 (3). doi: 10.1515/acv-2022-0052.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2022. „A global method for deterministic and stochastic homogenisation in BV.“ Annals of PDE 8 (1): 8–8. doi: 10.1007/s40818-022-00119-4.Cicalese, M; Focardi, M.; Zeppieri, C.I.. 2021. „Phase-Field Approximation of Functionals Defined on Piecewise-Rigid Maps.“ Journal of Nonlinear Science 31 (78).Bach, A; Braides, A.; Zeppieri, C.I.. 2020. „Quantitative analysis of finite-difference approximations of free-discontinuity problems.“ Interfaces and Free Boundaries 22. doi: 10.4171/IFB/443.Zeppieri, C.I.. 2020. „Homogenisation of high-contrast brittle materials.“ Mathematics in Engineering 2 (1).Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2019. „Γ-convergence of free-discontinuity problems.“ Annales de l'Institut Henri Poincaré C. Analyse non linéaire 36 (4): 1035–1079. doi: 10.1016/j.anihpc.2018.11.003.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2019. „Stochastic homogenisation of free-discontinuity problems.“ Archive for Rational Mechanics and Analysis 233 (2): 935–974. doi: 10.1007/s00205-019-01372-x.Pellet, X, Scardia, L, und Zeppieri, CI. 2019. „Homogenization of high-contrast Mumford-Shah energies.“ SIAM J. Math. Anal. 51: 1696–1729.I., Zeppieri C. 2016. „Stochastic homogenisation of singularly-perturbed integral functionals.“ Ann. Mat. Pura Appl. 195.Bevan, JJ, und Zeppieri, CI. 2016. „A simple sufficient condition for the quasiconvexity of elastic stored-energy functions in spaces which allow for cavitation.“ Calc. Var. Partial Diff. Equations 55.Barchiesi, Marco, Lazzaroni, Giuliano, und Zeppieri, Caterina Ida. 2016. „A bridging mechanism in the homogenisation of brittle composites with soft inclusions.“ SIAM Journal on Mathematical Analysis 48 (2): 1178–1209. doi: 10.1137/15M1007343.Burger, Martin, Esposito, Teresa, und Zeppieri, Caterina Ida. 2015. „Second-order edge-penalization in the Ambrosio-Tortorelli functional.“ Multiscale Model. Simul. 13 (4): 1354–1389.Ansini, Nadia, Dal Maso, Gianni, und Zeppieri, Caterina Ida. 2014. „New results on Γ-limits of integral functionals.“ Annales de l'Institut Henri Poincaré C. Analyse non linéaire 31: 185–202.Müller, Stefan, Scardia, Lucia, und Zeppieri, Caterina Ida. 2014. „Geometric rigidity for incompatible fields and an application to strain-gradient plasticity.“ Indiana University Mathematics Journal 63 (5): 1365–1396. doi: 10.1512/iumj.2014.63.5330.Ansini, N, Dal, Maso G, und Zeppieri, C.I. 2013. „Γ-convergence and H-convergence of linear elliptic operators.“ J. Math. Pures Appl. 99: 321–329.Scardia, Lucia, und Zeppieri, Caterina Ida. 2012. „Line-tension model for plasticity as the Γ-limit of a nonlinear dislocation energy.“ SIAM Journal on Mathematical Analysis 44 (4): 2372–2400. doi: 10.1137/110824851.Ansini, Nadia, und Zeppieri, Caterina Ida. 2012. „Asymptotic analysis of nonsymmetric linear operators via Γ-convergence.“ SIAM Journal on Mathematical Analysis 44 (3): 1617–1635. doi: 10.1137/110834330.Cicalese, Marco, Spadaro, Emanuele Nunzio, und Zeppieri, Caterina Ida. 2011. „Asymptotic analysis of a second-order singular perturbation model for phase transitions.“ Calculus of Variations and Partial Differential Equations 41 (1-2): 127–150. doi: 10.1007/s00526-010-0356-9.Dal, Maso G, und Zeppieri, C.I. 2010. „Homogenization of fiber reinforced brittle materials: The intermediate case.“ Advances in Calculus of Variations 3 (4): 345–370. doi: 10.1515/ACV.2010.011.Braides, A, und Zeppieri, C.I. 2009. „Multiscale analysis of a prototypical model for the interaction between microstructure and surface energy.“ Interfaces and Free Boundaries 11 (1): 61–108.Cicalese, M, DeSimone, A, und Zeppieri, C.I. 2009. „Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers.“ Networks and Heterogeneous Media 4 (4): 667–708. doi: 10.3934/nhm.2009.4.667.Ansini, N, Babadjian, J.F., und Zeppieri, C.I. 2007. „The Neumann sieve problem and dimensional reduction: A multiscale approach.“ Mathematical Models and Methods in Applied Sciences 17 (5): 681–735. doi: 10.1142/S0218202507002078.Braides, A, und Zeppieri, C.I. 2007. „A note on equi-integrability in dimension reduction problems.“ Calculus of Variations and Partial Differential Equations 29 (2): 231–238. doi: 10.1007/s00526-006-0065-6.Forschungsartikel (Buchbeiträge)Müller, Stefan, Scardia, Lucia, und Zeppieri, Caterina Ida. 2015. „Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations.“ In Analysis and Computation of Microstructure in Finite Plasticity, Bd. 78 aus Lecture Notes in Applied and Computational Mechanics, herausgegeben von Sergio Conti und Klaus Hackl.
Publikationen AuswahlGesamtlisteAuswahlRuf, Matthias; Zeppieri, Caterina Ida. 2023. „Stochastic homogenization of degenerate integral functionals with linear growth.“ Calculus of Variations and Partial Differential Equations 62 (138) 138. doi: 10.1007/s00526-023-02476-9.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2022. „A global method for deterministic and stochastic homogenisation in BV.“ Annals of PDE 8 (1): 8–8. doi: 10.1007/s40818-022-00119-4.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2019. „Γ-convergence of free-discontinuity problems.“ Annales de l'Institut Henri Poincaré C. Analyse non linéaire 36 (4): 1035–1079. doi: 10.1016/j.anihpc.2018.11.003.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2019. „Stochastic homogenisation of free-discontinuity problems.“ Archive for Rational Mechanics and Analysis 233 (2): 935–974. doi: 10.1007/s00205-019-01372-x.Barchiesi, Marco, Lazzaroni, Giuliano, und Zeppieri, Caterina Ida. 2016. „A bridging mechanism in the homogenisation of brittle composites with soft inclusions.“ SIAM Journal on Mathematical Analysis 48 (2): 1178–1209. doi: 10.1137/15M1007343.Ansini, Nadia, Dal Maso, Gianni, und Zeppieri, Caterina Ida. 2014. „New results on Γ-limits of integral functionals.“ Annales de l'Institut Henri Poincaré C. Analyse non linéaire 31: 185–202.Müller, Stefan, Scardia, Lucia, und Zeppieri, Caterina Ida. 2014. „Geometric rigidity for incompatible fields and an application to strain-gradient plasticity.“ Indiana University Mathematics Journal 63 (5): 1365–1396. doi: 10.1512/iumj.2014.63.5330.Scardia, Lucia, und Zeppieri, Caterina Ida. 2012. „Line-tension model for plasticity as the Γ-limit of a nonlinear dislocation energy.“ SIAM Journal on Mathematical Analysis 44 (4): 2372–2400. doi: 10.1137/110824851.Ansini, Nadia, und Zeppieri, Caterina Ida. 2012. „Asymptotic analysis of nonsymmetric linear operators via Γ-convergence.“ SIAM Journal on Mathematical Analysis 44 (3): 1617–1635. doi: 10.1137/110834330.Cicalese, Marco, Spadaro, Emanuele Nunzio, und Zeppieri, Caterina Ida. 2011. „Asymptotic analysis of a second-order singular perturbation model for phase transitions.“ Calculus of Variations and Partial Differential Equations 41 (1-2): 127–150. doi: 10.1007/s00526-010-0356-9.GesamtlisteForschungsartikel (Zeitschriften)Lazzaroni, Giuliano; Wozniak, Piotr; Zeppieri, Caterina Ida. 2025. „Strong approximation of special functions of bounded variation functions with prescribed jump direction.“ Mathematical News / Mathematische Nachrichten 298 (1): 312–327. doi: 10.1002/mana.202300346.Bach, A.; Marziani, R.; Zeppieri, C.I.. 2023. „Γ-convergence and stochastic homogenisation of singularly-perturbed elliptic functionals.“ Calculus of Variations and Partial Differential Equations 62 (199).Bach, A.; Esposito, T.; Marziani, R; Zeppieri, C.I.. 2023. „Gradient Damage Models for Heterogeneous Materials.“ SIAM Journal on Mathematical Analysis 55 (4). doi: 10.1137/22M1499145.Ruf, Matthias; Zeppieri, Caterina Ida. 2023. „Stochastic homogenization of degenerate integral functionals with linear growth.“ Calculus of Variations and Partial Differential Equations 62 (138) 138. doi: 10.1007/s00526-023-02476-9.D'Onofrio, C.; Zeppieri, C.I.. 2023. „Gamma-convergence and stochastic homogenisation of degenerate integral functionals in weighted Sobolev spaces.“ Proceedings of the Royal Society of Edinburgh. Section A: Mathematics 153 (2).Pellet, X.; Scardia, L.; Zeppieri, C.I.. 2023. „Stochastic homogenisation of free-discontinuity functionals in randomly perforated domains.“ Advances in Calculus of Variations 17 (3). doi: 10.1515/acv-2022-0052.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2022. „A global method for deterministic and stochastic homogenisation in BV.“ Annals of PDE 8 (1): 8–8. doi: 10.1007/s40818-022-00119-4.Cicalese, M; Focardi, M.; Zeppieri, C.I.. 2021. „Phase-Field Approximation of Functionals Defined on Piecewise-Rigid Maps.“ Journal of Nonlinear Science 31 (78).Bach, A; Braides, A.; Zeppieri, C.I.. 2020. „Quantitative analysis of finite-difference approximations of free-discontinuity problems.“ Interfaces and Free Boundaries 22. doi: 10.4171/IFB/443.Zeppieri, C.I.. 2020. „Homogenisation of high-contrast brittle materials.“ Mathematics in Engineering 2 (1).Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2019. „Γ-convergence of free-discontinuity problems.“ Annales de l'Institut Henri Poincaré C. Analyse non linéaire 36 (4): 1035–1079. doi: 10.1016/j.anihpc.2018.11.003.Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, und Zeppieri, Caterina Ida. 2019. „Stochastic homogenisation of free-discontinuity problems.“ Archive for Rational Mechanics and Analysis 233 (2): 935–974. doi: 10.1007/s00205-019-01372-x.Pellet, X, Scardia, L, und Zeppieri, CI. 2019. „Homogenization of high-contrast Mumford-Shah energies.“ SIAM J. Math. Anal. 51: 1696–1729.I., Zeppieri C. 2016. „Stochastic homogenisation of singularly-perturbed integral functionals.“ Ann. Mat. Pura Appl. 195.Bevan, JJ, und Zeppieri, CI. 2016. „A simple sufficient condition for the quasiconvexity of elastic stored-energy functions in spaces which allow for cavitation.“ Calc. Var. Partial Diff. Equations 55.Barchiesi, Marco, Lazzaroni, Giuliano, und Zeppieri, Caterina Ida. 2016. „A bridging mechanism in the homogenisation of brittle composites with soft inclusions.“ SIAM Journal on Mathematical Analysis 48 (2): 1178–1209. doi: 10.1137/15M1007343.Burger, Martin, Esposito, Teresa, und Zeppieri, Caterina Ida. 2015. „Second-order edge-penalization in the Ambrosio-Tortorelli functional.“ Multiscale Model. Simul. 13 (4): 1354–1389.Ansini, Nadia, Dal Maso, Gianni, und Zeppieri, Caterina Ida. 2014. „New results on Γ-limits of integral functionals.“ Annales de l'Institut Henri Poincaré C. Analyse non linéaire 31: 185–202.Müller, Stefan, Scardia, Lucia, und Zeppieri, Caterina Ida. 2014. „Geometric rigidity for incompatible fields and an application to strain-gradient plasticity.“ Indiana University Mathematics Journal 63 (5): 1365–1396. doi: 10.1512/iumj.2014.63.5330.Ansini, N, Dal, Maso G, und Zeppieri, C.I. 2013. „Γ-convergence and H-convergence of linear elliptic operators.“ J. Math. Pures Appl. 99: 321–329.Scardia, Lucia, und Zeppieri, Caterina Ida. 2012. „Line-tension model for plasticity as the Γ-limit of a nonlinear dislocation energy.“ SIAM Journal on Mathematical Analysis 44 (4): 2372–2400. doi: 10.1137/110824851.Ansini, Nadia, und Zeppieri, Caterina Ida. 2012. „Asymptotic analysis of nonsymmetric linear operators via Γ-convergence.“ SIAM Journal on Mathematical Analysis 44 (3): 1617–1635. doi: 10.1137/110834330.Cicalese, Marco, Spadaro, Emanuele Nunzio, und Zeppieri, Caterina Ida. 2011. „Asymptotic analysis of a second-order singular perturbation model for phase transitions.“ Calculus of Variations and Partial Differential Equations 41 (1-2): 127–150. doi: 10.1007/s00526-010-0356-9.Dal, Maso G, und Zeppieri, C.I. 2010. „Homogenization of fiber reinforced brittle materials: The intermediate case.“ Advances in Calculus of Variations 3 (4): 345–370. doi: 10.1515/ACV.2010.011.Braides, A, und Zeppieri, C.I. 2009. „Multiscale analysis of a prototypical model for the interaction between microstructure and surface energy.“ Interfaces and Free Boundaries 11 (1): 61–108.Cicalese, M, DeSimone, A, und Zeppieri, C.I. 2009. „Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers.“ Networks and Heterogeneous Media 4 (4): 667–708. doi: 10.3934/nhm.2009.4.667.Ansini, N, Babadjian, J.F., und Zeppieri, C.I. 2007. „The Neumann sieve problem and dimensional reduction: A multiscale approach.“ Mathematical Models and Methods in Applied Sciences 17 (5): 681–735. doi: 10.1142/S0218202507002078.Braides, A, und Zeppieri, C.I. 2007. „A note on equi-integrability in dimension reduction problems.“ Calculus of Variations and Partial Differential Equations 29 (2): 231–238. doi: 10.1007/s00526-006-0065-6.Forschungsartikel (Buchbeiträge)Müller, Stefan, Scardia, Lucia, und Zeppieri, Caterina Ida. 2015. „Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations.“ In Analysis and Computation of Microstructure in Finite Plasticity, Bd. 78 aus Lecture Notes in Applied and Computational Mechanics, herausgegeben von Sergio Conti und Klaus Hackl.