• Publikationen

    • Löwe, Matthias; Terveer, Sara. . ‘A Central Limit Theorem for incomplete U-statistics over triangular arrays.’ Brazilian Journal of Probability and Statistics 35, Nr. 3: 499–522. doi: 10.1214/20-BJPS492.
    • Gripon V., Heusel J., Löwe M., Vermet F. . ‘A Comparative Study of Sparse Associative Memories.’ Journal of Statistical Physics 164, Nr. 1: 105–129. doi: 10.1007/s10955-016-1530-z.
    • Heusel J., Löwe M., Vermet F. . ‘On the capacity of an associative memory model based on neural cliques.’ Statistics and Probability Letters 106, Nr. null: 256–261. doi: 10.1016/j.spl.2015.07.026.
    • Löwe M., Vermet F. . ‘Capacity of an associative memory model on random graph architectures.’ Bernoulli 21, Nr. 3: 1884–1910. doi: 10.3150/14-BEJ630.
    • Löwe M., Torres F. . ‘On hitting times for a simple random walk on dense Erdös-Rényi random graphs.’ Statistics and Probability Letters 89, Nr. 1: 81–88. doi: 10.1016/j.spl.2014.02.017.
    • Eichelsbacher P., Löwe M. . „90 Jahre Lindeberg-Methode.“ Mathematische Semesterberichte 61, Nr. 1: 7–34. doi: 10.1007/s00591-013-0118-9.
    • Friesen O, Löwe M. . ‘On the spectral density of large sample covariance matrices with Markov dependent columns.’ Markov processes and related fields 20, Nr. 2: 349–374.
    • Friesen O., Lowe M. . ‘The semicircle law for matrices with dependent entries.’ Contributed to the Limit Theormems in Probability, Bielefeld, Deutschland. doi: 10.1007/978-3-642-36068-8_13.
    • Gerold A., Lowe M. . ‘Random Matrices and Iterated Random Functions.’ Contributed to the Workshop "Random Matrices and Iterated Random Functions", Munster, deu. doi: 10.1007/978-3-642-38806-4.
    • Löwe M., Meiners R., Torres F. . ‘Large deviations principle for Curie-Weiss models with random fields.’ Journal of Physics A: Mathematical and Theoretical 46, Nr. 12. doi: 10.1088/1751-8113/46/12/125004.
    • Lowe M. . ‘How to read a randomly mixed up message.’ Contributed to the Information Theory, Bielefeld. doi: 10.1007/978-3-642-36899-8-13.
    • Friesen O., Lowe M. . ‘A phase transition for the limiting spectral density of random matrices.’ Electronic Journal of Probability 18, Nr. null. doi: 10.1214/EJP.v18-2118.
    • Friesen O, Löwe M, Stolz M. . ‘Gaussian fluctuations for sample covariance matrices with dependent data.’ Journal of Multivariate Analysis 114: 270–287. doi: 10.1016/j.jmva.2012.08.004.
    • Friesen O., Löwe M. . ‘The Semicircle Law for Matrices with Independent Diagonals.’ Journal of Theoretical Probability 26, Nr. 4: 1084–1096. doi: 10.1007/s10959-011-0383-2.
    • Lowe M., Meiners R. . ‘Moderate Deviations for Random Field Curie-Weiss Models.’ Journal of Statistical Physics 149, Nr. 4: 701–721. doi: 10.1007/s10955-012-0611-x.
    • Ebbers M., Knopfel H., Lowe M., Vermet F. . ‘Mixing times for the swapping algorithm on the Blume-Emery-Griffiths model.’ Random Structures and Algorithms null, Nr. null. doi: 10.1002/rsa.20461. [online first]
    • Löwe M, Vermet F. . ‘The Hopfield model on a sparse Erd{\H o}s-Renyi graph.’ Journal of Statistical Physics 143, Nr. 1: 205–214. doi: 10.1007/s10955-011-0167-1.
    • Ameskamp J, Löwe M. . ‘Moderate deviations for the size of the largest component in a super-critical Erdös-Rényi graph.’ Markov processes and related fields 17, Nr. 3: 369–390.
    • Cont R, Löwe M. . ‘Social distance, heterogeneity and social interactions.’ Journal of Mathematical Economics 46, Nr. 4: 572–590. doi: 10.1016/j.jmateco.2010.03.009.
    • Eichelsbacher P, Löwe M. . ‘Stein's method for dependent random variables occurring in statistical mechanics.’ Electronic Journal of Probability 15: no. 30, 962––988.
    • Knöpfel H, Löwe M. . ‘Zur Meinungsbildung in einer heterogenen Bevölkerung---ein neuer Zugang zum Hopfield Modell.’ Mathematische Semesterberichte 56, Nr. 1: 15–38. doi: 10.1007/s00591-008-0049-z.
    • Ebbers M, Löwe M. . ‘Torpid mixing of the swapping chain on some simple spin glass models.’ Markov processes and related fields 15, Nr. 1: 59–80.
    • Löwe M, Vermet F. . ‘The swapping algorithm for the Hopfield model with two patterns.’ Stochastic Processes and their Applications 119, Nr. 10: 3471–3493. doi: 10.1016/j.spa.2009.06.007.
    • Löwe M, Vermet F. . ‘Capacity bounds for the {CDMA} system and a neural network: a moderate deviations approach.’ ESAIM: Probability and Statistics 13: 343–362. doi: 10.1051/ps:2008016.
    • Löwe M, Vermet F. . ‘The capacity of {$q$}-state Potts neural networks with parallel retrieval dynamics.’ Statistics and Probability Letters 77, Nr. 14: 1505–1514. doi: 10.1016/j.spl.2007.03.030.
    • Alink S, Löwe M, Wüthrich MV. . ‘Diversification for general copula dependence.’ Statistica Neerlandica 61, Nr. 4: 446–465. doi: 10.1111/j.1467-9574.2007.00370.x.
    • Knöpfel H, Löwe M. . ‘A note on the annealed free energy of the {$p$}-spin Hopfield model.’ Markov processes and related fields 13, Nr. 3: 565–574.
    • van der Hofstad R, Löwe M, Vermet F. . ‘The effect of system load on the existence of bit errors in {CDMA} with and without parallel interference cancelation.’ IEEE Transactions on Information Theory 52, Nr. 10: 4733–4741. doi: 10.1109/TIT.2006.881697.
    • Löwe M, Vermet F. . ‘The storage capacity of the Hopfield model and moderate deviations.’ Statistics and Probability Letters 75, Nr. 4: 237–248. doi: 10.1016/j.spl.2005.06.001.
    • Alink S, Löwe M, Wüthrich MV. . ‘Analysis of the expected shortfall of aggregate dependent risks.’ ASTIN Bulletin 35, Nr. 1: 25–43. doi: 10.2143/AST.35.1.583164.
    • Knöpfel H, Löwe M. . ‘Fluctuations in a {$p$}-spin interaction model.’ Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques 41, Nr. 4: 807–815. doi: 10.1016/j.anihpb.2004.05.006.
    • Gantert N, Löwe M, Steif JE. . ‘The voter model with anti-voter bonds.’ Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques 41, Nr. 4: 767–780. doi: 10.1016/j.anihpb.2004.03.007.
    • Löwe M, Vermet F. . ‘The storage capacity of the Blume-Emery-Griffiths neural network.’ Journal of Physics A: Mathematical and General 38, Nr. 16: 3483–3503. doi: 10.1088/0305-4470/38/16/002.
    • Gantert N, Löwe M, Steif J. . ‘The voter model with antivoter bonds.’ Ann. Inst. H. Poincaré Probab. Statist. 41, Nr. 4: 767–780.
    • Knöpfel H, Löwe M. . ‘Fluctuations in p-spin interaction models.’ Ann. Inst. H. Poincaré 41, Nr. 4: 807–815. doi: 10.1016/j.anihpb.2004.05.006.
    • Eichelsbacher P, Löwe M. . ‘Moderate deviations for the overlap parameter in the Hopfield model.’ Probability Theory and Related Fields 130, Nr. 4: 441–472. doi: 10.1007/s00440-004-0349-8.
    • Baake M, Löwe M. . ‘Comment on: ``Curious properties of simple random walks'' [J. Statist. Phys. 3 (1993), no. 1-2, 441--445; MR1247871] by S. I. Ben-Abraham.’ Journal of Statistical Physics 116, Nr. 5-6: 1449–1451. doi: 10.1023/B:JOSS.0000041746.43933.73.
    • Eichelsbacher P, Löwe M. . ‘Moderate deviations for a class of mean-field models.’ Markov processes and related fields 10, Nr. 2: 345–366.
    • Löwe M, Matzinger H, Merkl F. . ‘Reconstructing a multicolor random scenery seen along a random walk path with bounded jumps.’ Electronic Journal of Probability 9: no. 15, 436––507 (electronic).
    • Alink S, Löwe M, Wüthrich MV. . ‘Diversification of aggregate dependent risks.’ Insurance: Mathematics and Economics 35, Nr. 1: 77–95. doi: 10.1016/j.insmatheco.2004.05.001.
    • Eichelsbacher P, Löwe M. . ‘Fluctuations for the overlap parameter in the Hopfield model.’ Prob. Theory Rel. Fields 130: 441–472.
    • Löwe M, Matzinger H, Merkl F. . ‘Reconstruction of a one-dimensional Scenery by observing it along a Random Walk Path with Jumps.’ Electr. Journal Prob. 9: 436–507.
    • Löwe M, Matzinger III H. . ‘Reconstruction of sceneries with correlated colors.’ Stochastic Processes and their Applications 105, Nr. 2: 175–210. doi: 10.1016/S0304-4149(03)00003-6.
    • Eichelsbacher P, Löwe M. . ‘Moderate deviations for i.i.d.\ random variables.’ ESAIM: Probability and Statistics 7: 209–218. doi: 10.1051/ps:2003005.
    • Löwe M, Merkl F, Rolles S. . ‘Moderate deviations for longest increasing subsequences: the lower tail.’ Journal of Theoretical Probability 15, Nr. 4: 1031–1047. doi: 10.1023/A:1020649006254.
    • Löwe M, Matzinger III H. . ‘Scenery reconstruction in two dimensions with many colors.’ Annals of Applied Probability 12, Nr. 4: 1322–1347. doi: 10.1214/aoap/1037125865.
    • Bovier A, Kurkova I, Löwe M. . ‘Fluctuations of the free energy in the {REM} and the {$p$}-spin {SK} models.’ Annals of Probability 30, Nr. 2: 605–651. doi: 10.1214/aop/1023481004.
    • Löwe M, Meise C. . ‘Right order spectral gap estimates for generating sets of {$\Bbb Z_4$}.’ Random Structures and Algorithms 20, Nr. 2: 220–238. doi: 10.1002/rsa.998.abs.
    • Bovier A, Kurkova I, Löwe M. . ‘Fluctuations of the free energy in the REM and the p-spin Sk models.’ Annals of Probability 30: 605–651. doi: 10.1214/aop/1023481004.
    • Löwe M. . ‘Rekonstruktion zufälliger Landschaften.’ Mathematische Semesterberichte 48, Nr. 1: 29–48. doi: 10.1007/PL00009931.
    • Löwe M, Merkl F. . ‘Moderate deviations for longest increasing subsequences: the upper tail.’ Communications on Pure and Applied Mathematics 54, Nr. 12: 1488–1520. doi: 10.1002/cpa.10010.
    • Löwe M, Meise C. . ‘Note on the knapsack Markov chain.’ Stochastic Processes and their Applications 94, Nr. 1: 155–170. doi: 10.1016/S0304-4149(01)00080-1.
    • Gentz B, Löwe M. . ‘Fluctuations in the Hopfield model at the critical temperature.’ Markov processes and related fields 5, Nr. 4: 423–449. doi: 10.1007/s004400050241.
    • Gentz B, Löwe M. . ‘The fluctuations of the overlap in the Hopfield model with finitely many patterns at the critical temperature.’ Probability Theory and Related Fields 115, Nr. 3: 357–381. doi: 10.1007/s004400050241.
    • Löwe M. . ‘On the storage capacity of the Hopfield model with biased patterns.’ IEEE Transactions on Information Theory 45, Nr. 1: 314–318. doi: 10.1109/18.746829.
    • Löwe M. . ‘The storage capacity of generalized Hopfield models with semantically correlated patterns.’ Markov processes and related fields 5, Nr. 1: 1–19.
    • Löwe M. . ‘On the storage capacity of the Hopfield model.’ In Mathematical aspects of spin glasses and neural networks, 161–183. Basel: Birkhäuser Verlag.
    • Eichelsbacher P, Löwe M. . ‘Large deviations principle for partial sums {$U$}-processes.’ Teoriya Veroyatnostei i ee Primeneniya 43, Nr. 1: 97–115. doi: 10.1137/S0040585X97976647.
    • Löwe M. . ‘On the storage capacity of Hopfield models with correlated patterns.’ Annals of Applied Probability 8, Nr. 4: 1216–1250. doi: 10.1214/aoap/1028903378.
    • Löwe M. . ‘On the invariant measure of non-reversible simulated annealing.’ Statistics and Probability Letters 36, Nr. 2: 189–193. doi: 10.1016/S0167-7152(97)00063-1.
    • Grotendiek T, Löwe M. . ‘Optimal running times for systems of random walks involving several particles.’ Communications in Statistics: Stochastic Models 13, Nr. 2: 293–313. doi: 10.1080/15326349708807428.
    • Althöfer I, Löwe M. . ‘Edge search in hypergraphs.’ Discrete Mathematics 162, Nr. 1-3: 267–271. doi: 10.1016/0012-365X(95)00291-4.
    • Löwe M. . ‘On the convergence of genetic algorithms.’ Expositiones Mathematicae 14, Nr. 4: 289–312.
    • Löwe M. . ‘Simulated annealing with time-dependent energy function via Sobolev inequalities.’ Stochastic Processes and their Applications 63, Nr. 2: 221–233. doi: 10.1016/0304-4149(96)00070-1.
    • Löwe M. . ‘On a randomized version of exhaustive local search.’ Communications in Statistics: Stochastic Models 12, Nr. 3: 389–403.
    • Löwe M. . ‘Iterated large deviations.’ Statistics and Probability Letters 26, Nr. 3: 219–223. doi: 10.1016/0167-7152(95)00013-5.
    • Eichelsbacher P, Löwe M. . ‘A large deviation principle for {$m$}-variate von Mises-statistics and {$U$}-statistics.’ Journal of Theoretical Probability 8, Nr. 4: 807–824. doi: 10.1007/BF02410113.
  • Betreute Promotionen

    Deviation Principles for Disordered Spin Systems
    Swapping, Tempering, and Equi-Energy sampling on a selection of models from statistical mechanics
    Ameskamp, JensEin Prinzip moderater Abweichungen für die Größe der größten Komponente eines Erdös-Rényi-Zufallsgraphen im superkritischen Fall
    Moderate und große Abweichungen zur statistischen Analyse biologischer Sequenzen