Private Homepagehttp://www.uni-muenster.de/Arithm/schneider/index.html
Topics in
Mathematics Münster


T4: Groups and actions
Current PublicationsOllivier Rachel, Schneider Peter The modular pro-p Iwahori-Hecke Ext-algebra. Representations of Reductive GroupsProceedings of Symposia in Pure Mathematics, 2019, pp 255-308 online
Current ProjectsEXC 2044 - T04: Groups and actions The study of symmetry and space through the medium of groups and their actions has long been a central theme in modern mathematics, indeed one that cuts across a wide spectrum of research within the Cluster. There are two main constellations of activity in the Cluster that coalesce around groups and dynamics as basic objects of study. Much of this research focuses on aspects of groups and dynamics grounded in measure and topology in their most abstract sense, treating infinite discrete groups as geometric or combinatorial objects and employing tools from functional analysis, probability, and combinatorics. Other research examines, in contrast to abstract or discrete groups, groups with additional structure that naturally arise in algebraic and differential geometry. online
CRC 1442 - A01: Automorphic forms and the p-adic Langlands programme

The past years have seen tremendous progress in the development of a categorical approach to the arithmetic of the Langlands programme. In the context of the p-adic Langlands programme the main features of this approach are the study of derived categories of p-adic representations of p-adic Lie groups, the study of (coherent) sheaves on moduli of Galois representations associated to such representations, and the development of a more geometric approach to such representations. The project addresses all these three aspects of the programme.

online
CRC 1442 - A02: Moduli spaces of p-adic Galois representations

Representations of the absolute Galois group of a p-adic local field with p-adic coefficients are studied most fruitfully in terms of semi-linear algebra objects called (phi,Gamma)-modules. In part of the project we will advance the study of (phi,Gamma)-modules. In another part we use (phi,Gamma)-modules to construct and study moduli spaces of Galois representation that occur in the context of the p-adic Langlands programme.

online
E-Mailpschnei at uni-muenster dot de
Phone+49 251 83-33709
FAX+49 251 83-33786
Room319
Secretary   Sekretariat Harenbrock/Reckermann
Frau Ina Reckermann
Telefon +49 251 83-33700
Fax +49 251 83-33786
Zimmer 316
AddressProf. Dr. Peter Schneider
Mathematisches Institut
Fachbereich Mathematik und Informatik der Universität Münster
Einsteinstrasse 62
48149 Münster
Deutschland
Diese Seite editieren