

| Private Homepage | http://www.uni-muenster.de/Arithm/schneider/index.html |
| Topics in Mathematics Münster | T4: Groups and actions |
| Current Publications | • Ollivier Rachel, Schneider Peter The modular pro-p Iwahori-Hecke Ext-algebra. Representations of Reductive GroupsProceedings of Symposia in Pure Mathematics, 2019, pp 255-308 online |
| Current Projects | • EXC 2044 - T04: Groups and actions The study of symmetry and space through the medium of groups and their actions has long been a central theme in modern mathematics, indeed one that cuts across a wide spectrum of research within the Cluster. There are two main constellations of activity in the Cluster that coalesce around groups and dynamics as basic objects of study. Much of this research focuses on aspects of groups and dynamics grounded in measure and topology in their most abstract sense, treating infinite discrete groups as geometric or combinatorial objects and employing tools from functional analysis, probability, and combinatorics. Other research examines, in contrast to abstract or discrete groups, groups with additional structure that naturally arise in algebraic and differential geometry. online • CRC 1442 - A01: Automorphic forms and the p-adic Langlands programme The past years have seen tremendous progress in the development of a categorical approach to the arithmetic of the Langlands programme. In the context of the p-adic Langlands programme the main features of this approach are the study of derived categories of p-adic representations of p-adic Lie groups, the study of (coherent) sheaves on moduli of Galois representations associated to such representations, and the development of a more geometric approach to such representations. The project addresses all these three aspects of the programme. • CRC 1442 - A02: Moduli spaces of p-adic Galois representations Representations of the absolute Galois group of a p-adic local field with p-adic coefficients are studied most fruitfully in terms of semi-linear algebra objects called (phi,Gamma)-modules. In part of the project we will advance the study of (phi,Gamma)-modules. In another part we use (phi,Gamma)-modules to construct and study moduli spaces of Galois representation that occur in the context of the p-adic Langlands programme. | pschnei at uni-muenster dot de |
| Phone | +49 251 83-33709 |
| FAX | +49 251 83-33786 |
| Room | 319 |
| Secretary | Sekretariat Harenbrock/Reckermann Frau Ina Reckermann Telefon +49 251 83-33700 Fax +49 251 83-33786 Zimmer 316 |
| Address | Prof. Dr. Peter Schneider Mathematisches Institut Fachbereich Mathematik und Informatik der Universität Münster Einsteinstrasse 62 48149 Münster Deutschland |
| Diese Seite editieren |

