Recent Publications of Prof. Dr. Caterina Zeppieri
$\bullet $ Lucia Scardia, Konstantinos Zemas, and Caterina Ida Zeppieri.
Homogenisation of nonlinear Dirichlet problems in randomly perforated domains under minimal assumptions on the size of perforations.
Probability Theory and Related Fields, 192(1):471–544, June 2025.
doi:10.1007/s00440-024-01320-1.
$\bullet $ Giuliano Lazzaroni, Piotr Wozniak, and Caterina Ida Zeppieri.
Strong approximation of special functions of bounded variation functions with prescribed jump direction.
Mathematische Nachrichten, 298(1):312–327, January 2025.
doi:10.1002/mana.202300346.
$\bullet $ Annika Bach, Teresa Esposito, Roberta Marziani, and Caterina Ida Zeppieri.
Gradient damage models for heterogeneous materials.
SIAM Journal on Mathematical Analysis, 55(4):3567–3601, August 2023.
doi:10.1137/22M1499145.
$\bullet $ Xavier Pellet, Lucia Scardia, and Caterina Ida Zeppieri.
Stochastic homogenisation of free-discontinuity functionals in randomly perforated domains.
Advances in Calculus of Variations, 17(3):643–671, August 2023.
doi:10.1515/acv-2022-0052.
$\bullet $ Lucia Scardia, Konstantinos Zemas, and Caterina Ida Zeppieri.
Homogenisation of nonlinear Dirichlet problems in randomly perforated domains under minimal assumptions on the size of perforations.
arXiv e-prints, July 2023.
arXiv:2307.11605.
$\bullet $ Annika Bach, Roberta Marziani, and Caterina Ida Zeppieri.
Γ-convergence and stochastic homogenisation of singularly-perturbed elliptic functionals.
Calculus of Variations and Partial Differential Equations, 62(7):199, July 2023.
doi:10.1007/s00526-023-02540-4.
$\bullet $ Matthias Ruf and Caterina Ida Zeppieri.
Stochastic homogenization of degenerate integral functionals with linear growth.
Calculus of Variations and Partial Differential Equations, 62(4):138, April 2023.
doi:10.1007/s00526-023-02476-9.
$\bullet $ Chiara D'Onofrio and Caterina Ida Zeppieri.
Γ-convergence and stochastic homogenization of degenerate integral functionals in weighted Sobolev spaces.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153(2):491–544, February 2023.
doi:10.1017/prm.2022.3.
$\bullet $ Filippo Cagnetti, Gianni Dal Maso, Lucia Scardia, and Caterina Ida Zeppieri.
A global method for deterministic and stochastic homogenisation in BV.
Annals of PDE, 8(1):8, April 2022.
doi:10.1007/s40818-022-00119-4.
$\bullet $ Annika Bach, Teresa Esposito, Roberta Marziani, and Caterina Ida Zeppieri.
Interaction between oscillations and singular perturbations in a one-dimensional phase-field model.
In Research in Mathematics of Materials Science, Association for Women in Mathematics Series, pages 3–31.
Springer International Publishing, April 2022.
doi:10.1007/978-3-031-04496-0_1.
$\bullet $ Marco Cicalese, Matteo Focardi, and Caterina Ida Zeppieri.
Phase-field approximation of functionals defined on piecewise-rigid maps.
Journal of Nonlinear Science, 31(5):Paper No. 78, 25, July 2021.
doi:10.1007/s00332-021-09733-1.
$\bullet $ Annika Bach, Andrea Braides, and Caterina Ida Zeppieri.
Quantitative analysis of finite-difference approximations of free-discontinuity problems.
Interfaces and Free Boundaries, 22(3):317–381, September 2020.
doi:10.4171/ifb/443.
$\bullet $ Xavier Pellet, Lucia Scardia, and Caterina Ida Zeppieri.
Stochastic homogenisation of free-discontinuity functionals in random perforated domains.
arXiv e-prints, February 2020.
arXiv:2002.01389.
$\bullet $ Caterina Ida Zeppieri.
Homogenisation of high-contrast brittle materials.
Math. Eng., 2(1):174–202, January 2020.
doi:10.3934/mine.2020009.
$\bullet $ Filippo Cagnetti, Gianni Dal Maso, Lucia Scardia, and Caterina Ida Zeppieri.
Γ-convergence of free-discontinuity problems.
Annales de L'Institut Henri Poincare Section (C) Non Linear Analysis, 36(4):1035–1079, July 2019.
doi:10.1016/j.anihpc.2018.11.003.
$\bullet $ Filippo Cagnetti, Gianni Dal Maso, Lucia Scardia, and Caterina Ida Zeppieri.
Stochastic homogenisation of free-discontinuity problems.
Arch. Ration. Mech. An., 233(2):935–974, March 2019.
doi:10.1007/s00205-019-01372-x.
$\bullet $ Xavier Pellet, Lucia Scardia, and Caterina Ida Zeppieri.
Homogenization of high-contrast Mumford-Shah energies.
SIAM J. Math. Anal., 51(3):1696–1729, January 2019.
doi:10.1137/18m1189804.