

Research area A: Arithmetic and Groups
Unit A1: Arithmetic, geometry and representations
Further Projects
• CRC 1442: Geometry: Deformation and Rigidity - A01: Automorphic forms and the p-adic Langlands programme online
• CRC 1442: Geometry: Deformation and Rigidity - A02: Moduli spaces of p-adic Galois representations online
Research Interests
$\bullet$ Algebraic number theory.
$\bullet$ Arithmetic geometry.
$\bullet$ Representation theory.
$\bullet$ $p$-Adic analysis.
Selected Publications of Peter Schneider
$\bullet$ P. Schneider. Smooth representations and Hecke modules in characteristic $p$. Pacific J. Math., 279:447–464, 2015.
$\bullet$ R. Ollivier and P. Schneider. Pro-$p$- Iwahori- Hecke algebras are Gorenstein. J. Inst. Math. Jussieu, 13:753–809, 2014.
$\bullet$ P. Schneider. $p$-adic Lie groups, volume 344 of Grundlehren der Mathematischen Wissenschaften [A Series of Comprehensive Studies in Mathematics]. Springer Berlin Heidelberg, 2011.
$\bullet$ C. Breuil and P. Schneider. First steps towards $p$-adic Langlands functoriality. J. Reine Angew. Math., 610:149–180, 2007.
$\bullet$ P. Schneider and J. Teitelbaum. Banach- Hecke algebras and $p$-adic Galois representations. Documenta Mathematica, The Book Series 4 (J. {Coates' Sixtieth Birthday)}, 4:631–684, 2006.
$\bullet$ P. Schneider and J. Teitelbaum. Algebras of $p$-adic distributions and admissible representations. Invent. Math., 153:145–196, 2003.
$\bullet$ P. Schneider and J. Teitelbaum. Locally analytic distributions and $p$-adic representation theory, with applications to $GL_2$. J. AMS, 15:443–468, 2002.
$\bullet$ P. Schneider and J. Teitelbaum. Banach space representations and Iwasawa theory. Israel J. Math., 127:359–380, 2002.
$\bullet$ P. Schneider and J. Teitelbaum. $p$-adic Fourier theory. Documenta math., 6:447–481, 2001.
$\bullet$ P. Schneider and U. Stuhler. Representation theory and sheaves on the Bruhat- Tits building. Publ. Math. IHES, 85:97–191, 1997.
Current Publications
$\bullet $ Peter Schneider and Otmar Venjakob. Compairing categories of Lubin-Tate $(\varphi _L, \Gamma _L)$-modules. arXiv e-prints, January 2023. arXiv:2301.11617.
$\bullet $ Peter Schneider and Otmar Venjakob. Reciprocity laws for $(\varphi _L, \Gamma _L)$-modules over Lubin-Tate extensions. arXiv e-prints, January 2023. arXiv:2301.11606.
$\bullet $ Konstantin Ardakov and Peter Schneider. The central sheaf of a Grothendieck category. arXiv e-prints, October 2022. arXiv:2210.12419.
$\bullet $ Peter Schneider and Rachen Ollivier. On the pro-$p$ Iwahori Hecke Ext-algebra of SL$_2(\mathbb Q_p)$. Mémoires SMF, October 2022. doi:10.24033/msmf.483.
$\bullet $ Sarah Scherotzke and Peter Schneider. Derived parabolic induction. Bull. Lond. Math. Soc., 54(1):264–274, March 2022. doi:10.1112/blms.12606.
$\bullet $ Peter Schneider and Claus Sorensen. Duals in natural characteristic. arXiv e-prints, February 2022. arXiv:2202.01800.
$\bullet $ Konstantin Ardakov and Peter Schneider. The Bernstein center in natural characteristic. arXiv e-prints, May 2021. arXiv:2105.06128.
$\bullet $ Laurent Berger, Peter Schneider, and Bingyong Xie. Rigid character groups, Lubin-Tate theory, and $(\varphi ,\Gamma )$-modules. Mem. Amer. Math. Soc., 263(1275):v + 79, February 2020. doi:10.1090/memo/1275.
$\bullet $ Peter Schneider and Ernst-Wilhelm Zink. Zelevinsky operations for multisegments and a partial order on partitions. Pacific J. Math., 304(1):181–207, January 2020. doi:10.2140/pjm.2020.304.181.
$\bullet $ Rachel Ollivier and Peter Schneider. The modular pro-$p$ Iwahori-Hecke Ext-algebra. In Avraham Aizenbud, Dmitry Gourevitch, David Kazhdan, and Erez M. Lapid, editors, Representations of Reductive Groups, volume 101 of Proceedings of Symposia in Pure Mathematics, pages 255–308. October 2019. doi:10.1090/pspum/101.
$\bullet $ Vladimir Berkovich, Walter Gubler, Peter Schneider, and Annette Werner. Non-Archimedean geometry and applications. Oberwolfach Rep., 16(1):513–575, February 2019. doi:10.4171/OWR/2019/8.