Recent Publications of Prof. Dr. Steffen Dereich
$\bullet $ Steffen Dereich, Robin Graeber, and Arnulf Jentzen.
Non-convergence of Adam and other adaptive stochastic gradient descent optimization methods for non-vanishing learning rates.
arXiv e-prints, July 2024.
arXiv:2407.08100.
$\bullet $ Steffen Dereich and Arnulf Jentzen.
Convergence rates for the Adam optimizer.
arXiv e-prints, July 2024.
arXiv:2407.21078.
$\bullet $ Steffen Dereich, Arnulf Jentzen, and Adrian Riekert.
Learning rate adaptive stochastic gradient descent optimization methods: numerical simulations for deep learning methods for partial differential equations and convergence analyses.
arXiv e-prints, June 2024.
arXiv:2406.14340.
$\bullet $ Steffen Dereich and Sebastian Kassing.
Convergence of stochastic gradient descent schemes for Łojasiewicz-landscapes.
Journal of Machine Learning, 3(3):245–281, June 2024.
doi:10.4208/jml.240109.
$\bullet $ Steffen Dereich and Sebastian Kassing.
On the existence of optimal shallow feedforward networks with ReLU activation.
Journal of Machine Learning, 3(1):1–22, January 2024.
doi:10.4208/jml.230903.
$\bullet $ Steffen Dereich and Sebastian Kassing.
On the existence of optimal shallow feedforward networks with ReLU activation.
arXiv e-prints, March 2023.
arXiv:2303.03950.
$\bullet $ Steffen Dereich, Arnulf Jentzen, and Sebastian Kassing.
On the existence of minimizers in shallow residual ReLU neural network optimization landscapes.
arXiv e-prints, February 2023.
arXiv:2302.14690.
$\bullet $ Steffen Dereich and Sebastian Kassing.
Central limit theorems for stochastic gradient descent with averaging for stable manifolds.
Electronic Journal of Probability, 28:1–48, January 2023.
doi:10.1214/23-EJP947.
$\bullet $ Steffen Dereich and Sebastian Kassing.
Cooling down stochastic differential equations: Almost sure convergence.
Stoch. Process. their Appl., 152:289–311, October 2022.
doi:10.1016/j.spa.2022.06.020.
$\bullet $ Steffen Dereich and Sebastian Kassing.
On minimal representations of shallow ReLU networks.
Neural Networks, 148:121–128, April 2022.
doi:10.1016/j.neunet.2022.01.006.
$\bullet $ Steffen Dereich and Martin Maiwald.
Quasi-processes for branching Markov chains.
arXiv e-prints, July 2021.
arXiv:2107.06654.
$\bullet $ Steffen Dereich and Sebastian Kassing.
Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes.
arXiv e-prints, February 2021.
arXiv:2102.09385.
$\bullet $ Steffen Dereich.
General multilevel adaptations for stochastic approximation algorithms II: CLTs.
Stochastic Process. Appl., 132:226–260, February 2021.
doi:10.1016/j.spa.2020.11.001.
$\bullet $ Steffen Dereich and Sebastian Kassing.
Central limit theorems for stochastic gradient descent with averaging for stable manifolds.
arXiv e-prints, December 2019.
arXiv:1912.09187.
$\bullet $ Steffen Dereich.
The rank-one and the preferential attachment paradigm.
In Network Science, pages 43–58.
November 2019.
doi:10.1007/978-3-030-26814-5_4.
$\bullet $ Steffen Dereich and Thomas Müller-Gronbach.
General multilevel adaptations for stochastic approximation algorithms of Robbins–Monro and Polyak–Ruppert type.
Numer. Math., 142(2):279–328, June 2019.
doi:10.1007/s00211-019-01024-y.