Wissenschaftlicher Werdegang
1990-1995 Studium Biologie (Diplom) an der Universität Osnabrück und am Forschungszentrum Jülich (Institut für Biotechnologie)
1995-1999 Doktorarbeit an der Universität Konstanz (Mikrobielle Physiologie und Ökologie)
1999-2000 Postdoktorand an der Universität Konstanz (Umweltwissenschaften)
2000-2001 DFG-Forschungsstipendiat an der University of Nottingham (Molekulare Mikrobiologie)
2001-2011 Wissenschaftlicher Assistent und Akademischer Rat mit eigener Arbeitsgruppe an der Universität Konstanz;
2008 Habilitation (Mikrobiologie und Mikrobielle Ökologie)
Seit Oktober 2011 Professor für Mikrobielle Biotechnologie an der WWU Münster

- Mikrobielle Physiologie
- Mikrobielle Biotechnologie
- Mikrobielle Ökologie


- Bakterieller Stoffwechsel und bakterielle Biotransformationen
- Zell-Zell-Interaktionen von Mikroorganismen: Chemische Kommunikation (Quorum Sensing), Antibiose, Zellaggregation und Biofilmbildung

ausgewählte Projekte

In our research projects we investigate selected aspects of bacterial physiology and ecology with the goal of establishing novel biotechnological applications. Our research is focussed on two aspects of bacterial ecophysiology: bacterial metabolism and bacterial cell-cell interactions. Regarding metabolism, we investigate novel metabolic pathways for the transformation of natural and synthetic compounds. Regarding cell-cell interactions, we investigate bacterial cell-aggregation and biofilm formation as well as chemical interactions of bacteria (chemical communication, antibiosis). We want to transfer ecophysiological knowledge to biotechnology for improving bacterial biocatalysis and biodegradation processes as well as for finding novel compounds that influence bacterial growth and metabolism.

Bacterial metabolism of steroid compounds
Steroids are ubiquitous organic compounds with diverse functions in eukaryotic organisms. In bacteria, steroids occur only as rare exceptions. However, many bacteria are able to transform and degrade steroid compounds. Bacterial transformation of steroids is an essential part of the biotechnological production of steroid hormones. In comparison to the degradation of other natural compounds the bacterial degradation of steroids has only scarcely been explored. We study bacterial steroid metabolism with different model organisms and the steroid compound cholate (a bile salt) as a model substrate. The goal of our research is to use knowledge about bacterial steroid metabolism for engineering novel bacterial biocatalysts for biotechnological steroid production. Furthermore, we are interested in the degradation of synthetic steroids, which can act as endocrine disruptors.

Bacterial cell-aggregation and biofilm formation
In the environment bacteria predominantly live in cell aggregates and biofilms. Cells within these multicellular structures have physiological properties that distinguish them from freely suspended cells. An important property of aggregated cells is a higher tolerance against stresses, such as toxic chemicals. We study bacterial cell-aggregation during the degradation of toxic detergents. The goal of our research is to identify molecular modules that are responsible for inducing cell-aggregation and biofilm formation in response to environmental stresses. These molecular modules could be used for improving biotransformation processes of toxic chemicals. In addition, we are interested in establishing strategies to prevent bacterial growth on surfaces (biofouling).

Interspecific interactions of bacteria
In their natural habitats bacteria are engaged in numerous interactions with bacteria of other species. Despite their high ecological relevance the knowledge about such interspecific interactions is still scarce. It can be assumed that a high number of the genes within bacterial genomes, which encode proteins of unknown function, might have roles in interspecific interactions of bacteria. We study interspecific interactions of bacteria during degradation of polymers with defined co-cultures as model systems. In these co-cultures the bacteria are forced to compete for polymeric substrates in various ways, and we could show that the quorum sensing-regulated formation of secondary metabolites as well as biofilm formation is important for successful competition. The goal of our research is to use such co-cultures for unravelling principles of interspecific bacterial interactions and for identifying novel bioactive compounds (e.g. antibiotics).

More details about our research can be found at http://mibi1.uni-muenster.de/Biologie.IMMB.Philipp/en/Index.html

ausgewähle Kooperationen
- Steve Diggle, Paul Williams und Miguel Cámara (Nottingham): Quorum Sensing
- Peter Kroth (Konstanz): Bakterien-Algen-Interaktionen
- Heiko Möller (Konstanz): Strukturaufklärung von Steroid-Abbauprodukten
- Jost Wingender (Duisburg-Essen): Zellaggregation und Biofilmbildung


  • Windler M., Leinweber K., Bartulos C., Philipp B., Kroth P. . ‘Biofilm and capsule formation of the diatom Achnanthidium minutissimum are affected by a bacterium.’ Journal of Phycology 51, No. 2: 343-355. doi: 10.1111/jpy.12280.
  • Jagmann N., Henke S., Philipp B. . ‘Cells of Escherichia coli are protected against severe chemical stress by co-habiting cell aggregates formed by Pseudomonas aeruginosa.’ Applied Microbiology and Biotechnology 99, No. 19: 8285-8294. doi: 10.1007/s00253-015-6726-7.
  • Jagmann,Nina N.,Philipp,Bodo B.,. . ‘Design of synthetic microbial communities for biotechnological production processes.’ Journal of Biotechnology 184: 209-218. doi: 10.1016/j.jbiotec.2014.05.019.
  • Barrientos,Álvaro A.,Merino,Estefanía E.,Casabon,Israël I.,Rodríguez,Joaquín J.,Crowe,Adam M. A.M.,Holert,Johannes J.,Philipp,Bodo B.,Eltis,Lindsay D. L.D.,Olivera,Elías R. E.R.,Luengo,José María J.M.,. . ‘Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putidaDOC21.’ Environmental Microbiology 17, No. 1: 47-63. doi: 10.1111/1462-2920.12395.
  • Holert J, Yücel O, Suvekbala V, Kulić Z, Möller H, Philipp B. . ‘Evidence of distinct pathways for bacterial degradation of the steroid compound cholate suggests the potential for metabolic interactions by interspecies cross-feeding.Environmental microbiology 16. doi: 10.1111/1462-2920.12407.
  • Barrientos A, Merino E, Casabon I, Rodríguez J, Crowe AM, Holert J, Philipp B, Eltis LD, Olivera ER, Luengo JM. . ‘Functional Analyses of Three Acyl-Coa Synthetases Involved in Bile Acid Degradation in Pseudomonas Putida Doc21.Environmental microbiology 16. doi: 10.1111/1462-2920.12395. [In Press]
  • Jagmann N, Philipp B. . „Synthetic microbial communities. Fightin' for chitin: How bacteria compete in the degradation of polymers | Fightin' for chitin: Wie Bakterien beim Abbau von Polymeren konkurrieren.“ BioSpektrum 19, No. 2: 137-139. doi: 10.1007/s12268-013-0282-4.
  • Holert J, Jagmann N, Philipp B. . ‘The Essential Function of Genes for a Hydratase and an Aldehyde Dehydrogenase for Growth of Pseudomonas sp. Strain Chol1 with the Steroid Compound Cholate Indicates an Aldolytic Reaction Step for Deacetylation of the Side Chain.Journal of bacteriology 195, No. 15: 3371-80. doi: 10.1128/JB.00410-13.
  • Hauck D, Joachim I, Frommeyer B, Varrot A, Philipp B, Möller HM, Imberty A, Exner TE, Titz A. . ‘Discovery of Two Classes of Potent Glycomimetic Inhibitors of Pseudomonas aeruginosa LecB with Distinct Binding Modes.ACS chemical biology 8, No. 8: 1775-84. doi: 10.1021/cb400371r.
  • Holert J, Kulić Ž, Yücel O, Suvekbala V, Suter MJ, Möller HM, Philipp B. . ‘Degradation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1 proceeds via an aldehyde intermediate.Journal of bacteriology 195, No. 3: 585-95. doi: 10.1128/JB.01961-12.
  • Holert J, Alam I, Larsen M, Antunes A, Bajic VB, Stingl U, Philipp B. . ‘Genome Sequence of Pseudomonas sp. Strain Chol1, a Model Organism for the Degradation of Bile Salts and Other Steroid Compounds.Genome announcements 1, No. 1. doi: 10.1128/genomeA.00014-12.
  • Vila-Sanjurjo C., Fuenzalida J., Menchicchi B., Engwer C., Hoffman S., Pereira S., Remunan-Lopez C., Alonso M., Vidal A., Moerschbacher B., Kollenbrock S., Fetzner S., Philipp B., Goycoolea F. . ‘Chitosan-based nanomaterials for drug delivery and antibiotic-free bacterial control.’ Contributed to the Nanotechnology 2013: Bio Sensors, Instruments, Medical, Environment and Energy - 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013, Washington, DC, usa.
  • Philipp B, Schink B. . ‘Different strategies in anaerobic biodegradation of aromatic compounds: Nitrate reducers versus strict anaerobes.’ Environmental Microbiology Reports 4, No. 5: 469-478. doi: 10.1111/j.1758-2229.2011.00304.x.
  • Jagmann N, von Rekowski KS, Philipp B. . ‘Interactions of bacteria with different mechanisms for chitin degradation result in the formation of a mixed-species biofilm.’ FEMS MICROBIOLOGY LETTERS 326, No. 1: 69-75. doi: 10.1111/j.1574-6968.2011.02435.x.
  • Birkenmaier A, Möller HM, Philipp B. . ‘Identification of a thiolase gene essential for β-oxidation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1.FEMS microbiology letters 318, No. 2: 123-30. doi: 10.1111/j.1574-6968.2011.02250.x.
  • Philipp B. . ‘Bacterial degradation of bile salts.Applied microbiology and biotechnology 89, No. 4: 903-15. doi: 10.1007/s00253-010-2998-0.
  • Jagmann N, Brachvogel HP, Philipp B. . ‘Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila.Environmental microbiology 12, No. 6: 1787-802. doi: 10.1111/j.1462-2920.2010.02271.x.
  • Klebensberger J, Birkenmaier A, Geffers R, Kjelleberg S, Philipp B. . ‘SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa.Environmental microbiology 11, No. 12: 3073-86. doi: 10.1111/j.1462-2920.2009.02012.x.
  • Styp von Rekowski K, Hempel M, Philipp B. . ‘Quorum sensing by N-acylhomoserine lactones is not required for Aeromonas hydrophila during growth with organic particles in lake water microcosms.Archives of microbiology 189, No. 5: 475-82. doi: 10.1007/s00203-007-0338-2.
  • Birkenmaier A, Holert J, Erdbrink H, Moeller HM, Friemel A, Schoenenberger R, Suter MJ, Klebensberger J, Philipp B. . ‘Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1.Journal of bacteriology 189, No. 20: 7165-73. doi: 10.1128/JB.00665-07.
  • Klebensberger J, Lautenschlager K, Bressler D, Wingender J, Philipp B. . ‘Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy.Environmental microbiology 9, No. 9: 2247-59. doi: 10.1111/j.1462-2920.2007.01339.x.
  • Darley PI, Hellstern JA, Medina-Bellver JI, Marqués S, Schink B, Philipp B. . ‘Heterologous expression and identification of the genes involved in anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) in Azoarcus anaerobius.Journal of bacteriology 189, No. 10: 3824-33. doi: 10.1128/JB.01729-06.
  • Philipp B, Hoff M, Germa F, Schink B, Beimborn D, Mersch-Sundermann V. . ‘Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability.Environmental science & technology 41, No. 4: 1390-8. doi: 10.1021/es061505d.
  • Klebensberger J, Rui O, Fritz E, Schink B, Philipp B. . ‘Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate.Archives of microbiology 185, No. 6: 417-27. doi: 10.1007/s00203-006-0111-y.
  • Philipp B, Erdbrink H, Suter MJ, Schink B. . ‘Degradation of and sensitivity to cholate in Pseudomonas sp. strain Chol1.Archives of microbiology 185, No. 3: 192-201. doi: 10.1007/s00203-006-0085-9.
  • Philipp B, Kemmler D, Hellstern J, Gorny N, Caballero A, Schink B. . ‘Anaerobic degradation of protocatechuate (3,4-dihydroxybenzoate) by Thauera aromatica strain AR-1.FEMS microbiology letters 212, No. 1: 139-43. doi: 10.1111/j.1574-6968.2002.tb11257.x.
  • Bussmann I, Philipp B, Schink B. . ‘Factors influencing the cultivability of lake water bacteria.Journal of microbiological methods 47, No. 1: 41-50. doi: 10.1016/S0167-7012(01)00289-5.
  • Reichenbecher W, Philipp B, Suter MJ, Schink B. . ‘Hydroxyhydroquinone reductase, the initial enzyme involved in the degradation of hydroxyhydroquinone (1,2,4-trihydroxybenzene) by Desulfovibrio inopinatus.Archives of microbiology 173, No. 3: 206-12. doi: 10.1007/s002039900130.
  • Philipp B, Schink B. . ‘Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1.Archives of microbiology 173, No. 2: 91-6. doi: 10.1007/s002039900112.
  • Schink B, Philipp B, Müller J. . ‘Anaerobic degradation of phenolic compounds.Die Naturwissenschaften 2000: 12-23. doi: 10.1007/s001140050002.
  • Philipp B, Schink B. . ‘Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius.Journal of bacteriology 180, No. 14: 3644-9.
  • Wehrmann A, Phillipp B, Sahm H, Eggeling L. . ‘Different modes of diaminopimelate synthesis and their role in cell wall integrity: a study with Corynebacterium glutamicum.Journal of bacteriology 180, No. 12: 3159-65.