Wissenschaftlicher Werdegang
Studium der Biologie: Universität Freiburg
- Promotion: Universität Freiburg
-Postdoctoral research associate: Universität Köln Institut für Entwicklungsbiologie
- Postdoctoral research associate: University of California, Berkeley, HHMI (Berkeley, USA)
- Gruppenleiter am Institut für Entwicklungsbiologie, Köln
- Habilitation in Entwicklungsbiologie: Universität Köln
- Professor für Neurobiologie an der WWU Münster

- Neurobiologie
- Molekulare Genetik
- Zellbiologie

- Entwicklung des Nervensystems
- Neuron-Glia Interaktion
- Dynamik des Zytoskeletts

Ausgewählte Projekte

Cell migration is a key feature of complex multi-cellular organisms. Especially during the formation of the nervous system, cell migrations are of particular importance. Here, migration occurs at the level of cell compartments as seen in axonal migration and at the level of individual cells, where – as a main difference – the cell body moves as well. Within the nervous system both neuronal and glial cells are able to migrate over often quite long distances and their intricate interplay guarantees the formation of the stereotyped axonal network found in many metazoan organisms. In the Drosophila CNS, migration of the midline glial cells is required for the establishment of the segmental commissures. A block of this migration leads to a typical mutant CNS phenotype. We have identified a large number of genes required for midline glia migration that currently under study.

In the larval PNS the developing photoreceptor cells send their axons through the so-called optic stalk to the brain. Here, glial cells are born which migrate towards to the photoreceptor cells along the optic stalk. Recent analysis has shown that these glial cells are guided by a signal released from the developing photoreceptor cells in the eye disc. Analysis of this population of migratory cells is linked to a second genetic project that was conducted in order to identify additional genes required for the cell migration. In contrast to the midline glia, peripheral glia cells have to migrate over relatively long distances along well-defined axonal tracts. We have saturated the X-chromosome for mutations affecting this process and are currently characterizing the isolated mutations in further detail.

Among the projects in the lab we are following the migration of single glial cells in the larval eye disc labeled by GFP expression in vivo using spinning disc microscopy as well as in vitro in tissue culture models. In parallel we are analyzing genes that were identified in our phenotypic screen. We are focusing on mutations affecting the migration and differentiation of glial cells. In the following two examples are given. The gene kästchen was found to affect a large number of migratory processes in a non-autonomous manner. Beside disruption glial cell migration it also affects migration of mesodermal and tracheal cells. We have cloned the kästchen gene and found the Kästchen protein at the cell membrane. Currently we are following a number of in vitro and genetic strategies to determine the molecular function of the Kästchen protein.
Cell migration obviously depends on a dynamic cytoskeleton. We are analyzing the formation of the F-actin cytoskeleton using genetic and biochemical tools. We currently focus our interest on the role of the genes kette, abi and wasp.

Please contact us for further information on individual projects in the lab.

Ausgewählte Publikationen

net: http://neurobio.uni-muenster.de/Homepage.html




  • Berh D, Scherzinger A, Otto N, Jiang X, Klämbt C, Risse B. . ‘Automatic non-invasive heartbeat quantification of Drosophila pupae.’ Computers in Biology and Medicine 93: 189-199.
  • Risse B., Otto N., Berh D., Jiang X., Kiel M., Klambt C. . ‘FIM2c: Multicolor, Multipurpose Imaging System to Manipulate and Analyze Animal Behavior.’ IEEE Transactions on Biomedical Engineering 64, No. 3: 610-620. doi: 10.1109/TBME.2016.2570598.
  • Otto N, Risse B, Berh D, Bittern J, Jiang X, Klämbt C. . ‘Interactions among Drosophila larvae before and during collision.’ Scientific Reports 11, No. 6: 31564. doi: 10.1038/srep31564.
  • Risse B., Berh D., Otto N., Jiang X., Klämbt C. . ‘Quantifying subtle locomotion phenotypes of Drosophila larvae using internal structures based on FIM images.’ Computers in Biology and Medicine 63, No. null: 269-276. doi: 10.1016/j.compbiomed.2014.08.026.
  • Volkenhoff A., Weiler A., Letzel M., Stehling M., Klämbt C., Schirmeier S. . ‘Glial glycolysis is essential for neuronal survival in drosophila.’ Cell Metabolism 22, No. 3: 437-447. doi: 10.1016/j.cmet.2015.07.006.
  • Kim S., Jeibmann A., Halama K., Witte H., Wälte M., Matzat T., Schillers H., Faber C., Senner V., Paulus W., Klämbt C. . ‘ECM stiffness regulates glial migration in Drosophila and mammalian glioma models.’ Development (Cambridge) 141, No. 16: 3233-3242. doi: 10.1242/dev.106039.
  • B. Risse, N. Otto, D. Berh, X. Jiang, C. Klämbt. . ‘FIM imaging and FIMTrack: Two new tools allowing high-throughput and cost effective locomotion analysis.’ Journal of Visualized Experiments 94.
  • U. Lammel, M. Bechtold, B. Risse B, D. Berh, A. Fleige, I. Bunse, X. Jiang, C. Klämbt, S. Bogdan. . ‘The Drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response.Development 141, No. 6: 1366-1380. doi: 10.1242/dev.101352.
  • B. Risse, S. Thomas, N. Otto, T. Löpmeier, D. Valkov, X. Jiang, C. Klämbt. . ‘FIM, a novel FTIR-based imaging method for high throughput locomotion analysis.’ PLoS ONE 8, No. 1: e53963. doi: 10.1371/journal.pone.0053963.
  • Risse B, Jiang X, Klämbt C. . ‘FIM: Frustrated Total Internal Reflection Based Imaging for Biomedical Applications.’ ERCIM News 95, No. Image Understanding: 11-12.
  • Yuva-Aydemir Y, Klämbt C. . ‘Long-range signaling systems controlling glial migration in the Drosophila eye.Developmental neurobiology 71, No. 12: 1310-6. doi: 10.1002/dneu.20893.
  • Stephan R, Gohl C, Fleige A, Klämbt C, Bogdan S. . ‘Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila.Molecular biology of the cell 22, No. 21: 4079-92. doi: 10.1091/mbc.E11-02-0121.
  • Schmidt I, Franzdóttir SR, Edenfeld G, Rodrigues F, Zierau A, Klämbt C. . ‘Transcriptional regulation of peripheral glial cell differentiation in the embryonic nervous system of Drosophila.Glia 59, No. 9: 1264-72. doi: 10.1002/glia.21123.
  • Syed MH, Krudewig A, Engelen D, Stork T, Klämbt C. . ‘The CD59 family member Leaky/Coiled is required for the establishment of the blood-brain barrier in Drosophila.The Journal of neuroscience : the official journal of the Society for Neuroscience 31, No. 21: 7876-85. doi: 10.1523/JNEUROSCI.0766-11.2011.
  • Yuva-Aydemir Y, Bauke AC, Klämbt C. . ‘Spinster controls Dpp signaling during glial migration in the Drosophila eye.The Journal of neuroscience : the official journal of the Society for Neuroscience 31, No. 19: 7005-15. doi: 10.1523/JNEUROSCI.0459-11.2011.
  • Silies M, Klämbt C. . ‘Adhesion and signaling between neurons and glial cells in Drosophila.Current opinion in neurobiology 21, No. 1: 11-6. doi: 10.1016/j.conb.2010.08.011.
  • Rodrigues F, Schmidt I, Klämbt C. . ‘Comparing peripheral glial cell differentiation in Drosophila and vertebrates.Cellular and molecular life sciences : CMLS 68, No. 1: 55-69. doi: 10.1007/s00018-010-0512-6.
  • Silies M, Klambt C. . ‘APC/C-Fzr/Cdh1-dependent regulation of cell adhesion controls glial migration in the Drosophila PNS.’ NATURE NEUROSCIENCE 13, No. 11: 1357U25. doi: 10.1038/nn.2656.
  • Silies M, Klämbt C. . ‘APC/C(Fzr/Cdh1)-dependent regulation of cell adhesion controls glial migration in the Drosophila PNS.Nature neuroscience 13, No. 11: 1357-64. doi: 10.1038/nn.2656.
  • Silies M, Yuva-Aydemir Y, Franzdottir SR, Klämbt C. . ‘The eye imaginal disc as a model to study the coordination of neuronal and glial development.’ FLY 4, No. 1: 71-79.
  • Silies M, Yuva-Aydemir Y, Franzdóttir SR, Klämbt C. . ‘The eye imaginal disc as a model to study the coordination of neuronal and glial development.Fly 4, No. 1: 71-9. doi: 10.4161/fly.4.1.11312.
  • Klämbt C. . ‘Modes and regulation of glial migration in vertebrates and invertebrates.Nature reviews. Neuroscience 10, No. 11: 769-79. doi: 10.1038/nrn2720.
  • Klämbt C. . ‘Modes and regulation of glial migration in vertebrates and invertebrates.’ NATURE REVIEWS NEUROSCIENCE 10, No. 11: 769U25.
  • Franzdottir SR, Engelen D, Yuva-Aydemir Y, Schmidt I, Aho A, Klambt C. . ‘Switch in FGF signalling initiates glial differentiation in the Drosophila eye.’ NATURE 460, No. 7256: 758U106.
  • Stork T, Thomas S, Rodrigues F, Silies M, Naffin E, Wenderdel S, Klambt C. . ‘Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper.’ DEVELOPMENT 136, No. 8: 1251-1261.
  • Witte HT, Jeibmann A, Klämbt C, Paulus W. . ‘Modeling glioma growth and invasion in Drosophila melanogaster.NEOPLASIA 11, No. 9: 882-8.
  • Hummel T, Klämbt C. . ‘P-element mutagenesis.Methods in molecular biology (Clifton, N.J.) 420: 97-117. doi: 10.1007/978-1-59745-583-1_6.
  • Stephan R, Grevelhorster A, Wenderdel S, Klambt C, Bogdan S. . ‘Abi induces ectopic sensory organ formation by stimulating EGFR signaling.’ MECHANISMS OF DEVELOPMENT 125, No. 3-4: 183-195.
  • Berger S, Schafer G, Kesper DA, Holz A, Eriksson T, Palmer RH, Beck L, Klambt C, Renkawitz-Pohl R, Onel SF. . ‘WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion.’ JOURNAL OF CELL SCIENCE 121, No. 8: 1303-1313.
  • Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klambt C. . ‘Organization and function of the blood-brain barrier in Drosophila.’ JOURNAL OF NEUROSCIENCE 28, No. 3: 587-597.
  • Silies M, Edenfeld G, Engelen D, Stork T, Klambt C. . ‘Development of the peripheral glial cells in Drosophila.’ NEURON GLIA BIOLOGY 3: 35-43.
  • Silies M, Yuva Y, Engelen D, Aho A, Stork T, Klambt C. . ‘Glial cell migration in the eye disc.’ JOURNAL OF NEUROSCIENCE 27, No. 48: 13130-13139.
  • Hülsmeier J, Pielage J, Rickert C, Technau GM, Klämbt C, Stork T. . ‘Distinct functions of alpha-Spectrin and beta-Spectrin during axonal pathfinding.Development (Cambridge, England) 134, No. 4: 713-22. doi: 10.1242/dev.02758.
  • Volohonsky G, Edenfeld G, Klambt C, Volk T. . ‘Muscle-dependent maturation of tendon cells is induced by post-transcriptional regulation of stripeA.’ DEVELOPMENT 134, No. 2: 347-356.
  • Edenfeld G, Altenhein B, Zierau A, Cleppien D, Krukkert K, Technau G, Klambt C. . ‘Notch and Numb are required for normal migration of peripheral glia in Drosophila.’ DEVELOPMENTAL BIOLOGY 301, No. 1: 27-37.
  • Edenfeld G, Volohonsky G, Krukkert K, Naffin E, Lammel U, Grimm A, Engelen D, Reuveny A, Volk T, Klambt C. . ‘The splicing factor crooked neck associates with the RNA-binding protein HOW to control glial cell maturation in Drosophila.’ NEURON 52, No. 6: 969-980.
  • Gogel S, Wakefield S, Tear G, Klambt C, Gordon-Weeks PR. . ‘The Drosophila microtubule associated protein Futsch is phosphorylated by Shaggy/Zeste-white 3 at an homologous GSK3 beta phosphorylation site in MAP1B.’ MOLECULAR AND CELLULAR NEUROSCIENCE 33, No. 2: 188-199.
  • Schimmelpfeng K, Strunk M, Stork T, Klambt C. . ‘mummy encodes an UDP-N-acetylglucosamine-dipohosphorylase and is required during Drosophila dorsal closure and nervous system development.’ MECHANISMS OF DEVELOPMENT 123, No. 6: 487-499.
  • Hummel T, Klämbt C. . ‘Eye development: Random precision in color vision.’ CURRENT BIOLOGY 16, No. 10: R361R363.
  • Bogdan S, Stephan R, Löbke C, Mertens A, Klämbt C. . Abi activates WASP to promote sensory organ development.. doi: 10.1038/ncb1305.
  • Bogdan S, Stephan R, Lobke C, Mertens A, Klambt C. . ‘Abi activates WASP to promote sensory organ development.’ NATURE CELL BIOLOGY 7, No. 10: 977U76.
  • Edenfeld G, Stork T, Klämbt C. . ‘Neuron-glia interaction in the insect nervous system.Current opinion in neurobiology 15, No. 1: 34-9. doi: 10.1016/j.conb.2005.01.007.
  • Edenfeld G, Stork T, Klämbt C. . ‘Neuron-glia interaction in the insect nervous system.’ CURRENT OPINION IN NEUROBIOLOGY 15, No. 1: 34-39.
  • Granderath S, Klämbt C. . ‘Identification and functional analysis of the Drosophila gene loco.’ REGULATORS OF G-PROTEIN SIGNALING, PART A 389: 350-363.
  • Luhn K, Laskowska A, Pielage J, Klambt C, Ipe U, Vestweber D, Wild MK. . ‘Identification and molecular cloning of a functional GDP-fucose transporter in Drosophila melanogaster.’ EXPERIMENTAL CELL RESEARCH 301, No. 2: 242-250.
  • Pielage J, Kippert A, Zhu MY, Klambt C. . ‘The Drosophila transmembrane protein fear-of-intimacy controls glial cell migration.’ DEVELOPMENTAL BIOLOGY 275, No. 1: 245-257.
  • Klämbt C, Knust E, Technau GM. . ‘Jose A. Campos-Ortega - In memoriam.’ DEVELOPMENTAL BIOLOGY 274, No. 1: 1-2.
  • Schroter RH, Lier S, Holz A, Bogdan S, Klambt C, Beck L, Renkawitz-Pohl R. . ‘kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila.’ DEVELOPMENT 131, No. 18: 4501-4509.
  • Bogdan S, Grewe O, Strunk M, Mertens A, Klambt C. . ‘Sra-1 interacts with Kette and Wasp and is required for neuronal and bristle development in Drosophila.’ DEVELOPMENT 131, No. 16: 3981-3989.
  • Onel S, Bolke L, Klambt C. . ‘The Drosophila ARF6-GEF schizo controls commissure formation by regulating slit.’ DEVELOPMENT 131, No. 11: 2587-2594.
  • Pielage J, Stork T, Bunse I, Klambt C. . ‘The Drosophila cell survival gene discs lost encodes a cytoplasmic Codanin-1-like protein, not a homolog of tight junction PDZ protein Patj.’ DEVELOPMENTAL CELL 5, No. 6: 841-851. doi: 10.1016/S1534-5807(03)00358-7.
  • Bogdan S, Klambt C. . ‘Kette regulates actin dynamics and genetically interacts with Wave and Wasp.’ DEVELOPMENT 130, No. 18: 4427-4437.
  • Weigmann K, Klapper R, Strasser T, Rickert C, Technau G, Jäckle H, Janning W, Klämbt C. . ‘FlyMove--a new way to look at development of Drosophila.Trends in genetics : TIG 19, No. 6: 310-1. doi: 10.1016/S0168-9525(03)00050-7.
  • Yuan GZ, Klambt C, Bachellerie JP, Brosius J, Huttenhofer A. . ‘RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs.’ NUCLEIC ACIDS RESEARCH 31, No. 10: 2495-2507.
  • Giesen K, Lammel U, Langehans D, Krukkert K, Bunse I, Klämbt C. . ‘Regulation of glial cell number and differentiation by ecdysone and Fos signaling.Mechanisms of development 120, No. 4: 401-13. doi: 10.1016/S0925-4773(03)00009-1.
  • Pielage J, Steffes G, Lau DC, Parente BA, Crews ST, Strauss R, Klämbt C. . ‘Novel behavioral and developmental defects associated with Drosophila single-minded.Developmental biology 249, No. 2: 283-99. doi: 10.1006/dbio.2002.0770.
  • Edenfeld G, Pielage J, Klämbt C. . ‘Cell lineage specification in the nervous system.Current opinion in genetics & development 12, No. 4: 473-7. doi: 10.1016/S0959-437X(02)00328-3.
  • Klämbt C. . ‘EGF receptor signalling: roles of star and rhomboid revealed.Current biology : CB 12, No. 1: R21-3. doi: 10.1016/S0960-9822(01)00642-X.
  • Schimmelpfeng K, Gögel S, Klämbt C. . ‘The function of leak and kuzbanian during growth cone and cell migration.Mechanisms of development 106, No. 1-2: 25-36. doi: 10.1016/S0925-4773(01)00402-6.
  • Pielage J, Klämbt C. . ‘Glial cells aid axonal target selection.Trends in neurosciences 24, No. 8: 432-3. doi: 10.1016/S0166-2236(00)01861-0.
  • Klämbt C, Hummel T, Granderath S, Schimmelpfeng K. . ‘Glial cell development in Drosophila.International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 19, No. 4: 373-8.
  • Buzanska L, Spassky N, Belin MF, Giangrande I, Guillemot F, Klambt C, Labouesse M, Thomas JL, Domanska-Janik K, Zalc B. . ‘Human medulloblastoma cell line DEV is a potent tool to screen for factors influencing differentiation of neural stem cells.’ JOURNAL OF NEUROSCIENCE RESEARCH 65, No. 1: 17-23.
  • Bogdan S, Klämbt C. . ‘Epidermal growth factor receptor signaling.Current biology : CB 11, No. 8: R292-5. doi: 10.1016/S0960-9822(01)00167-1.
  • Lammel U, Klämbt C. . ‘Specific expression of the Drosophila midline-jumper retro-transposon in embryonic CNS midline cells.Mechanisms of development 100, No. 2: 339-42. doi: 10.1016/S0925-4773(00)00536-0.
  • Hummel T, Krukkert K, Roos J, Davis G, Klambt C. . ‘Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development.’ NEURON 26, No. 2: 357-370. doi: 10.1016/S0896-6273(00)81169-1.
  • Roos J, Hummel T, Ng N, Klambt C, Davis GW. . ‘Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth.’ NEURON 26, No. 2: 371-382. doi: 10.1016/S0896-6273(00)81170-8.
  • Klämbt C. . ‘EGF receptor signalling: the importance of presentation.Current biology : CB 10, No. 10: R388-91. doi: 10.1016/S0960-9822(00)00485-1.
  • Hummel T, Leifker K, Klämbt C. . ‘The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.Genes & development 14, No. 7: 863-73.
  • Granderath S, Bunse I, Klämbt C. . ‘gcm and pointed synergistically control glial transcription of the Drosophila gene loco.Mechanisms of development 91, No. 1-2: 197-208. doi: 10.1016/S0925-4773(99)00304-4.
  • Granderath S, Klämbt C. . ‘Glia development in the embryonic CNS of Drosophila.Current opinion in neurobiology 9, No. 5: 531-6. doi: 10.1016/S0959-4388(99)00008-2.
  • Hummel T, Schimmelpfeng K, Klämbt C. . ‘Commissure formation in the embryonic CNS of Drosophila.Developmental biology 209, No. 2: 381-98. doi: 10.1006/dbio.1999.9235.
  • Granderath S, Stollewerk A, Greig S, Goodman CS, O'Kane CJ, Klämbt C. . ‘loco encodes an RGS protein required for Drosophila glial differentiation.Development (Cambridge, England) 126, No. 8: 1781-91.
  • Hummel T, Schimmelpfeng K, Klämbt C. . ‘Commissure formation in the embryonic CNS of Drosophila.Development (Cambridge, England) 126, No. 4: 771-9.
  • Brunner D, Dücker K, Oeller N, Hafen E, Scholz H, Klämbt C. . ‘The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway.’ Nature 370, No. 6488: 386-389. doi: 10.1038/370386a0.
  • Klaes A, Menne T, Stollewerk A, Scholz H, Klämbt C. . ‘The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS.’ Cell 78, No. 1: 149-160. doi: 10.1016/0092-8674(94)90581-9.
  • Klämbt C, Roger Jacobs J, Goodman CS. . ‘The midline of the Drosophila central nervous system: A model for the genetic analysis of cell fate, cell migration, and growth cone guidance.’ Cell 64, No. 4: 801-815. doi: 10.1016/0092-8674(91)90509-W.