|
Matthias Wink

Henri Guenancia: Compact Kähler manifolds with negative holomorphic sectional curvature

Monday, 25.04.2022 16:15 im Raum SRZ 214

Mathematik und Informatik

Let $X$ be a compact Kähler manifold admitting a metric with negative holomorphic sectional curvature. It was proved by Wu-Yau (when $X$ is projective) and Tosatti-Yang (in general) that the canonical bundle $K_X$ is ample. In particular, any smooth submanifold $Y \subset X$ has $K_Y$ ample, too. I will explain that any possibly singular subvariety $Y$ of $X$ is of general type, in the sense that any smooth model of $Y$ has big canonical bundle. This enables to check the validity of Lang's conjecture about complex hyperbolic manifolds in this particular setting.



Angelegt am 25.04.2022 von Matthias Wink
Geändert am 25.04.2022 von Matthias Wink
[Edit | Vorlage]

Konferenzen+Kolloquien
Oberseminare und sonstige Vorträge
Veranstaltungen am Mathematischen Institut