Original Papers

The collection of post-mortem brain tissue has been a core function of the Alzheimer Disease Research Center’s (ADRCs) network located within the United States since its inception. Individual brain banks and centers follow detailed protocols to record, store, and manage complex datasets that include clinical data, demographics, and when post-mortem tissue is available, a detailed neuropathological assessment. Since each institution often has specific research foci, there can be variability in tissue collection and processing workflows. While published guidelines exist for select diseases, such as those put forth by the National Institute on Aging and Alzheimer Association (NIA-AA), it is of importance to denote the current practices across institutions. To this end a survey was developed and sent to United States based brain bank leaders, collecting data on brain region sampling, including anatomic landmarks used, staining (including antibodies used), as well as whole-slide-image scanning hardware. We distributed this survey to 40 brain banks and obtained a response rate of 95% (38 / 40). Most brain banks followed guidelines defined by the NIA-AA, having H&E staining in all recommended regions and targeted region-based amyloid beta, tau, and alpha-synuclein immunohistochemical staining. However, sampling consistency varied related to key anatomic landmarks/locations in select regions, such as the striatum, periventricular white matter, and parietal cortex. This study highlights the diversity and similarities amongst brain banks and discusses considerations when amalgamating data/samples across multiple centers. This survey aids in establishing benchmarks to enhance dialogues on divergent workflows in a feasible way.
In a neuropathological series of 20 COVID-19 cases, we analyzed six cases (three biopsies and three autop-sies) with multiple foci predominantly affecting the white matter as shown by MRI. The cases presented with microhemorrhages evocative of small artery diseases. This COVID-19 associated cerebral microangiopathy (CCM) was characterized by perivascular changes: arterioles were surrounded by vacuolized tissue, clustered macrophages, large axonal swellings and a crown arrangement of aquaporin-4 immunoreactivity. There was evidence of blood-brain-barrier leakage. Fibrinoid necrosis, vascular occlusion, perivascular cuffing and de-myelination were absent. While no viral particle or viral RNA was found in the brain, the SARS-CoV-2 spike protein was detected in the Golgi apparatus of brain endothelial cells where it closely associated with furin, a host protease known to play a key role in virus replication. Endothelial cells in culture were not permissive to SARS-CoV-2 replication. The distribution of the spike protein in brain endothelial cells differed from that ob-served in pneumocytes. In the latter, the diffuse cytoplasmic labeling suggested a complete replication cycle with viral release, notably through the lysosomal pathway. In contrast, in cerebral endothelial cells the excre-tion cycle was blocked in the Golgi apparatus. Interruption of the excretion cycle could explain the difficulty of SARS-CoV-2 to infect endothelial cells in vitro and to produce viral RNA in the brain. Specific metabolism of the virus in brain endothelial cells could weaken the cell walls and eventually lead to the characteristic lesions of COVID-19 associated cerebral microangiopathy. Furin as a modulator of vascular permeability could provide some clues for the control of late effects of microangiopathy.

Introduction: Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy for the treatment of refractory hematopoietic malignancies. Adverse events are common, and neurotoxicity is one of the most important. However, the physiopathology is unknown and neuropathologic information is scarce.
Materials and methods: Post-mortem examination of 6 brains from patients that underwent CAR T-cell therapy from 2017 to 2022. In all cases, polymerase chain reaction (PCR) in paraffin blocks for the detection of CAR T cells was performed.
Results: Two patients died of hematologic progression, while the others died of cytokine release syndrome, lung infection, encephalomyelitis, and acute liver failure. Two out of 6 presented neurological symptoms, one with extracranial malignancy progression and the other with encephalomyelitis. The neuropathology of the latter showed severe perivascular and interstitial lymphocytic infiltration, predominantly CD8+, together with a diffuse interstitial histiocytic infiltration, affecting mainly the spinal cord, midbrain, and hippocampus, and a diffuse gliosis of basal ganglia, hippocampus, and brainstem. Microbiological studies were negative for neurotropic viruses, and PCR failed to detect CAR T -cells. Another case without detectable neurological signs showed cortical and subcortical gliosis due to acute hypoxic-ischemic damage. The remaining 4 cases only showed a mild patchy gliosis and microglial activation, and CAR T cells were detected by PCR only in one of them.
Conclusions: In this series of patients that died after CAR T-cell therapy, we predominantly found non-specific or minimal neuropathological changes. CAR T-cell related toxicity may not be the only cause of neurological symptoms, and the autopsy could detect additional pathological findings.
Materials and methods: Post-mortem examination of 6 brains from patients that underwent CAR T-cell therapy from 2017 to 2022. In all cases, polymerase chain reaction (PCR) in paraffin blocks for the detection of CAR T cells was performed.
Results: Two patients died of hematologic progression, while the others died of cytokine release syndrome, lung infection, encephalomyelitis, and acute liver failure. Two out of 6 presented neurological symptoms, one with extracranial malignancy progression and the other with encephalomyelitis. The neuropathology of the latter showed severe perivascular and interstitial lymphocytic infiltration, predominantly CD8+, together with a diffuse interstitial histiocytic infiltration, affecting mainly the spinal cord, midbrain, and hippocampus, and a diffuse gliosis of basal ganglia, hippocampus, and brainstem. Microbiological studies were negative for neurotropic viruses, and PCR failed to detect CAR T -cells. Another case without detectable neurological signs showed cortical and subcortical gliosis due to acute hypoxic-ischemic damage. The remaining 4 cases only showed a mild patchy gliosis and microglial activation, and CAR T cells were detected by PCR only in one of them.
Conclusions: In this series of patients that died after CAR T-cell therapy, we predominantly found non-specific or minimal neuropathological changes. CAR T-cell related toxicity may not be the only cause of neurological symptoms, and the autopsy could detect additional pathological findings.
Perfusion fixation is a well-established technique in animal research to improve preservation quality in the study of many tissues, including the brain. There is a growing interest in using perfusion to fix postmortem human brain tissue to achieve the highest fidelity preservation for downstream high-resolution morphomolecular brain mapping studies. Numerous practical barriers arise when applying perfusion fixation in brain banking settings, including the large mass of the organ, degradation of vascular integrity and patency prior to the start of the procedure, and differing investigator goals sometimes necessitating part of the brain to be frozen. As a result, there is a critical need to establish a perfusion fixation procedure in brain banking that is flexible and scalable. This technical report describes our approach to developing an ex situ perfusion fixation protocol. We discuss the challenges encountered and lessons learned while implementing this procedure. Routine morphological staining and RNA in situ hybridization data show that the perfused brains have well-preserved tissue cytoarchitecture and intact biomolecular signal. However, it remains uncertain whether this procedure leads to improved histology quality compared to immersion fixation. Additionally, ex vivo magnetic resonance imaging (MRI) data suggest that the perfusion fixation protocol may introduce imaging artifacts in the form of air bubbles in the vasculature. We conclude with further research directions to investigate the use of perfusion fixation as a rigorous and reproducible alternative to immersion fixation for the preparation of postmortem human brains.
Background: Seeding of pathology related to Alzheimer’s disease (AD) and Lewy body disease (LBD) by tissue homogenates or purified protein aggregates in various model systems has revealed prion-like properties of these disorders. Typically, these homogenates are injected into adult mice stereotaxically. Injection of brain lysates into newborn mice represents an alternative approach of delivering seeds that could direct the evolution of amyloid-β (Aβ) pathology co-mixed with either tau or α-synuclein (αSyn) pathology in susceptible mouse models.
Methods: Homogenates of human pre-frontal cortex were injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aβ pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. For comparison, homogenates of aged APP transgenic mice that preferentially exhibit diffuse or cored deposits were similarly injected into the brains of newborn APP mice.
Results: We observed that lysates from the brains with AD (Aβ+, tau+), AD/LBD (Aβ+, tau+, αSyn+), or Pathological Aging (Aβ+, tau-, αSyn-) efficiently seeded diffuse Aβ deposits. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Performance in fear-conditioning cognitive tasks was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Homogenates prepared from aged APP transgenic mice with diffuse Aβ deposits induced similar deposits in APP host mice; whereas homogenates from APP mice with cored deposits induced similar cored deposits, albeit at a lower level.
Conclusions: These findings are consistent with the idea that diffuse Aβ pathology, which is a common feature of human AD, AD/LBD, and PA brains, may arise from a distinct strain of misfolded Aβ that is highly transmissible to newborn transgenic APP mice. Seeding of tau or αSyn comorbidities was inefficient in the models we used, indicating that additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.
Methods: Homogenates of human pre-frontal cortex were injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aβ pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. For comparison, homogenates of aged APP transgenic mice that preferentially exhibit diffuse or cored deposits were similarly injected into the brains of newborn APP mice.
Results: We observed that lysates from the brains with AD (Aβ+, tau+), AD/LBD (Aβ+, tau+, αSyn+), or Pathological Aging (Aβ+, tau-, αSyn-) efficiently seeded diffuse Aβ deposits. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Performance in fear-conditioning cognitive tasks was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Homogenates prepared from aged APP transgenic mice with diffuse Aβ deposits induced similar deposits in APP host mice; whereas homogenates from APP mice with cored deposits induced similar cored deposits, albeit at a lower level.
Conclusions: These findings are consistent with the idea that diffuse Aβ pathology, which is a common feature of human AD, AD/LBD, and PA brains, may arise from a distinct strain of misfolded Aβ that is highly transmissible to newborn transgenic APP mice. Seeding of tau or αSyn comorbidities was inefficient in the models we used, indicating that additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.
Cerebrovascular lesions are prevalent in late life and frequently co-occur but the relationship to cognitive impairment is complicated by the lack of consensus around which lesions represent hallmark pathologies for vascular impairment, particularly in the presence of Alzheimer’s disease (AD). We developed an easily applicable model of cerebrovascular disease (CVD), defined as the presence of two or more lesions: moderate to severe cerebral amyloid angiopathy, moderate to severe arteriolosclerosis, infarcts (large, lacunar, or micro), and/or hemorrhages. AD was defined as intermediate or high AD neuropathologic change. The contribution of vascular risk factors such as atherosclerosis and/or a health history of heart disease, hyperlipidemia, stroke events, diabetes, or hypertension was also assessed. Logistic regression analysis reported the association of CVD with increasing age, vascular risk factors, AD, and cognitive impairment in this study of 1,485 autopsied individuals. Cerebrovascular lesions were present in 48% and 16% had CVD. Increasing age associated with all lesions (p<0.001), except hemorrhages (p=0.41). CVD was more likely in individuals with vascular risk factors or AD (p<0.01). CVD, but not individual cerebrovascular lesions, associated with impairment in cases without AD (p<0.01), but not in cases with AD (p>0.61). From this, we conclude that a simple, additive model of CVD is 1) age and AD-associated, 2) is associated with vascular risk factors, and 3) clinically correlates with cognitive decline independent of AD.
Aims: There are very few detailed post-mortem studies on idiopathic normal-pressure hydrocephalus (iNPH) and there is a lack of proper neuropathological criteria for iNPH. This study aims to update the knowledge on the neuropathology of iNPH and to develop the neuropathological diagnostic criteria of iNPH.
Methods: We evaluated the clinical lifelines and post-mortem findings of 29 patients with possible NPH. Pre-mortem cortical brain biopsies were taken from all patients during an intracranial pressure measurement or a cerebrospinal fluid (CSF) shunt surgery.
Results: The mean age at the time of the biopsy was 70±8 SD years and 74±7 SD years at the time of death. At the time of death, 11/29 patients (38%) displayed normal cognition or mild cognitive impairment (MCI), 9/29 (31%) moderate dementia and 9/29 (31%) severe dementia. Two of the demented patients had only scarce neuropathological findings indicating a probable hydrocephalic origin for the dementia. Amyloid-β (Aβ) and hyperphosphorylated τ (HPτ) in the biopsies predicted the neurodegenerative diseases so that there were 4 Aβ positive/low Alzheimer’s disease neuropathological change (ADNC) cases, 4 Aβ positive/intermediate ADNC cases, 1 Aβ positive case with both low ADNC and progressive supranuclear palsy (PSP), 1 HPτ/PSP and primary age-related tauopathy (PART) case, 1 Aβ/HPτ and low ADNC/synucleinopathy case and 1 case with Aβ/HPτ and high ADNC. The most common cause of death was due to cardiovascular diseases (10/29, 34%), followed by cerebrovascular diseases or subdural hematoma (SDH) (8/29, 28%). Three patients died of a postoperative intracerebral hematoma (ICH). Vascular lesions were common (19/29, 65%).
Conclusions: We update the suggested neuropathological diagnostic criteria of iNPH, which emphasize the rigorous exclusion of all other known possible neuropathological causes of dementia. Despite the first 2 probable cases reported here, the issue of “hydrocephalic dementia” as an independent entity still requires further confirmation. Extensive sampling (with fresh frozen tissue including meninges) with age-matched neurologically healthy controls is highly encouraged.
Methods: We evaluated the clinical lifelines and post-mortem findings of 29 patients with possible NPH. Pre-mortem cortical brain biopsies were taken from all patients during an intracranial pressure measurement or a cerebrospinal fluid (CSF) shunt surgery.
Results: The mean age at the time of the biopsy was 70±8 SD years and 74±7 SD years at the time of death. At the time of death, 11/29 patients (38%) displayed normal cognition or mild cognitive impairment (MCI), 9/29 (31%) moderate dementia and 9/29 (31%) severe dementia. Two of the demented patients had only scarce neuropathological findings indicating a probable hydrocephalic origin for the dementia. Amyloid-β (Aβ) and hyperphosphorylated τ (HPτ) in the biopsies predicted the neurodegenerative diseases so that there were 4 Aβ positive/low Alzheimer’s disease neuropathological change (ADNC) cases, 4 Aβ positive/intermediate ADNC cases, 1 Aβ positive case with both low ADNC and progressive supranuclear palsy (PSP), 1 HPτ/PSP and primary age-related tauopathy (PART) case, 1 Aβ/HPτ and low ADNC/synucleinopathy case and 1 case with Aβ/HPτ and high ADNC. The most common cause of death was due to cardiovascular diseases (10/29, 34%), followed by cerebrovascular diseases or subdural hematoma (SDH) (8/29, 28%). Three patients died of a postoperative intracerebral hematoma (ICH). Vascular lesions were common (19/29, 65%).
Conclusions: We update the suggested neuropathological diagnostic criteria of iNPH, which emphasize the rigorous exclusion of all other known possible neuropathological causes of dementia. Despite the first 2 probable cases reported here, the issue of “hydrocephalic dementia” as an independent entity still requires further confirmation. Extensive sampling (with fresh frozen tissue including meninges) with age-matched neurologically healthy controls is highly encouraged.

Cerebral microbleeds (CMBs) identified by in vivo magnetic resonance imaging (MRI) of brains of older persons may have clinical relevance due to their association with cognitive impairment and other adverse neurologic outcomes, but are often not detected in routine neuropathology evaluations. In this study, the utility of ex vivo MRI in the neuropathological identification, localization, and frequency of CMBs was investigated. The study included 3 community dwelling elders with Alzheimer’s dementia, and mild to severe small vessel disease (SVD). Ex vivo MRI was performed on the fixed hemisphere to identify CMBs, blinded to the neuropathology diagnoses. The hemibrains were then sliced at 1 cm intervals and 2, 1 or 0 microhemorrhages (MH) were detected on the cut surfaces of brain slabs using the routine neuropathology protocol. Ex vivo imaging detected 15, 14 and 9 possible CMBs in cases 1, 2 and 3, respectively. To obtain histological confirmation of the CMBs detected by ex vivo MRI, the 1 cm brain slabs were dissected further and MHs or areas corresponding to the CMBs detected by ex vivo MRI were blocked and serially sectioned at 6 µm intervals. Macroscopic examination followed by microscopy post ex vivo MRI resulted in detection of 35 MHs and therefore, about 12 times as many MHs were detected compared to routine neuropathology assessment without ex vivo MRI. While microscopy identified previously unrecognized chronic MHs, it also showed that MHs were acute or subacute and therefore may represent perimortem events. Ex vivo MRI detected CMBs not otherwise identified on routine neuropathological examination of brains of older persons and histologic evaluation of the CMBs is necessary to determine the age and clinical relevance of each hemorrhage.
Heart disease is an integral part of Friedreich ataxia (FA) and the most common cause of death in this autosomal recessive disease. The result of the mutation is lack of frataxin, a small mitochondrial protein. The clinical and pathological phenotypes of FA are complex, involving brain, spinal cord, dorsal root ganglia, sensory nerves, heart, and endocrine pancreas. The hypothesis is that frataxin deficiency causes downstream changes in the proteome of the affected tissues, including the heart. A proteomic analysis of heart proteins in FA cardiomyopathy by antibody microarray, Western blots, immunohistochemistry, and double-label laser scanning confocal immunofluorescence microscopy revealed upregulation of desmin and its chaperone protein, αB-crystallin. In normal hearts, these two proteins are co-localized at intercalated discs and Z discs. In FA, desmin and αB-crystallin aggregate, causing chaotic modification of intercalated discs, clustering of mitochondria, and destruction of the contractile apparatus of cardiomyocytes. Western blots of tissue lysates in FA cardiomyopathy reveal a truncated desmin isoprotein that migrates at a lower molecular weight range than wild type desmin. While desmin and αB-crystallin are not mutated in FA, the accumulation of these proteins in FA hearts allows the conclusion that FA cardiomyopathy is a desminopathy akin to desmin myopathy of skeletal muscle.
Objective and Methods: Timely discrimination between primary CNS lymphoma (PCNSL) and glioblastoma is crucial for diagnostics and therapy, but most importantly also determines the intraoperative surgical course. Advanced radiological methods allow this to a certain extent but ultimately, biopsy is still necessary for final diagnosis. As an upcoming method that enables tissue analysis by tracking changes in the vibrational state of molecules via inelastic scattered photons, we used Raman Spectroscopy (RS) as a label free method to examine specimens of both tumor entities intraoperatively, as well as postoperatively in formalin fixed paraffin embedded (FFPE) samples.
Results: We applied and compared statistical performance of linear and nonlinear machine learning algorithms (Logistic Regression, Random Forest and XGBoost), and found that Random Forest classification distinguished the two tumor entities with a balanced accuracy of 82,4% in intraoperative tissue condition and with 94% using measurements of distinct tumor areas on FFPE tissue. Taking a deeper insight into the spectral properties of the tumor entities, we describe different tumor-specific Raman shifts of interest for classification.
Conclusions: Due to our findings, we propose RS as an additional tool for fast and non-destructive, perioperative tumor tissue discrimination, which may augment treatment options at an early stage. RS may further serve as a useful additional tool for neuropathological diagnostics with little requirements for tissue integrity.
Results: We applied and compared statistical performance of linear and nonlinear machine learning algorithms (Logistic Regression, Random Forest and XGBoost), and found that Random Forest classification distinguished the two tumor entities with a balanced accuracy of 82,4% in intraoperative tissue condition and with 94% using measurements of distinct tumor areas on FFPE tissue. Taking a deeper insight into the spectral properties of the tumor entities, we describe different tumor-specific Raman shifts of interest for classification.
Conclusions: Due to our findings, we propose RS as an additional tool for fast and non-destructive, perioperative tumor tissue discrimination, which may augment treatment options at an early stage. RS may further serve as a useful additional tool for neuropathological diagnostics with little requirements for tissue integrity.
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative tauopathy found in individuals with a history of repetitive head impacts (RHI). Previous work has demonstrated that neuroinflammation is involved in CTE pathogenesis, however, the specific inflammatory mechanisms are still unclear. Here, using RNA-sequencing and gene set enrichment analysis (GSEA), we investigated the genetic changes found in tissue taken from the region CTE pathology is first found, the cortical sulcus, and compared it to neighboring gryal crest tissue to identify what pathways were directly related to initial hyperphosphorylated tau (p-tau) deposition. 21 cases were chosen for analysis: 6 cases had no exposure to RHI or presence of neurodegenerative disease (Control), 5 cases had exposure to RHI but no presence of neurodegenerative disease (RHI), and 10 cases had exposure to RHI and low stage CTE (CTE). Two sets of genes were identified: genes that changed in both the sulcus and crest and genes that changed specifically in the sulcus relative to the crest. When examining genes that changed in both the sulcus and crest, GSEA demonstrated an increase in immune related processes and a decrease in neuronal processes in RHI and CTE groups. Sulcal specific alterations were observed to be driven by three mechanisms: anatomy, RHI, or p-tau. First, we observed consistent sulcal specific alterations in immune, extracellular matrix, vascular, neuronal, and endocytosis/exocytosis categories across all groups, suggesting the sulcus has a unique molecular signature compared to the neighboring crest independent of pathology. Second, individuals with a history of RHI demonstrated impairment in metabolic and mitochondrial related processes. Finally, in individuals with CTE, we observed impairment of immune and phagocytic related processes. Overall, this work provides the first observation of biological processes specifically altered in the sulcus that could be directly implicated in CTE pathogenesis and provide novel targets for biomarkers and therapies.
Aims: Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a median overall survival of eleven months. Lack of chemotherapy efficacy may be related to an intact blood-brain barrier (BBB). In this study we aim to investigate the neurovascular unit (NVU) in DIPG patients.
Methods: DIPG biopsy (n = 4) and autopsy samples (n = 6) and age-matched healthy pons samples (n = 20) were immunohistochemically investigated for plasma protein extravasation, and the expression of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1), basement membrane component laminin, pericyte marker PDGFR-β, and efflux transporters P-gp and BCRP. The mean vascular density and diameter were also assessed.
Results: DIPGs show a heterogeneity in cell morphology and evidence of BBB leakage. Both in tumor biopsy and autopsy samples, expression of claudin-5, ZO-1, laminin, PDGFR-β and P-gp was reduced compared to healthy pontine tissues. In DIPG autopsy samples, vascular density was lower compared to healthy pons. The density of small vessels (<10 µm) was significantly lower (P<0.001), whereas the density of large vessels (≥10 µm) did not differ between groups (P = 0.404). The median vascular diameter was not significantly different: 6.21 µm in DIPG autopsy samples (range 2.25-94.85 µm), and 6.26 µm in controls (range 1.17-264.77 µm).
Conclusion: Our study demonstrates evidence of structural changes in the NVU in DIPG patients, both in biopsy and autopsy samples, as well as a reduced vascular density in end-stage disease. Adding such a biological perspective may help to better direct future treatment choices for DIPG patients.
Methods: DIPG biopsy (n = 4) and autopsy samples (n = 6) and age-matched healthy pons samples (n = 20) were immunohistochemically investigated for plasma protein extravasation, and the expression of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1), basement membrane component laminin, pericyte marker PDGFR-β, and efflux transporters P-gp and BCRP. The mean vascular density and diameter were also assessed.
Results: DIPGs show a heterogeneity in cell morphology and evidence of BBB leakage. Both in tumor biopsy and autopsy samples, expression of claudin-5, ZO-1, laminin, PDGFR-β and P-gp was reduced compared to healthy pontine tissues. In DIPG autopsy samples, vascular density was lower compared to healthy pons. The density of small vessels (<10 µm) was significantly lower (P<0.001), whereas the density of large vessels (≥10 µm) did not differ between groups (P = 0.404). The median vascular diameter was not significantly different: 6.21 µm in DIPG autopsy samples (range 2.25-94.85 µm), and 6.26 µm in controls (range 1.17-264.77 µm).
Conclusion: Our study demonstrates evidence of structural changes in the NVU in DIPG patients, both in biopsy and autopsy samples, as well as a reduced vascular density in end-stage disease. Adding such a biological perspective may help to better direct future treatment choices for DIPG patients.
Background: In some people with Parkinson’s disease (PD), a-synuclein (αSyn) accumulation may begin in the enteric nervous system (ENS) decades before development of brain pathology and disease diagnosis.
Objective: To determine how different types and severity of intestinal inflammation could trigger αSyn accumulation in the ENS and the subsequent development of αSyn brain pathology.
Methods: We assessed the effects of modulating short- and long-term experimental colitis on αSyn accumulation in the gut of αSyn transgenic and wild type mice by immunostaining and gene expression analysis. To determine the long-term effect on the brain, we induced dextran sulfate sodium (DSS) colitis in young αSyn transgenic mice and aged them under normal conditions up to 9 or 21 months before tissue analyses.
Results: A single strong or sustained mild DSS colitis triggered αSyn accumulation in the submucosal plexus of wild type and αSyn transgenic mice, while short-term mild DSS colitis or inflammation induced by lipopolysaccharide did not have such an effect. Genetic and pharmacological modulation of macrophage-associated pathways modulated the severity of enteric αSyn. Remarkably, experimental colitis at three months of age exacerbated the accumulation of aggregated phospho-Serine 129 αSyn in the midbrain (including the substantia nigra), in 21- but not 9-month-old αSyn transgenic mice. This increase in midbrain αSyn accumulation is accompanied by the loss of tyrosine hydroxylase-immunoreactive nigral neurons.
Conclusions: Our data suggest that specific types and severity of intestinal inflammation, mediated by monocyte/macrophage signaling, could play a critical role in the initiation and progression of PD.
Objective: To determine how different types and severity of intestinal inflammation could trigger αSyn accumulation in the ENS and the subsequent development of αSyn brain pathology.
Methods: We assessed the effects of modulating short- and long-term experimental colitis on αSyn accumulation in the gut of αSyn transgenic and wild type mice by immunostaining and gene expression analysis. To determine the long-term effect on the brain, we induced dextran sulfate sodium (DSS) colitis in young αSyn transgenic mice and aged them under normal conditions up to 9 or 21 months before tissue analyses.
Results: A single strong or sustained mild DSS colitis triggered αSyn accumulation in the submucosal plexus of wild type and αSyn transgenic mice, while short-term mild DSS colitis or inflammation induced by lipopolysaccharide did not have such an effect. Genetic and pharmacological modulation of macrophage-associated pathways modulated the severity of enteric αSyn. Remarkably, experimental colitis at three months of age exacerbated the accumulation of aggregated phospho-Serine 129 αSyn in the midbrain (including the substantia nigra), in 21- but not 9-month-old αSyn transgenic mice. This increase in midbrain αSyn accumulation is accompanied by the loss of tyrosine hydroxylase-immunoreactive nigral neurons.
Conclusions: Our data suggest that specific types and severity of intestinal inflammation, mediated by monocyte/macrophage signaling, could play a critical role in the initiation and progression of PD.

Epidemiological studies suggest a link between type-2 diabetes and Parkinson’s disease (PD) risk. Treatment of type-2 diabetes with insulin sensitizing drugs lowers the risk of PD. We previously showed that the insulin sensitizing drug, MSDC-0160, ameliorates pathogenesis in some animal models of PD. MSDC-0160 reversibly binds the mitochondrial pyruvate carrier (MPC) protein complex, which has an anti-inflammatory effect and restores metabolic deficits. Since PD is characterized by the deposition of α-synuclein (αSyn), we hypothesized that inhibiting the MPC might directly inhibit αSyn aggregation in vivo in mammals. To answer if modulation of MPC can reduce the development of αSyn assemblies, and reduce neurodegeneration, we treated two chronic and progressive mouse models; a viral vector-based αSyn overexpressing model and a pre-formed fibril (PFF) αSyn seeding model with MSDC-0160. These two models present distinct types of αSyn pathology but lack inflammatory or autophagy deficits. Contrary to our hypothesis, we found that a modulation of MPC in these models did not reduce the accumulation of αSyn aggregates or mitigate neurotoxicity. Instead, MSDC-0160 changed the post-translational modification and aggregation features of αSyn. These results are consistent with the lack of a direct effect of MPC modulation on synuclein clearance in these models.
Aims: Cerebral amyloid angiopathy (CAA) is the accumulation of amyloid beta (Aβ) in the walls of cerebral arterioles, arteries and capillaries. Changes in the white matter in CAA are observed as hyperintensities and dilated perivascular spaces on MRI suggesting impairment of fluid drainage but the pathophysiology behind these changes is poorly understood. We tested the hypothesis that proteins associated with clearance of Aβ peptides are upregulated in the white matter in cases of CAA.
Methods: In this study, we compare the quantitative proteomic profile of white matter from post-mortem brains of patients with CAA and age-matched controls in order to gain insight into the cellular processes and key molecules involved in the pathophysiology of CAA.
Results: Our proteomic analysis resulted in the profiling of 3,734 proteins (peptide FDR p<0.05). Of these, 189 were differentially expressed in CAA vs. control. Bioinformatics analysis of these proteins showed significant enrichment of proteins related to cell adhesion | cell-matrix interaction, mitochondrial dysfunction and hypoxia. Upregulated proteins in CAA included EMILIN2, COL4A2, TLN1, CLU, HSPG2. Downregulated proteins included DSP, IDE, HBG1.
Conclusions: The present study reports an in-depth quantitative proteomic profiling of white matter from patients with CAA, highlighting extracellular matrix proteins and clusterin as key molecules in the pathophysiology of white matter changes in cases of CAA.
Methods: In this study, we compare the quantitative proteomic profile of white matter from post-mortem brains of patients with CAA and age-matched controls in order to gain insight into the cellular processes and key molecules involved in the pathophysiology of CAA.
Results: Our proteomic analysis resulted in the profiling of 3,734 proteins (peptide FDR p<0.05). Of these, 189 were differentially expressed in CAA vs. control. Bioinformatics analysis of these proteins showed significant enrichment of proteins related to cell adhesion | cell-matrix interaction, mitochondrial dysfunction and hypoxia. Upregulated proteins in CAA included EMILIN2, COL4A2, TLN1, CLU, HSPG2. Downregulated proteins included DSP, IDE, HBG1.
Conclusions: The present study reports an in-depth quantitative proteomic profiling of white matter from patients with CAA, highlighting extracellular matrix proteins and clusterin as key molecules in the pathophysiology of white matter changes in cases of CAA.
Two different pathological mechanisms have been suggested to underlie adult-onset leukoencephalopathy with axonal spheroids (ALAS). Pathological studies have suggested that ALAS involves primary axonopathy with secondary demyelination. However, the identification of mutations in Colony Stimulating Factor 1 Receptor (CSF1R), important for microglial survival, has suggested that ALAS is a microgliopathy. This study examines the correlation between microglial changes and axonopathy in ALAS. A total of 6 ALAS cases were studied. White matter lesions were classified into three evolving stages: 1) numerous axonal spheroids among well-myelinated fibers; 2) moderate loss of myelinated fibers with or without axonal spheroids; and 3) a leukodystrophy-like pattern of severe confluent axonal and myelin loss. Axonal spheroids and ramified microglia were semi-quantified and the lesions were assigned a score of 0–3. We found a strong correlation between the preponderance of axonal spheroids and ramified microglial loss. All areas with a predominance of axonal spheroids showed a near-complete absence of ramified microglia, which was also apparent in small cortical and white matter lesions. In contrast, some areas with no ramified microglia showed no axonal pathology. Our findings support the suggestion that ramified microglia loss precedes axonal spheroids formation. This observation will help to better understand the pathogenesis of ALAS and suggests a protective role of microglia.
A hexanucleotide G4C2 repeat expansion in C9orf72 is the most common genetic cause of familial and sporadic cases of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The mutation is associated with a reduction of C9orf72 protein and accumulation of toxic RNA and dipeptide repeat aggregates. The accumulation of toxic RNA has been proposed to sequester RNA binding proteins thereby altering RNA processing, consistent with previous transcriptome studies that have shown that the C9orf72 repeat expansion is linked to abundant splicing alterations and transcriptome changes. Here, we used a subcellular fractionation method and FACS to enrich for neuronal nuclei from C9orf72 repeat expanded post-mortem human ALS/FTD brains, and to remove neuronal nuclei with TDP-43 pathology which are observed in nearly all symptomatic C9orf72 repeat expanded cases. We show that the C9orf72 expansion is associated with relatively mild gene expression changes. Dysregulated genes were enriched for vesicle transport pathways, which is consistent with the known functions of C9orf72 protein. Further analysis suggests that the C9orf72 transcriptome is not driven by toxic RNA but is rather shaped by the depletion of pathologic TDP-43 nuclei and the loss of C9orf72 expression. These findings argue against RNA binding protein sequestration in neurons as a major contributor to C9orf72 mediated toxicity.
Alzheimer’s disease (AD) is a late-onset disease that has proved difficult to model. Microglia are implicated in AD, but reports vary on precisely when and how in the sequence of pathological changes they become involved. Here, post-mortem human tissue from two differentially affected regions of the AD brain and from non-demented individuals with a high load of AD-type pathology (high pathology controls) was used to model the disease time course in order to determine how microglial activation relates temporally to the deposition of hallmark amyloid-β (Aβ) and hyperphosphorylated microtubule associated protein tau pathology. Immunofluorescence against the pan-microglial marker, ionised calcium-binding adapter molecule 1 (IBA1), Aβ and tau, was performed in the primary motor cortex (PMC), a region relatively spared of AD pathological changes, and compared to the severely affected inferior temporal cortex (ITC) in the same cases. Unlike the ITC, the PMC in the AD cases was spared of any degenerative changes in cortical thickness and the density of Betz cells and total neurons. The clustering of activated microglia was greatest in the PMC of AD cases and high pathology controls compared to the ITC. This suggests microglial activation is most prominent in the early phases of AD pathophysiology. Nascent tau inclusions were found in neuritic plaques in the PMC but were more numerous in the ITC of the same case. This shows that tau positive neuritic plaques begin early in AD which is likely of pathogenic importance, however major tau deposition follows the accumulation of Aβ and clustering of activated microglia. Importantly, findings presented here demonstrate that different states of microglial activation, corresponding to regional accumulations of Aβ and tau, are present simultaneously in the same individual; an important factor for consideration if targeting these cells for therapeutic intervention.
We have previously shown that treatment of female NOD mice with a potent nonselective histone deacetylase inhibitor attenuated experimental autoimmune encephalomyelitis, a model for progressive multiple sclerosis. Herein we show that immunization with the MOG35-55 peptide induced prolonged upregulation of genes encoding interleukin 17A (IL-17A), aryl hydrocarbon receptor, and histone deacetylase 11 in the spinal cord whereas the subunits of IL-27, IL-27p28 and IL-27ebi3 were significantly increased in secondary lymphoid organs after a lag period. Interestingly, the nitric oxide synthase gene was prominently expressed in both of these anatomic compartments following immunization. Treatment with the histone modifier repressed the transcription of all of these genes induced by immunization. Moreover, the drug suppressed the steady-state levels of the migration inhibitory factor and CD274 genes in both the spinal cord and peripheral lymphoid tissues. At the same time, the CD39 gene was downregulated only in secondary lymphoid organs. Paradoxically, the epigenetic drug enhanced the expression of Declin-1 in the spinal cord, suggesting a protective role in neuronal disease. Immunization profoundly enhanced transcription of the chemokine CCL2 in the secondary lymphoid tissues without a corresponding increase in the translation of CCL2 protein. Histone hyperacetylation neither altered the transcription of CCL2 nor its cognate receptor CCR2 in the central nervous system and peripheral lymphoid tissues. Surprisingly, the drug did not exert modulatory influence on most other immune response-related genes previously implicated in encephalomyelitis. Nevertheless, our data uncover several potential molecular targets for the intervention of experimental autoimmune encephalomyelitis that have implications for the treatment of progressive multiple sclerosis.
Background: The majority of cases of frontotemporal lobar degeneration (FTLD) are characterized by focal cortical atrophy with an underlying tau or TDP-43 proteinopathy. A subset of FTLD cases, however, lack tau and TDP-43 immunoreactivity, but have neuronal inclusions positive for ubiquitin, referred to as atypical FTLD (aFTLD-U). Studies have demonstrated that ubiquitin-positive inclusions in aFTLD-U are immunoreactive for fused in sarcoma (FUS). As such, the current nosology for this entity is FTLD-FUS, which is thought to include not only aFTLD-U but also neuronal intermediate filament inclusion disease (NIFID) and basophilic inclusion body disease.
Objective: To compare pathological features of cases of aFTLD-U and NIFID.
Methods: We reviewed the neuropathology of 15 patients (10 males and 5 females; average age at death 54 years (range 41-69 years)) with an antemortem clinical diagnosis of a frontotemporal dementia and pathological diagnosis of aFTLD-U (n=8) or NIFID (n=7). Sections were processed for immunohistochemistry and immunoelectron microscopy with FUS, TDP-43, and α-internexin (αINX) antibodies.
Results: Eight cases had pathologic features consistent with FTLD-FUS, with severe striatal atrophy (7/8 cases), as well as FUS-positive neuronal cytoplasmic and vermiform intranuclear inclusions, but no αINX immunoreactivity. Five cases had features consistent with NIFID, with neuronal inclusions positive for both FUS and αINX. Striatal atrophy was present in only two of the NIFID cases. Two cases had αINX-positive neuronal inclusions consistent with NIFID, but both lacked striatal atrophy and FUS immunoreactivity. Surprisingly, one of these two NIFID cases had lesions immunoreactive for TDP-43.
Discussion: While FUS pathology remains a prominent feature of aFTLD-U, there is pathologic heterogeneity, including rare cases of NIFID with TDP-43- rather than FUS-positive inclusions.
Objective: To compare pathological features of cases of aFTLD-U and NIFID.
Methods: We reviewed the neuropathology of 15 patients (10 males and 5 females; average age at death 54 years (range 41-69 years)) with an antemortem clinical diagnosis of a frontotemporal dementia and pathological diagnosis of aFTLD-U (n=8) or NIFID (n=7). Sections were processed for immunohistochemistry and immunoelectron microscopy with FUS, TDP-43, and α-internexin (αINX) antibodies.
Results: Eight cases had pathologic features consistent with FTLD-FUS, with severe striatal atrophy (7/8 cases), as well as FUS-positive neuronal cytoplasmic and vermiform intranuclear inclusions, but no αINX immunoreactivity. Five cases had features consistent with NIFID, with neuronal inclusions positive for both FUS and αINX. Striatal atrophy was present in only two of the NIFID cases. Two cases had αINX-positive neuronal inclusions consistent with NIFID, but both lacked striatal atrophy and FUS immunoreactivity. Surprisingly, one of these two NIFID cases had lesions immunoreactive for TDP-43.
Discussion: While FUS pathology remains a prominent feature of aFTLD-U, there is pathologic heterogeneity, including rare cases of NIFID with TDP-43- rather than FUS-positive inclusions.
Deposition of alpha-synuclein in the brain is a hallmark of Lewy body disorders. Alpha-synuclein has been considered to show prion-like properties. Prion diseases can be transmitted by the transplantation of cadaveric dura mater causing iatrogenic Creutzfeldt-Jakob disease. Recent observations of amyloid-β deposition in dural grafts support the seeding properties of amyloid-β. Here we assessed the presence of alpha-synuclein in dura mater samples as a potential transmissible seed source. We immunostained 32 postmortem dura mater samples; 16 cases with Lewy-body disorder (LBD) showing different pathology stages and 16 non-LBD cases for phosphorylated (Ser129) and disease-associated (5G4) alpha-synuclein. Disease-associated alpha-synuclein aggregates were identified in intradural nerve fibres and associated with a vessel in a single LBD-Braak stage 4 case. We conclude that alpha-synuclein is detectable, although rarely, in dura mater samples in patients with LBD. The risk of potential transmissibility of dural alpha-synuclein deserves assessment by complementary experimental studies.