Publikationen
Veröffentlichungen in Journalen mit Peer-Review
| Nr. | Titel |
|---|---|
| 42. | A Warm Welcome to MedChem: The Frontiers in Medicinal Chemistry 2025. M. Schiedel,# M. Pinto, A. Unzue Lopez, P. Barbie, F. Pape, A. Tarasewicz, G. Hessler, P. Gmeiner, C. Lamers,# M. Gehringer.# ChemMedChem 20 (2025), e202500609 [#shared corresponding authorship]. https://doi.org/10.1002/cmdc.202500609, I.F.: 3.4 |
| 41. | Target engagement studies and kinetic live-cell degradation assays enable the systematic characterization of histone deacetylase 6 degraders. M. Hanl, F. Feller, I. Honin, K. Tan, M. Miranda, L. Schäker-Hübner, N. Bückreiß, M. Schiedel, M. Gütschow, G. Bendas, F.K. Hansen. ACS Pharmacol. Transl. Sci. (2025), accepted article. https://doi.org/10.1021/acsptsci.5c00247, I.F.: 3.7 |
| 40. | Efficient crystallization of apo Sirt2 for small-molecule soaking and structural analysis of ligand interactions. F. Friedrich, M. Schiedel, S. Swyter, L. Zhang, W. Sippl, M. Schutkowski, O. Einsle, M. Jung. J. Med. Chem. 68 (2025), 10771-10780. https://doi.org/10.1021/acs.jmedchem.4c02896, I.F.: 7.1 |
| 39. | Antiproliferative effects, mechanism of action and tumor reduction studies in a lung cancer xenograft mouse model of an organometallic gold(I) alkynyl complex. U. Basu, A. Wilsmann, S. Türck, H. Hoffmeister, M. Schiedel, G. Gasser, I. Ott. RSC Med. Chem. 16 (2025), 2663-2676. https://doi.org/10.1039/D4MD00964A , I.F.: 4.1 |
| 38. | From bones to bugs: Structure-based development of raloxifene-derived pathoblockers that inhibit pyocyanin production in Pseudomonas aeruginosa. M. Thiemann, M. Zimmermann, C. Diederich, H. Zhand, M. Lebedevh, J. Pletzi, J. Baumgarten, Maria Handke, M. Müsken, R. Breinbauer, G. Krasteva-Christ, E. Zanin, M. Empting, M. Schiedel,# C. Kunick,# W. Blankenfeldt.# J. Med. Chem. 68 (2025), 7390-7420. https://doi.org/10.1021/acs.jmedchem.4c03065, I.F.: 7.1 [#shared corresponding authorship]. Impact factor: 6.900 |
| 37. | A fluorescent probe enables the discovery of improved antagonists targeting the intracellular allosteric site of the chemokine receptor CCR7. S.L. Wurnig, M.E. Huber, C. Weiler, H. Baltrukevich, N. Merten, I. Stötzel, Y. Chang, R.H.L. Klammer, D. Baumjohann, E. Kiermaier, P. Kolb, E. Kostenis,# M. Schiedel,# F.K. Hansen.# J. Med. Chem. 68 (2025), 4308-4333. [#shared corresponding authorship]. https://doi.org/10.1021/acs.jmedchem.4c02102, I.F.: 7.1 |
| 36. | New fluorogenic triacylglycerols as sensors for dynamic measurement of lipid oxidation. M. Handke, F. Beierlein, P. Imhof, M. Schiedel,# S. Hammann.# Anal. Bioanal. Chem. 417 (2025), 287-296 [#shared corresponding authorship]. https://doi.org/10.1007/s00216-024-05642-w, I.F.: 3.8 |
| 35. | We are MedChem: The Frontiers in Medicinal Chemistry 2024. M. Schiedel, P. Barbie, F. Pape, M. Pinto, A. Unzue Lopez, M. Méndez, G. Hessler, D. Merk, M. Gehringer, C. Lamers. ChemMedChem 19 (2024), e202400543. https://doi.org/10.1002/cmdc.202400543, I.F: 3.5 |
| 34. |
Development of a NanoBRET assay platform to detect intracellular ligands for the chemokine receptors CCR6 and CXCR1. M.E. Huber, S.L Wurnig, A.F.A Moumbock, L. Toy, E. Kostenis, A. Alonso Bartolomé, M. Szpakowska, A. Chevigné, S. Günther, F.K. Hansen,# M. Schiedel.# ChemMedChem 19 (2024), e202400284 [#shared corresponding authorship]. |
| 33. |
Fluorophore-labeled pyrrolones targeting the intracellular allosteric binding site of the chemokine receptor CCR1. L. Toy, M.E. Huber, M. Lee, A. Alonso Bartolomé, N.V. Ortiz Zacarías, S. Nasser, S. Scholl, D.P. Zlotos, Y. M. Mandour, L.H. Heitman, M. Szpakowska, A. Chevigné, M. Schiedel. ACS Pharmacol. Transl. Sci. 7 (2024), 2080-2092. |
| 32. | Development of a fluorescent ligand for the intracellular allosteric binding site of the neurotensin receptor 1. H. Vogt, P. Shinkwin, M.E. Huber, N. Staffen, H. Hübner, P. Gmeiner, M. Schiedel, Dorothee Weikert. ACS Pharmacol. Transl. Sci. 7 (2024), 1533-1545. https://doi.org/10.1021/acsptsci.4c00086, I.F.: 6.0 |
| 31. |
Development and initial characterization of the first 18F-CXCR2-targeting radiotracer for PET imaging of neutrophils. P. Spatz, X. Chen, K. Reichau, M.E. Huber, S. Mühlig, Y. Matsusaka, M. Schiedel, T. Higuchi, M. Decker. J. Med. Chem. 67 (2024), 6327-6343. |
| 30. | Small molecule ligands of the BET-like bromodomain, SmBRD3, affect Schistosoma mansoni survival, oviposition, and development. M. Schiedel*, D. McArdle*, G. Padalino*, A.K.N. Chan, J. Forde-Thomas, M. McDonough, H. Whitel, M. Beckmann, R. Cookson, K.F. Hoffmann, S.J. Conway. J. Med. Chem. 66 (2023), 15801-15822. https://doi.org/10.1021/acs.jmedchem.3c01321, [*shared first authorship]. I.F.: 7.3 |
| 29. | Development of first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. L. Sinatra, A. Vogelmann, F. Friedrich, M.A. Tararina, E. Neuwirt, A. Colcerasa, P. König, L. Toy, T.Z. Yesiloglu, S. Hilscher, L. Gaitzsch, N. Papenkordt, S. Zhai, L. Zhang, C. Romier, O. Einsle, W. Sippl, M. Schutkowski, O. Groß, G. Bendas, D. Christianson, F. Hansen, M. Jung, M. Schiedel. J. Med. Chem. 66 (2023), 14787-14814. https://doi.org/10.1021/acs.jmedchem.3c01385, I.F.: 7.3 |
| 28. | Mutate and conjugate: A method to enable rapid in-cell target validation. A.M. Thomas, M. Serafini, E.K. Grant, E.A.J. Coombs, J.P. Bluck, M. Schiedel, M.A. McDonough, J.K. Reynolds, B. Lee, M. Platt, V. Sharlandjieva, P.C. Biggin, F. Duarte, T.A. Milne, J.T. Bush, S.J. Conway. ACS Chem. Biol. 18 (2023), 2405-2417. https://pubs.acs.org/doi/10.1021/acschembio.3c00437, I.F.: 4.0 |
| 27. | Fluorescent ligands enable target engagement studies for the intracellular allosteric binding site of the chemokine receptor CXCR2. M.E. Huber, S. Wurnig, L. Toy, C. Weiler, N. Merten, E. Kostenis#, F.K. Hansen#, M. Schiedel#. J. Med. Chem. 66 (2023), 9916–9933 [#shared corresponding authorship]. https://doi.org/10.1021/acs.jmedchem.3c00769, I.F.: 7.3 |
| 26. | Back in person: Frontiers in Medicinal Chemistry 2023. M. Gehringer, F. Pape, M. Méndez, P. Barbie, A. Unzue Lopez, J. Lefranc, F.-M. Klingler, G. Hessler, T. Langer, E. Diamanti#, M. Schiedel#. ChemMedChem (2023), e202300344 [#shared corresponding authorship]. https://doi.org/10.1002/cmdc.202300344, I.F.: 3.5 |
| 25. | Small molecule tools to study cellular target engagement for the intracellular allosteric binding site of GPCRs. M.E. Huber, L. Toy, M.F. Schmidt, D. Weikert, M. Schiedel. Chem. Eur. J., 29 (2023), e202202565. https://doi.org/10.1002/chem.202202565, I.F.: 5.0 |
| 24. | Fluorescent ligands targeting the intracellular allosteric binding site of the chemokine receptor CCR2. L. Toy, M.E. Huber, M.F. Schmidt, D. Weikert, M. Schiedel. ACS Chem. Biol., 17 (2022), 2142-22152. https://doi.org/10.1021/acschembio.2c00263, I.F.: 4.6 |
| 23. | Development of a NanoBRET assay to validate dual inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration. A. Vogelmann, M. Schiedel, N. Wössner, A. Merz, D. Herp, S. Hammelmann, A. Colcerasa, G. Komaniecki, J.Y. Hong, M. Sum, E. Metzger, E. Neuwirt, L. Zhang, O. Einsle, O. Groß, R. Schüle, H. Lin, W. Sippl, M. Jung. RSC Chem. Biol. 3 (2022), 468-485. https://doi.org/10.1039/D1CB00244A, I.F.: 4.1 |
| 22. | Comparison of cellular target engagement methods for the tubulin deacetylases Sirt2 and HDAC6: NanoBRET, CETSA, tubulin acetylation, and PROTACs. A. Vogelmann, M. Jung, F.K. Hansen, M. Schiedel. ACS Pharmacol. Transl. Sci. 5 (2022), 138-140. https://doi.org/10.1021/acsptsci.2c00004, I.F.: 3.5 |
| 21. | A chemical biology toolbox targeting the intracellular binding site of CCR9: Fluorescent ligands, new drug leads and PROTACs. E. Huber, L. Toy, M.F. Schmidt, H. Vogt, J. Budzinski, M.F.J. Wiefhoff, N. Merten, E. Kostenis, D. Weikert, M. Schiedel. Angew. Chem. Int. Ed., 61 (2022), e202116782. https://doi.org/10.1002/anie.202116782. Angew. Chem., 134 (2022), e202116782. https://doi.org/10.1002/ange.202116782, I.F.: 15.3 |
| 20. | Controlling Intramolecular Interactions in the Design of Selective, High-Affinity, Ligands for the CREBBP Bromodomain. M. Brand, J. Clayton, M. Moroglu, M. Schiedel, S. Picaud, J. Bluck, A. Skwarska, H. Bolland, A.K.N. Chan, C.M.C. Laurin, A.R. Scorah, L. See, T.P.C. Rooney, K.H. Andrews, O. Fedorov, G, Perell, P. Kalra, K.B. Vinh, W.A. Cortopassi, P. Heitel, K.E. Christensen, R.I. Cooper, R.S. Paton, W.C.K. Pomerantz, P.C. Biggin, E.M. Hammond, P. Filippakopoulos, S.J Conway. J. Med. Chem. 64 (2021), 10102-10123. https://doi.org/10.1021/acs.jmedchem.1c00348, I.F.: 6.2 |
| 19. | Call for Papers: “Epigenetics 2.0”—A Joint Virtual Special Issue on Epigenetics. Bhatia#, F.K. Hansen#, M. Schiedel#. ACS Pharmacol. Transl. Sci. 4 (2021), 1262-1263. https://doi.org/10.1021/acsptsci.1c00156 [#shared corresponding authorship], I.F.: 3.5 |
| 18. | Fragment-based identification of ligands for bromodomain-containing factor 3 of Trypanosoma cruzi. C. Laurin, J. Bluck, A. Chan, M. Keller, A. Boczek, A. Scorah, K.F. See, L. Jennings, D. Hewings, F. Woodhouse, J. Reynolds, M. Schiedel, P. Humphreys, P. Biggin, S. Conway, ACS Infect. Dis. 7 (2021), 2238-2249. https://doi.org/10.1021/acsinfecdis.0c00618, I.F.: 4.6 |
| 17. | HaloTag-targeted Sirtuin rearranging ligand (SirReal) for the development of proteolysis targeting chimeras (PROTACs) against the lysine deacetylase Sirtuin 2 (Sirt2). M. Schiedel, A. Lehotzky, S. Szunyogh, J. Oláh, S. Hammelmann, N. Wössner, D. Robaa, O. Einsle, W. Sippl, J. Ovádi, M. Jung. ChemBioChem 21 (2020), 3371-3376. https://doi.org/10.1002/cbic.202000351, I.F.: 2.6 |
| 16. | Validation of slow off-kinetics of sirtuin rearranging ligands (SirReals) by means of the label-free electrically switchable nanolever technology. M. Schiedel*, H. Daub*, A. Itzen, M. Jung [*contributed equally]. ChemBioChem 21 (2020), 1161-1166. https://doi.org/10.1002/cbic.201900527, I.F.: 2.6 |
| 15. | Chemical epigenetics: the impact of chemical- and chemical biology techniques on bromodomain target validation. M. Schiedel, M. Moroglu, D.M.H. Ascough, A.E.R. Chamberlain, J.J.A.G. Kamps, A.R. Sekirnik, S.J. Conway. Angew. Chem. Int. Ed. 58 (2019), 17930-17952. https://doi.org/10.1002/anie.201812164. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew. Chem. 131 (2019), 18096-18120. https://doi.org/10.1002/ange.201812164, I.F.: 13.0 |
| 14. | Opening the selectivity pocket in the human lysine deacetylase sirtuin 2 – New opportunities, new questions. Robaa, D. Monaldi, N. Wössner, N. Kudo, T. Rumpf, M. Schiedel, M. Yoshida, M. Jung. Chem. Rec. 18 (2018), 1701-1707. https://doi.org/10.1002/tcr.201800044, I.F.: 5.4 |
| 13. | Small molecules as tools to study the chemical epigenetics of lysine acetylation. M. Schiedel#, S.J. Conway# [#shared corresponding authorship]. Curr. Opin. Chem. Biol. 45 (2018), 166-178. https://doi.org/10.1016/j.cbpa.2018.06.015, I.F.: 8.5 |
| 12. | BET bromodomain ligands: Probing the WPF shelf to improve BRD4 bromodomain affinity and metabolic stability. L.E. Jennings*, M. Schiedel*, D.S. Hewings, S. Picaud, C.M.C. Laurin, P.A. Bruno, J.P. Bluck, A.R. Scorah, L. See, J.K. Reynolds, M. Moroglu, I.N. Mistry, A. Hicks, P. Guzanov, J. Clayton, C.N.G. Evans, G. Stazi, P.C. Biggin, A.K. Mapp, E.M. Hammond, P.G. Humphreys, P. Filippakopoulos, S.J. Conway [*contributed equally]. Bioorg. Med. Chem. 26 (2018), 2937-2957. https://doi.org/10.1016/j.bmc.2018.05.003, I.F.: 2.8 |
| 11. | New chemical tools for probing activity and inhibition of the NAD+ dependent lysine deacylase sirtuin 2. S. Swyter*, M. Schiedel*, D. Monaldi, S. Szunyogh, A. Lehotzky, T. Rumpf, J. Ovádi, W. Sippl, M. Jung [*contributed equally]. Phil. Trans. R. Soc. B 373 (2018), 20170083. https://doi.org/10.1098/rstb.2017.0083, I.F. : 6.1 |
| 10. | Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). M. Schiedel, D. Herp, S. Hammelmann, S. Swyter, A. Lehotzky, D. Robaa, J. Olah, J. Ovádi, W. Sippl, M. Jung. J. Med. Chem. 61 (2018), 482-491. https://doi.org/10.1021/acs.jmedchem.6b01872, I.F.: 6.1 |
| 9. | The current state of NAD+-dependent histone deacetylases (sirtuins) as novel therapeutic targets. M. Schiedel, D, Robaa, T. Rumpf, W. Sippl, M. Jung. Med. Res. Rev. 38 (2018), 147-200. https://doi.org/10.1002/med.21436, I.F.: 9.8 |
| 8. | Modulation of microtubule acetylation by the interplay of TPPP/p25, SIRT2 and new anticancer agents with anti-SIRT2 potency. A. Szabó, J. Oláh, S. Szunyogh, A. Lehotzky, T. Szénási, M. Csaplár, M. Schiedel, P. Lőw, M. Jung, J. Ovádi. Sci. Rep. 7 (2017), 17070. https://doi.org/10.1038/s41598-017-17381-3, I.F.: 4.1 |
| 7. | Synthesis and biological evaluation of 8-hydroxy-2,7-naphthyridin-2-ium salts as novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). M. Schiedel, A. Fallarero, C. Luise, W. Sippl, P. Vuorela, M. Jung. MedChemComm 8 (2017), 465-470. https://doi.org/10.1039/C6MD00647G, I.F.: 2.3 |
| 6. | Aminothiazoles as potent and selective Sirt2 inhibitors: A structure-activity relationship study. M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, J. Oláh, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung. J. Med. Chem. 59 (2016), 1599-1612. https://doi.org/10.1021/acs.jmedchem.5b01517, I.F.: 6.3 |
| 5. | A continuous, fluorogenic sirtuin 2 deacylase assay: substrate screening and inhibitor evaluation. I. Galleano, M. Schiedel, M. Jung, A.S. Madsen, C.A. Olsen. J. Med. Chem. 59 (2016), 1021-1031. https://doi.org/10.1021/acs.jmedchem.5b01532, I.F.: 6.3 |
| 4. | Structure-based development of an affinity probe for sirtuin 2. M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung. Angew. Chem. Int. Ed. 55 (2016), 2252-2256. https://doi.org/10.1002/anie.201509843. Strukturbasierte Entwicklung einer Affinitätssonde für Sirtuin 2. Angew. Chem. 128 (2016), 2293-2297. https://doi.org/10.1002/ange.201509843, I.F.: 12.0 |
| 3. | Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. T. Rumpf, M. Schiedel, B. Karaman, C. Roessler, B.J. North, A. Lehotzky, J. Oláh, K.I. Ladwein, K. Schmidtkunz, M. Gajer, M. Pannek, C. Steegborn, D.A. Sinclair, S. Gerhardt, J. Ovádi, M. Schutkowski, W. Sippl, O. Einsle, M Jung. Nat. Commun. 6 (2015), 6263. https://doi.org/10.1038/ncomms7263, I.F.: 11.3 |
| 2. | Fluorescence-based screening assays for the NAD⁺-dependent histone deacetylase smSirt2 from Schistosoma mansoni. M. Schiedel, M. Marek, J. Lancelot, B. Karaman, I. Almlöf, J. Schultz, W. Sippl, R.J. Pierce, C. Romier, M. Jung. J. Biomol. Screen. 20 (2015), 112-121. https://doi.org/10.1177/1087057114555307, I.F.: 2.2 |
| 1. | Chromo-pharmacophores: photochromic diarylmaleimide inhibitors for sirtuins. Falenczyk, M. Schiedel, B. Karaman, T. Rumpf, N. Kuzmanovic, M. Grøtli, W. Sippl, M. Jung, B. König. Chem. Sci. 5 (2014), 4794-4799. https://doi.org/10.1039/C4SC01346H, I.F.: 9.2 |
Sonstige Publikationen
| Nr. | Titel |
|---|---|
| 9. | Patent: Pharmaceutical agent against Amoeba infections. S. Reichl, M. Schiedel, T. Rimkus. (2025), EP25187565.4. |
| 8. | Front Cover: Development of a NanoBRET Assay Platform to Detect Intracellular Ligands for the Chemokine Receptors CCR6 and CXCR1. ChemMedChem 20 (2024), 19, e202482001. https://doi.org/10.1002/cmdc.202482001. |
| 7. | Introducing Matthias Schiedel, Angew. Chem. Int. Ed., 61 (2021), e202200131. https://doi.org/10.1002/anie.202200131. |
| 6. | Front Cover: Validation of the Slow Off-Kinetics of Sirtuin-Rearranging Ligands (SirReals) by Means of Label-Free Electrically Switchable Nanolever Technology. ChemBioChem 21 (2020), 8. https://doi.org/10.1002/cbic.202000190. |
| 5. | Epigenetiker treffen sich in Freiburg. [Epigeneticists meet up in Freiburg.] M. Schiedel, M. Jung, Nachr. Chem. 64 (2016), 904. https://doi.org/10.1002/nadc.20164054947. |
| 4. | Epigenetische Wirkstoffforschung. [Epigenetic drug discovery.] M. Schiedel, M. Jung, Nachr. Chem. 62 (2014), 302-306. https://doi.org/10.1002/nadc.201490087. |
| 3. | Resveratrol ist zurück! [Resveratrol is back!] M. Schiedel, M. Jung, Pharmakon. 1 (2013), 446‑448. |
| 2. | Fehlregulation der Histon‐Acetylierung als molekulare Grundlage der Demenzentwicklung. [Dysregulation of histone acetylation as a molecular basis for the development of dementia.] M. Schiedel, M. Jung, Pharm. Unserer Zeit 40 (2011), 297-299. https://doi.org/10.1002/pauz.201190039. |
| 1. | HIV‐1‐Eradikation durch “shock & kill”‐ [HIV-1 eradication with the “shock and kill” strategy.] M. Schiedel, Pharm. Unserer Zeit 39 (2010), 171-173. https://doi.org/10.1002/pauz.201090026. |

