Theoretische Medizinische Chemie

Prof Dr. Marcel Bermúdez


Institut für Pharmazeutische und Medizinische Chemie
Universität Münster
Corrensstr. 48
48149 Münster

Tel.: +49 (0)251 - 83-32272
Fax: +49 (0)251 - 83-32211

Room:
E-Mail: m.bermudez@uni-muenster.de

ORCID: https://orcid.org/0000-0002-7421-3282
Twitter: https://twitter.com/bermudez_lab
Researchgate: https://www.researchgate.net/profile/Marcel-Bermudez
Google Scholar: https://scholar.google.com/citations?user=Jk0pzMgAAAAJ&hl=de

Weitere Informationen werden in Kürze zur Verfügung gestellt!

 
  • Forschungsschwerpunkte

    • Computerunterstütztes Wirkstoffdesign
    • In silico Pharmakologie
    • Dynamische Pharmakophormodelle
    • Virtuelles Screening
    • G-Protein-gekoppelte Rezeptoren
    • Strukturelle Pharmakogenomik
  • Vita

    Akademische Ausbildung

    Promotion, Freie Universität Berlin, Institut für Pharmazie, Abschluss: Dr. rer. nat. (summa cum laude)
    Approbation als Apotheker
    Studium der Pharmazie, TU Braunschweig

    Beruflicher Werdegang

    Universitätsprofessor (W1) für Theoretische Medizinische Chemie, Universität Münster, Institut für Pharmazeutische und Medizinische Chemie
    Nachwuchsgruppenleiter (DFG - Eigene Stelle), Freie Universität Berlin, Institut für Pharmazie
    Postdoc, Freie Universität Berlin, Institut für Pharmazie
    Visiting Postdoc, University of Cambridge (UK), Centre for Molecular Informatics, Department of Chemistry
    Visiting Postdoc, The Hebrew University of Jerusalem (Israel), Robert H. Smith Faculty of Agriculture, Food and Environment

    Mitgliedschaften und Aktivitäten in Gremien

    DPhG-Regionalgruppe Westfalen-Lippe (Vorsitzender)
    Verband der Pharmazieprofessoren an Pharmazeutischen Hochschulen e.V. (Mitglied)
    Center for Multiscale Theory and Computation (CMTC) (Mitglied)
    Deutsche Pharmazeutische Gesellschaft (DPhG) (Mitglied)
  • Projekt

    • Dynamische Pharmakophore zur Identifizierung von spezifischen Modulatoren von G Protein-gekoppelten Rezeptoren ()
      Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: BE 6702/1-1
  • Artikel in Fachzeitschriften, Zeitungen oder Magazinen

    • , , und , „Structural determinants of sphingosine-1-phosphate receptor selectivity.“ ArchPharm 356, 12 (): Artikel 2300387. doi: 10.1002/ardp.202300387.
    • , , und , „Peptide-binding GPCRs coming of age.“ Front Endocrinol (Lausanne) 14 (): Artikel 1189508. doi: 10.3389/fendo.2023.1189508.
    • , , , , , und , „Hybridization into a Bitopic Ligand Increased Muscarinic Receptor Activation for Isopilocarpine but Not for Pilocarpine Derivatives.“ Journal of Natural Products 86, 4 (): 869881. doi: 10.1021/acs.jnatprod.2c01079.
    • , , , , , , , , , , , , , , , , , und , „Community guidelines for GPCR ligand bias: IUPHAR review 32.“ British Journal of Pharmacology 179, 14 (): 36513674. doi: 10.1111/bph.15811.
    • , , , und , „Biased Ligands Differentially Shape the Conformation of the Extracellular Loop Region in 5-HT2B Receptors.“ Int J Mol Sci 21 (): 97289728. doi: 10.3390/ijms21249728.
    • , , , , , und , „Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking.“ Molecules 26 (): 32673267. doi: 10.3390/molecules26113267.
    • und , „Allosteric coupling and biased agonism in G protein‐coupled receptors.“ FEBS J 288 (): 25132528. doi: 10.1111/febs.15783.
    • , , , , , , , , und , „Fluorination of Photoswitchable Muscarinic Agonists Tunes Receptor Pharmacology and Photochromic Properties.“ J Med Chem 62 (): 30093020. doi: 10.1021/acs.jmedchem.8b01822.
    • , , , , , , und , „Structure‐based identification of dual ligands at the A2AR and PDE10A with anti‐proliferative effects in lung cancer cell‐lines.“ Journal of Cheminformatics 13, 1 (): Artikel 17 (2021). doi: 10.1186/s13321-021-00492-5.
    • , , , , , , und , „The Role of Orthosteric Building Blocks of Bitopic Ligands for Muscarinic M1 Receptors.“ ACS Omega 5 (): 3170631715. doi: 10.1021/acsomega.0c04220.
    • , , , , , , , , , , , , , , , , und , „Ligand-Specific Allosteric Coupling Controls G-Protein-Coupled Receptor Signaling.“ ACS Pharmacology and Translational Science 3, 5 (): 859867. doi: 10.1021/acsptsci.0c00069.
    • , , , , , , , und , „Next generation 3D pharmacophore modeling.“ WIREs 10, 4 (): Artikel e1468. doi: 10.1002/wcms.1468.
    • , , , , , , , und , „Biological Characterization, Mechanistic Investigation and Structure‐Activity Relationships of Chemically Stable TLR2 Antagonists.“ ChemMedChem 15 (): 13641371. doi: 10.1002/cmdc.202000060.
    • , , , und , „Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt1]DALDA, and KGOP01, Binding to the Mu Opioid Receptor.“ Molecules 25 (): Artikel 2087. doi: 10.3390/molecules25092087.
    • , „Novel BQCA‐ and TBPB‐Derived M1-Receptor Hybrid Ligands: Orthosteric Carbachol Differentially Regulates Partial Agonism.“ ChemMedChem 14, 14 (): 13491358. doi: 10.1002/cmdc.201900283.
    • und , „Does Divergent Binding Pocket Closure Drive Ligand Bias for Class A GPCRs?.“ Trends in Pharmacological Sciences 40, 4 (): 236239. doi: 10.1016/j.tips.2019.02.005.
    • , , , , und , „Identification and characterization of a novel chemotype for human TLR8 inhibitors.“ European Journal of Medicinal Chemistry 179 (): 744752. doi: 10.1016/j.ejmech.2019.06.084.
    • , , und , „Strategies for the discovery of biased GPCR ligands.“ Drug Discovery Today 24 (): 10311037. doi: 10.1016/j.drudis.2019.02.010.
    • , , , , , und , „Ligand-Specific Restriction of Extracellular Conformational Dynamics Constrains Signaling of the M2 Muscarinic Receptor.“ ACS Chem Biol 12 (): 17431748. doi: 10.1021/acschembio.7b00275.
    • und , „A panoramic view on GPCRs: the 1st Berlin Symposium for Interdisciplinary GPCR research.Naunyn-Schmiedeberg's Archives of Pharmacology 391 (): 769771. doi: 10.1007/s00210-018-1513-5.
    • , , , , und , „Identification of a pyrogallol derivative as a potent and selective human TLR2 antagonist by structure-based virtual screening.Biochemical Pharmacology 154 (): 148160. doi: 10.1016/j.bcp.2018.04.018.
    • , , , , , , und , „Systematic Data Mining Reveals Synergistic H3R/MCHR1 Ligands.“ ACS Med Chem Lett 8, 6 (): 648653. doi: 10.1021/acsmedchemlett.7b00118.
    • , , , , , , und , „Arginase Structure and Inhibition: Catalytic Site Plasticity Reveals New Modulation Possibilities.“ Sci. Rep. 7 (): Artikel 13616. doi: 10.1038/s41598-017-13366-4.
    • , , , , , und , „Nuclear transport of the human aryl hydrocarbon receptor and subsequent gene induction relies on its residue histidine 291.“ Arch. Toxicol. 92 (): 11501160. doi: 10.1007/s00204-017-2129-0.
    • , , , , , , und , „Chemoenzymatic Synthesis of Nonasulfated Tetrahyaluronan with a Paramagnetic Tag for Studying Its Complex with Interleukin-10.“ Chem. Eur. J. 22 (): 55635574. doi: 10.1002/chem.201504459.
    • , , , , , , , , , , und , „Ligand binding ensembles determine graded agonist efficacies at a G protein-coupled receptor.“ J Biol Chem 291 (): 1637516389. doi: 10.1074/jbc.M116.735431.
    • , , , und , „More than a look into a crystal ball: protein structure elucidation guided by molecular dynamics simulations.“ Drug Discovery Today 21 (): 17991805. doi: 10.1016/j.drudis.2016.07.001.
    • , , , , und , „Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies.Bioorganic and Medicinal Chemistry Letters 26, 19 (): 47694774. doi: 10.1016/j.bmcl.2016.08.031.
    • , , , und , „Computational close up on protein-protein interactions: how to unravel the invisible using molecular dynamics simulations?.“ WIREs 5 (): 345359. doi: 10.1002/wcms.1222.
    • , und , „Structural Characteristics of the Allosteric Binding Site Represent a Key to Subtype Selective Modulators of Muscarinic Acetylcholine Receptors.“ Molecular Informatics 34 (): 526530. doi: 10.1002/minf.201500025.
    • und , „Structure versus function-The impact of computational methods on the discovery of specific GPCR-ligands.“ Bioorganic & Medicinal Chemistry 23 (): 39073912. doi: 10.1016/j.bmc.2015.03.026.
    • , , , , und , „The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes.“ Drug Discovery Today 20 (): 686702. doi: 10.1016/j.drudis.2015.01.003.
    • , , , , , , , , und , „Dualsteric Muscarinic Antagonists-Orthosteric Binding Pose Controls Allosteric Subtype Selectivity.“ J Med Chem 57 (): 67396750. doi: 10.1021/jm500790x.
    • , , , , , , und , „Interruption of the Ionic Lock in the Bradykinin B-2 Receptor Results in Constitutive Internalization and Turns Several Antagonists into Strong Agonists.“ Journal of Pharmacology and Experimental Therapeutics 344 (): 8595. doi: 10.1124/jpet.112.199190.
    • , , , , , , , und , „NSC23766, a Widely Used Inhibitor of Rac1 Activation, Additionally Acts as a Competitive Antagonist at Muscarinic Acetylcholine Receptors.“ Journal of Pharmacology and Experimental Therapeutics 347 (): 6979. doi: 10.1124/jpet.113.207266.
    • , , , , , , , , und , „Binding characteristics of [3H]-JSM10292: a new cell membrane-permeant non-peptide bradykinin B2 receptor antagonist.“ British Journal of Pharmacology 167 (): 839853. doi: 10.1111/j.1476-5381.2012.02054.x.