Forschungsschwerpunkte
- Strukturbiologie
- Biochemie
- kryoEM
- Peroxisomen
- AAA ATPases
- Membran-proteine
- Protein import
Weitere Zugehörigkeit an der Universität Münster
Vita
Akademische Ausbildung
- Doktorarbeit (Dr. rer. nat., summa cum laude), Johannes Gutenberg Universität Mainz, Germany
- Studium der Biologie (Diplom) / Universität Mainz
Beruflicher Werdegang
- Co-Sprecher des Center for Soft Nanoscience (SoN)
- Mitglied: CiM Graduate School and CiMIC Interfaculty Cente CiM: Cluster of excellence „Cells in Motion”
- Professor (W3) Universität Münster
- Projekt Gruppenleiter, Abteilung Strukturelle Biochemie, Max Planck Institut für Molekulare Physiologie, Dortmund, Deutschland
- Postdoc, Max Planck Institut für molekulare Physiologie, Dortmund, Germany
Lehre
- Praktikum: *+) Kryo-Elektronenmikroskopie: Strukturelle Untersuchungen von makromolekularen Maschinen bei atomarer Auflösung [138387]
[n. V. | Prof. Dr. Christos Gatsogiannis] - Praktikum: *+) Kryo-Elektronenmikroskopie: Strukturelle Untersuchungen von makromolekularen Maschinen bei atomarer Auflösung
- Praktikum: *+) Kryo-Elektronenmikroskopie: Strukturelle Untersuchungen von makromolekularen Maschinen bei atomarer Auflösung [134390]
- Praktikum: *+) Kryo-elektronenmikroskopie: Strukturelle Untersuchungen von makromolekulare Maschinen bei atomarer Auflösung [132308]
- Praktikum: *+) Kryo-elektronenmikroskopie: Strukturelle Untersuchungen von makromolekulare Maschinen bei atomarer Auflösung [130449]
- Praktikum: *+) Kryo-elektronenmikroskopie: Strukturelle Untersuchungen von makromolekulare Maschinen bei atomarer Auflösung [138375]
- Praktikum: *+) Kryo-elektronenmikroskopie: Strukturelle Untersuchungen von makromolekulare Maschinen bei atomarer Auflösung [136328]
- Praktikum: *+) Kryo-Elektronenmikroskopie: Strukturelle Untersuchungen von makromolekularen Maschinen bei atomarer Auflösung [138387]
Artikel in Fachzeitschriften, Zeitungen oder Magazinen
- . . ‘Structural basis of α-latrotoxin transition to a cation-selective pore.’ Nature Communications 15, Nr. 1: 8551. doi: 10.1038/s41467-024-52635-5.
- . . ‘The ATP-driven extractor ATAD1/Msp1 proof-reads protein translocation into mitochondria.’ Trends in Cell Biology 34, Nr. 9: 698–699. doi: 10.1016/j.tcb.2024.07.007.
- . . ‘Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules.’ Science 384, Nr. 6694: eadf5489. doi: 10.1126/science.adf5489.
- ‘A novel isolation method for spontaneously released extracellular vesicles from brain tissue and its implications for stress-driven brain pathology.’ Cell Communication and Signaling 21, Nr. 1. doi: 10.1186/s12964-023-01045-z. .
- ‘Asymmetric horseshoe-like assembly of peroxisomal yeast oxalyl-CoA synthetase.’ Biological Chemistry 404: 195–207. doi: 10.1515/hsz-2022-0273. .
- ‘Pathway-Controlled Aqueous Supramolecular Polymerization via Solvent-Dependent Chain Conformation Effects.’ Journal of the American Chemical Society 145, Nr. 16: 8882–8895. doi: 10.1021/jacs.2c12442. .
- ‘Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate.’ Nature Communications 14, Nr. 1. doi: 10.1038/s41467-023-41640-9. .
- . . ‘An AI-assisted cryo-EM pipeline for structural studies of cellular extracts.’ Structure 30, Nr. 4: 532–534. doi: 10.1016/j.str.2022.03.016.
- . . ‘Structure of a bacterial Rhs effector exported by the type VI secretion system.’ PLoS Pathogens 18, Nr. 1: e1010182. doi: 10.1371/journal.ppat.1010182.
- . . ‘Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation.’ Proceedings of the National Academy of Sciences of the United States of America 119, Nr. 6. doi: 10.1073/pnas.2121494119.
- . . ‘Good things come to those who bait: the peroxisomal docking complex.’ Biological Chemistry 404(2-3): 107–119. doi: 10.1515/hsz-2022-0161.
- . . ‘Editorial: Structural aspects of peroxisome biogenesis and functions.’ Frontiers in cell and developmental biology 10: 1114759. doi: 10.3389/fcell.2022.1114759.
- . . ‘A New Twist in ABC Transporter Mediated Multidrug Resistance - Pdr5 is a Drug/proton Co-transporter.’ Journal of Molecular Biology 434, Nr. 14: 167669. doi: 10.1016/j.jmb.2022.167669.
- . . ‘Coordination cage-based emulsifiers: templated formation of metal oxide microcapsules monitored by in situ LC-TEM.’ Chemistry 2021. doi: 10.1002/chem.202103406.
- . . ‘Molecular architecture of black widow spider neurotoxins.’ Nature Communications 12, Nr. 1: 6956. doi: 10.1038/s41467-021-26562-8.
- . . ‘Phospho-regulated Bim1/EB1 interactions trigger Dam1c ring assembly at the budding yeast outer kinetochore.’ EMBO Journal 40, Nr. 18: e108004. doi: 10.15252/embj.2021108004.
- . . ‘Biodegradable and Dual-Responsive Polypeptide-Shelled Cyclodextrin-Containers for Intracellular Delivery of Membrane-Impermeable Cargo.’ Advanced Science 8: 2100694. doi: 10.1002/advs.202100694.
- . . ‘Towards the molecular architecture of the peroxisomal receptor docking complex.’ Proceedings of the National Academy of Sciences of the United States of America 2020. doi: 10.1073/pnas.2009502117.
- . . ‘Structure of the human BBSome core complex.’ eLife 9. doi: 10.7554/eLife.53910.
- . . ‘TranSPHIRE: automated and feedback-optimized on-the-fly processing for cryo-EM.’ Nature Communications 11, Nr. 1: 5716. doi: 10.1038/s41467-020-19513-2.
- . . ‘Cryo-EM structure of the fully-loaded asymmetric anthrax lethal toxin in its heptameric pre-pore state.’ PLoS Pathogens 16, Nr. 8: e1008530. doi: 10.1371/journal.ppat.1008530.
- . . ‘SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM.’ Communications biology 2: 218. doi: 10.1038/s42003-019-0437-z.
- . . ‘Cryo-EM structure of the ClpXP protein degradation machinery.’ Nature structural {&} molecular biology 26, Nr. 10: 946–954. doi: 10.1038/s41594-019-0304-0.
- . . ‘Common architecture of Tc toxins from human and insect pathogenic bacteria.’ Science advances 5, Nr. 10: eaax6497. doi: 10.1126/sciadv.aax6497.
- . . ‘Cryo-EM reveals the asymmetric assembly of squid hemocyanin.’ IUCrJ 6, Nr. Pt 3: 426–437. doi: 10.1107/S205225251900321X.
- . . ‘Electron cryo-microscopy structure of the canonical TRPC4 ion channel.’ eLife 7. doi: 10.7554/eLife.36615.
- . . ‘Tc toxin activation requires unfolding and refolding of a \textgreekb-propeller.’ Nature 563, Nr. 7730: 209–213. doi: 10.1038/s41586-018-0556-6.
- . . ‘Molluscan hemocyanin: structure, evolution, and physiology.’ Biophysical Reviews 10, Nr. 2: 191–202. doi: 10.1007/s12551-017-0349-4.
- . . ‘Hierarchical Assembly of DNA Filaments with Designer Elastic Properties.’ ACS Nano 12, Nr. 1: 44–55. doi: 10.1021/acsnano.7b06012.
- . . ‘Rational Design of an Amphiphilic Coordination Cage-Based Emulsifier.’ Journal of the American Chemical Society 140, Nr. 50: 17384–17388. doi: 10.1021/jacs.8b10991.
- . . ‘Structural basis for tRNA-dependent cysteine biosynthesis.’ Nature Communications 8, Nr. 1: 1521. doi: 10.1038/s41467-017-01543-y.
- . . ‘Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.’ Methods in Enzymology 594: 1–30. doi: 10.1016/bs.mie.2017.05.007.
- . . ‘High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE.’ Journal of visualized experiments : JoVE 2017, Nr. 123. doi: 10.3791/55448.
- . . ‘Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions.’ Nature Communications 8: 14472. doi: 10.1038/ncomms14472.
- . . ‘Membrane insertion of a Tc toxin in near-atomic detail.’ Nature structural {&} molecular biology 23, Nr. 10: 884–890. doi: 10.1038/nsmb.3281.
- . . ‘Structure of mega-hemocyanin reveals protein origami in snails.’ Structure (London, England : 1993) 23, Nr. 1: 93–103. doi: 10.1016/j.str.2014.10.013.
- . . ‘Determinants of amyloid fibril degradation by the PDZ protease HTRA1.’ Nature Chemical Biology 11, Nr. 11: 862–869. doi: 10.1038/nchembio.1931.
- . . ‘Deciphering the tubulin code.’ Cell 161, Nr. 5: 960–961. doi: 10.1016/j.cell.2015.05.004.
- . . ‘A facile method for preparation of tailored scaffolds for DNA-origami.’ Small (Weinheim an der Bergstrasse, Germany) 10, Nr. 1: 73–77. doi: 10.1002/smll.201300701.
- . . ‘Mechanism of Tc toxin action revealed in molecular detail.’ Nature 508, Nr. 7494: 61–65. doi: 10.1038/nature13015.
- . . ‘A syringe-like injection mechanism in Photorhabdus luminescens toxins.’ Nature 495, Nr. 7442: 520–523. doi: 10.1038/nature11987.
- . . ‘The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation.’ eLife 2: e01085. doi: 10.7554/eLife.01085.
- . . ‘Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex.’ Proceedings of the National Academy of Sciences of the United States of America 109, Nr. 6: 1991–1996. doi: 10.1073/pnas.1117797109.
- . . ‘Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a {\~{}}}550 kDa polypeptide.’ Frontiers in Zoology 7: 14. doi: 10.1186/1742-9994-7-14.
- . . ‘Keyhole limpet hemocyanin: 9-A CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units.’ Journal of Molecular Biology 385, Nr. 3: 963–983. doi: 10.1016/j.jmb.2008.10.080.
- . . ‘Nautilus pompilius hemocyanin: 9 A cryo-EM structure and molecular model reveal the subunit pathway and the interfaces between the 70 functional units.’ Journal of Molecular Biology 374, Nr. 2: 465–486. doi: 10.1016/j.jmb.2007.09.036.
- . . ‘Comparative 11A structure of two molluscan hemocyanins from 3D cryo-electron microscopy.’ Micron 38, Nr. 7: 754–765. doi: 10.1016/j.micron.2006.11.005.