Universität MünsterInstitute of Landscape EcologyRemote Sensing and Spatial Modelling Research Group
  • zum Inhalt
  • zur Hauptnavigation
  • zur Subnavigation
  • de
  • en
  • Home
  • Team
  • Teaching
  • Research
  • Publications
  • Home
    • Team
      • Maite Lezama Valdes
  • Prof. Dr. Hanna Meyer
  • Dr. Marvin Ludwig
  • Dr. Jan Lehmann
  • Dr. Jakub Nowosad
  • Maite Lezama Valdes
  • Maiken Baumberger
  • Laura Giese
  • Jan Linnenbrink
  • Darius Görgen
  • Jan Steen
  • Student Assistants
  • Guests
  • Alumni
Profile picture of Maite Lezama Valdes
© Maite Lezama Valdes

Maite Lezama Valdes

Remote Sensing and Spatial Modelling Research Group
Institute of Landscape Ecology
Heisenbergstr. 2, D-48149 Münster
room 546
phone +49(0)251-83 33 876
e-mail maite.lezama [at] uni-muenster.de

office hours on appointment

  • Research Foci

    • Downscaling
    • machine learning
    • remote sensing
  • CV

    Academic Education

    2016 – 2019
    MSc Physical Geography Philipps Universität Marburg
    2015 – 2018
    MA Soziologie und Sozialforschung Philipps Universität Marburg
    2014 – 2016
    BSc Geography Philipps University Marburg
    2011 – 2015
    BA Social Sciences Philipps Universität Marburg

    Positions

    since 11.2019
    Doktorandin am Institut für Landschaftsökologie Münster
    04. – 10.2019
    PhD candidate Institute for Geoinformatics Münster
  • Teaching

    • Seminar: S Remote Sensing and Spatial Modeling Forum [146739]
    • P Remote sensing based analysis of environmental change [146738]
      (in cooperation with Prof. Dr. Hanna Meyer)
  • Publications

    Research Articles (Journals)

    2024
    • Datta, R, Katurji, M, Nielsen, E, Meyer, H, Zawar-Reza, P, and Valdes, ML. 2024. “The Winter Foehn Footprint Across McMurdo Dry Valleys of Antarctica Using a Satellite-Derived Data Set-AntAir v1.0.” Journal of Geophysical Research: Atmospheres, № 129 (23): e2023JD039300. doi: 10.1029/2023JD039300.
    2021
    • Lezama Valdes, M, Katurji, M, and Meyer, H. 2021. “A Machine Learning Based Downscaling Approach to Produce High Spatio-Temporal Resolution Land Surface Temperature of the Antarctic Dry Valleys from MODIS Data.” Remote Sensing, № 13 (22) doi: 10.3390/rs13224673.
    2019
    • Ludwig, M, Morgenthal, T, Detsch, F, Higginbottom, TP, Lezama Valdes, M, Nauß, T, and Meyer, H. 2019. “Machine learning and multi-sensor based modelling of woody vegetation in the Molopo Area, South Africa.” Remote Sensing of Environment, № 222: 195–203. doi: 10.1016/j.rse.2018.12.019.

    Abstracts in Digital Collections (Conferences)

    • Lezama, Valdes M, Katurji, M, and Meyer, H. 2019. “Downscaling Land Surface Temperature for the Antarctic Dry Valleys using Multi-Sensor Data and Machine Learning.” in Geophysical Research Abstracts
Top of page

Contact

University of Münster
Remote Sensing and Spatial Modelling Research Group

Heisenbergstraße 2
D-48149 Münster

Tel: +49(0)251-83 30 097
Fax: +49(0)251-83 38 338
hanna.meyer [at] uni-muenster.de
 
living.knowledge
  • Legal Disclosure
  • Privacy Statement
  • Accessibility

© 2025 Remote Sensing and Spatial Modelling Research Group - Institute of Landscape Ecology - University of Münster