Universität MünsterInstitute of Landscape EcologyRemote Sensing and Spatial Modelling Research Group
  • zum Inhalt
  • zur Hauptnavigation
  • zur Subnavigation
  • de
  • en
  • Home
  • Team
  • Teaching
  • Research
  • Publications
  • Home
    • Team
      • Prof. Dr. Hanna Meyer
  • Prof. Dr. Hanna Meyer
  • Dr. Marvin Ludwig
  • Dr. Jan Lehmann
  • Dr. Jakub Nowosad
  • Maite Lezama Valdes
  • Maiken Baumberger
  • Laura Giese
  • Jan Linnenbrink
  • Darius Görgen
  • Jan Steen
  • Student Assistants
  • Guests
  • Alumni
© Hanna Meyer

Prof. Dr. Hanna Meyer

Remote Sensing and Spatial Modelling Research Group
Institute of Landscape Ecology
Heisenbergstr. 2, D-48149 Münster
room 535
phone +49(0)251-83 30 097
e-mail hanna.meyer [at] uni-muenster.de
Github https://github.com/HannaMeyer

office hours on appointment

  • Research Foci

    • machine learning for spatial data
    • Optical remote sensing
    • Environmental monitoring
    • Spatio-temporal modelling
  • CV

    Academic Education

    2014 – 2018
    PhD student at the Philipps Universität Marburg
    2010 – 2013
    M.Sc. "Environmental Geography - Systems, Processes and Interactions" at the Philipps-Universität Marburg
    2007 – 2010
    B.Sc. Geography at the Philipps-Universität Marburg

    Positions

    since 10.2019
    Full professor for Remote Sensing and Spatial Modelling, Institute of landscape ecology, WWU Münster
    01. – 10.2019
    Junior professor for Remote Sensing and Image Interpretation, Institute for Geoinformatics, WWU Münster
    2013 – 2018
    Scientific assistant in the working grouo of environmental Informatics, Philipps- Universität Marburg
    2015 – 2016
    Guest scientist at the University of Canterbury, New Zealand
  • Teaching

    Winter Term 2025/26

    • Lecture: V Fernerkundung und räumliche Modellierung der Umwelt [142711]
      • [13th Oct 2025 – 2nd Feb 2026 | Mon, 4.00 p. m. – 6.00 p. m. | weekly | StudLab GEO1 130]
    • Seminar: S Aktuelle Themen der Umweltfernerkundung [142713]
      • [14th Oct 2025 – 3rd Feb 2026 | Tue, 2.00 p. m. – 4.00 p. m. | weekly | GEO1 513]
    • Practical: Ü Fernerkundung und maschinelle Lernverfahren zur flächendeckenden Landschaftserfassung [142712]
      • [17th Oct 2025 – 6th Feb 2026 | Fri, 10.00 a. m. – 12.00 p. m. | weekly | StudLab GEO1 130]
    • Practical: Tutorium in einer Übung/einem Praktikum [142751]
      • [Mon – Fri | ad hoc]
    • Practice: Ü Räumliche Datenanalyse mit R [142698]
      (in cooperation with )
      • [Mon – Fri | ad hoc]
    • Colloquium: Graduiertenkolloquium I / II [142695]
      (in cooperation with Sascha Buchholz)
      • [Fri, 6th Feb 2026, 2.00 p. m. | Single Course]
    • Project course: P Fernerkundliche Erfassung von Ökosystemen [142729]
      • [Mon – Fri | ad hoc]

    Summer Term 2025

    • Lecture: Einführung in die Fernerkundungsmethoden in den Geowissenschaften - Vorlesung [140953]
      (in cooperation with Torsten Prinz)
    • Practice: Ü Fernerkundungsmethoden in der Landschaftsökologie A [140697]
    • Practical tutorial: P Fernerkundliche Analyse von Umweltveränderungen in Raum und Zeit [140701]
    • Excursion: Exk. Fernerkundliches Monitoring im Nationalpark Harz [140702]
    • Excursion: Exkursion Finnland & Varanger [140717]
    • Colloquium: Graduiertenkolloquium I [140686]
      (in cooperation with Sascha Buchholz)
  • Projects

    • CRC TRR 391 - A05: Deep learning in space and time (2024 – 2028)
      Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 391/1, A05
    • Quantifying and modelling peat breathing with satellite radar data (2023 – 2027)
      Internally at the University of Münster Funded Project: Uni Münster-internal funding - Collaboration Grant for Young Researchers
    • Preservation and RecognItion of Spatial patterns using Machine learning – PRISM (2024 – 2026)
      EU-Project Hosted at University the of Münster: EC Horizon Europe - Marie Skłodowska-Curie Actions - Postdoctoral Fellowship | Project Number: 101147446
    • SPP 1374 - Subproject: Learning from the Exploratories to make prediction beyond them: AI-based mapping and explanation of grassland biodiversity and ecosystem functions for entire landscape units – BEyond (2023 – 2026)
      Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: HO 3830/13-1; ME 5512/4-1
    • Restoring peatlands of the nemoral zone under conditions of varying water supply and quality – ReVersal (2022 – 2025)
      Individual Granted Project: DFG - BiodivERsA (ERA-Net Cofunds) | Project Number: KN 929/26-1; ME 5512/3-1
    • Carbon4D: A landscape-scale model of soil organic carbon mineralization in space, depth, and time – Carbon4D (2021 – 2024)
      Individual Granted Project: DFG - Individual Grants Programme | Project Number: ME 5512/2-1
    • Spatio-temporal transferability of satellite-based AI-models – Uebersat (2021 – 2023)
      Participation in Federally Funded Joint Project: Federal Ministry for Economic Affairs and Energy | Project Number: 50EE2009
  • Publications

    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013

    2026

    • Mosig, C, Vajna-Jehle, J, Mahecha, MD, Cheng, Y, Hartmann, H, Montero, D, Junttila, S, Horion, S, Schwenke, MB, Koontz, MJ, Maulud, KNA, Adu-Bredu, S, Al-Halbouni, D, Ali, M, Allen, M, Altman, J, Amorós, L, Angiolini, C, Astrup, R, Awada, H, Barrasso, C, Bartholomeus, H, Beck, PS, Bozzini, A, Braun-Wimmer, J, Brede, B, Breunig, FM, Brugnaro, S, Buras, A, Burchard-Levine, V, Camarero, JJ, Candotti, A, Capuder, L, Carrieri, E, Centritto, M, Chirici, G, Cloutier, M, Conciani, D, Cushman, K, Dalling, JW, Dao, PD, Dempewolf, J, Denter, M, Dogotari, M, Díaz-Delgado, R, Ecke, S, Eichel, J, Eltner, A, Fabbri, A, Fabi, M, Fassnacht, F, Ferreira, MP, Fischer, FJ, Frey, J, Frick, A, Fuentes, J, Ganz, S, Garbarino, M, García, M, Gassilloud, M, Gazol, A, Gea-Izquierdo, G, Gerberding, K, Ghasemi, M, Giannetti, F, Gillan, J, Gonzalez, R, Gosper, C, Greene, T, Greinwald, K, Grieve, S, Große-Stoltenberg, A, Gutierrez, JA, Göritz, A, Hajek, P, Hedding, D, Hempel, J, Heremans, S, Hernández, M, Heurich, M, Honkavaara, E, Höfle, B, Jackisch, R, Jucker, T, Kalwij, JM, Kepfer-Rojas, S, Khatri-Chhetri, P, Kleinebecker, T, Klemmt, H, Klouček, T, Koivumäki, N, Kolagani, N, Komárek, J, Korznikov, K, Kraszewski, B, Kruse, S, Krüger, R, Kuechly, H, Kwong, IH, Laliberté, E, Langan, L, Latifi, H, Leal-Medina, C, Lehmann, JR, Li, L, Lines, E, Lisiewicz, M, Lopatin, J, Lucieer, A, Ludwig, A, Ludwig, M, Lyytikäinen-Saarenmaa, P, Ma, Q, Mansuy, N, Peña, JM, Marino, G, Maroschek, M, Martín, M, Martín-Benito, D, Matham, P, Mazzoni, S, Meloni, F, Menzel, A, Meyer, H, Miraki, M, Moreno, G, Moreno-Fernández, D, Muller-Landau, HC, Mälicke, M, Möhring, J, Müllerova, J, Naidu, SS, Nardi, D, Neumeier, P, Nita, MD, Näsi, R, Oppgenoorth, L, Orunbaev, S, Palmer, M, Paul, T, Pfenning, M, Potts, A, Prasanna, GL, Prober, S, Puliti, S, Pérez-Luque, AJ, Pérez-Priego, O, Reudenbach, C, Revuelto, J, Rivas-Torres, G, Roberge, P, Roggero, PP, Rossi, C, Ruehr, NK, Ruiz-Benito, P, Runge, CM, Satta, GGA, Scanu, B, Scherer-Lorenzen, M, Schiefer, F, Schiller, C, Schladebach, J, Schmehl, M, Schmid, J, Schmidt, TA, Schwarz, S, Seidl, R, Seifert, T, Barba, AS, Shafeian, E, Shapiro, A, {de, Simone} L, Sohrabi, H, Soltani, S, Sotomayor, L, Sparrow, B, Steer, BS, Stenson, M, Stöckigt, B, Su, Y, Suomalainen, J, Tamudo, E, Barbieri, MJT, Tomelleri, E, Torresani, M, Trepekli, K, Ullah, S, Ullah, S, Umlauft, J, Vargas-Ramírez, N, Vatandaslar, C, Visacki, V, Volpi, M, Vásquez, V, Wallis, C, Weinstein, B, Weiser, H, Wich, S, Ximena, TC, Zarco-Tejada, PJ, Zdunic, K, Zielewska-Büttner, K, {de, Oliveira} RA, {van, Wagtendonk} L, {von, Dosky} V, and Kattenborn, T. 2026. “deadtrees.earth — An open-access and interactive database for centimeter-scale aerial imagery to uncover global tree mortality dynamics.” Remote Sensing of Environment 332: 115027–115027. doi: https://doi.org/10.1016/j.rse.2025.115027.

    2025

    • Baumberger, M, Haas, B, Tewes, W, Risse, B, Meyer, N, and Meyer, H. 2025. “Gated recurrent units for modelling time series of soil temperature and moisture: An assessment of performance and process reflectivity.” Environmental Modelling and Software 183: 106245–106245. doi: 10.1016/j.envsoft.2024.106245.
    • Giese, L, Baumberger, M, Ludwig, M, Schneidereit, H, Sánchez, E, Robroek, BJ, Lamentowicz, M, Lehmann, J, Hölzel, N, Knorr, K, and Meyer, H. 2025. “Recent trends in moisture conditions across European peatlands.” Remote Sensing Applications: Society and Environment 37: 101385–101385. doi: 10.1016/j.rsase.2024.101385.
    • Krämer, Alina, Meyer, Hanna, and Buchholz, Sascha. 2025. “Habitat Suitability of the Sand Lizard (Lacerta agilis) at Its Distribution Limit—An Analysis Based on Citizen Science Data and Machine Learning.” Journal of Biogeography 52 e15099. doi: 10.1111/jbi.15099.
    • Dietenberger, S, Mueller, MM, Stöcker, B, Dubois, C, Arlaud, H, Adam, M, Hese, S, Meyer, H, and Thiel, C. 2025. “Accurate Mapping of Downed Deadwood in a Dense Deciduous Forest Using UAV-SfM Data and Deep Learning.” Remote Sensing 17 (9). doi: 10.3390/rs17091610.

    2024

    • Meyer, H, Ludwig, M, Milà, C, Linnenbrink, J, and Schumacher, F. 2024. “The CAST package for training and assessment of spatial prediction models in R.” Preprint. arXiv doi: 10.48550/arXiv.2404.06978.
    • Milà, C, Ludwig, M, Pebesma, E, Tonne, C, and Meyer, H. 2024. “Random forests with spatial proxies for environmental modelling: opportunities and pitfalls.” Preprint. Geoscientific Model Development 2024 (17): 6007–603. doi: 10.5194/gmd-17-6007-2024.
    • Linnenbrink, J, Milà, C, Ludwig, M, and Meyer, H. 2024. “kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation.” Geoscientific Model Development 17 (15): 5897–5912. doi: 10.5194/gmd-17-5897-2024.
    • Baumberger, M, Haas, B, Sivakumar, S, Ludwig, M, Meyer, N, and Meyer, H. 2024. “High-resolution soil temperature and soil moisture patterns in space, depth and time: An interpretable machine learning modelling approach.” Geoderma 451: 117049–117049. doi: 10.1016/j.geoderma.2024.117049.
    • Schumacher, F, Knoth, C, Ludwig, M, and Meyer, H. 2024. “Estimation of local training data point densities to support the assessment of spatial prediction uncertainty.” Preprint. EGUsphere doi: 10.5194/egusphere-2024-2730.
    • Bald, L, Ziegler, A, Gottwald, J, Koch, TL, Ludwig, M, Meyer, H, Wöllauer, S, Zeuss, D, and Frieß, N. 2024. “Leveraging heterogeneous LiDAR data to model successional stages at tree species level in temperate forests.” Environmental Data Science 3: e24–e24. doi: 10.1017/eds.2024.31.
    • Datta, R, Katurji, M, Nielsen, E, Meyer, H, Zawar-Reza, P, and Valdes, ML. 2024. “The Winter Foehn Footprint Across McMurdo Dry Valleys of Antarctica Using a Satellite-Derived Data Set-AntAir v1.0.” Journal of Geophysical Research: Atmospheres 129 (23): e2023JD039300.. doi: 10.1029/2023JD039300.

    2023

    • Ludwig, M, Moreno-Martinez, A, Hölzel, N, Pebesma, E, and Meyer, H. 2023. “Assessing and improving the transferability of current global spatial prediction models.” Global Ecology and Biogeography 00: 1–13. doi: 10.1111/geb.13635.
    • Ziegler, A, Heisig, J, Ludwig, M, Reudenbach, C, Meyer, H, and Nauss, T. 2023. “Using GEDI as training data for an ongoing mapping of landscape-scale dynamics of the plant area index.” Environmental Research Letters 18 (7). doi: 10.1088/1748-9326/acde8f.
    • Nielsen, EB, Katurji, M, Zawar-Reza, P, and Meyer, H. 2023. “Antarctic daily mesoscale air temperature dataset derived from MODIS land and ice surface temperature.” Scientific data 10 (1): 833–833. doi: 10.1038/s41597-023-02720-z.

    2022

    • Mila, C, Mateu, J, Pebesma, E, and Meyer, H. 2022. “Nearest neighbour distance matching leave-one-out cross-validation for map validation.” Methods in Ecology and Evolution 13: 1304–1316. doi: 10.1111/2041-210X.13851.
    • Meyer, H, and Pebesma, E. 2022. “Machine learning-based global maps of ecological variables and the challenge of assessing them.” Nature Communications 13. doi: 10.1038/s41467-022-29838-9.
    • Ziegler, A, Meyer, H, Otte, I, Peters, MK, Appelhans, T, Behler, C, Böhning-Gaese, K, Classen, A, Detsch, F, Deckert, J, Eardley, CD, Ferger, SW, Fischer, M, Gebert, F, Haas, M, Helbig-Bonitz, M, Hemp, A, Hemp, C, Kakengi, V, Mayr, AV, Ngereza, C, Reudenbach, C, Röder, J, Rutten, G, Schellenberger Costa, D, Schleuning, M, Ssymank, A, Steffan-Dewenter, I, Tardanico, J, Tschapka, M, Vollstädt, MGR, Wöllauer, S, Zhang, J, Brandl, R, and Nauss, T. 2022. “Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro.” Remote Sensing 14 (3): 786. doi: 10.3390/rs14030786.
    • Ludwig, M, Bahlmann, J, Pebesma, E, and Meyer, H. 2022. “Developing Transferable Spatial Prediction Models: a Case Study of Satellite Based Landcover Mapping.” contribution to the ISPRS, Nice doi: 10.5194/isprs-archives-XLIII-B3-2022-135-2022.
    • Kleinewillinghöfer, L, Olofsson, P, Pebesma, E, Meyer, H, Buck, O, Haub, C, and Eiselt, B. 2022. “Unbiased Area Estimation Using Copernicus High Resolution Layers and Reference Data.” Remote Sensing 14 (19): 4903. doi: 10.3390/rs14194903.

    2021

    • Lezama Valdes, M, Katurji, M, and Meyer, H. 2021. “A Machine Learning Based Downscaling Approach to Produce High Spatio-Temporal Resolution Land Surface Temperature of the Antarctic Dry Valleys from MODIS Data.” Remote Sensing 13 (22). doi: 10.3390/rs13224673.
    • Petermann, E, Meyer, H, Nussbaum, M, and Bossew, P. 2021. “Mapping the geogenic radon potential for Germany by machine learning.” Science of the Total Environment 754: 142291.. doi: 10.1016/j.scitotenv.2020.142291.
    • Meyer, H, and Pebesma, E. 2021. “Predicting into unknown space? Estimating the area of applicability of spatial prediction models.” Methods in Ecology and Evolution 12: 1620–1633. doi: 10.1111/2041-210X.13650.
    • Meyer, H, and Pebesma, E. 2021. “Estimating the Area of Applicability of Remote Sensing-Based Machine Learning Models with Limited Training Data.” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS doi: 10.1109/IGARSS47720.2021.9553999.

    2020

    • Hess, B, Dreber, N, Liu, Y, Wiegand, K, Ludwig, M, Meyer, H, and Meyer, KM. 2020. “PioLaG: a piosphere landscape generator for savanna rangeland modelling.” Landscape Ecology 35 (9): 2061–2082. doi: 10.1007/s10980-020-01066-w.
    • Schumacher, B, Katurji, M, Meyer, H, Appelhans, T, Otte, I, and Nauss, T. 2020. “Atmospheric moisture pathways of East Africa and implications for water recycling at Mount Kilimanjaro.” International Journal of Climatology 2020. doi: 10.1002/joc.6468.

    2019

    • Meyer, H, Schmidt, J, Detsch, F, and Nauss, T. 2019. “Hourly gridded air temperatures of South Africa derived from MSG SEVIRI.” International Journal of Applied Earth Observation and Geoinformation 78: 261–267. doi: 10.1016/j.jag.2019.02.006.
    • Lehnert, LW, Meyer, H, Obermeier, WA, Silva, B, Regeling, B, and Bendix, J. 2019. “Hyperspectral Data Analysis in R: The hsdar Package.” Journal of Statistical Software 89 (12). doi: 10.18637/jss.v089.i12.
    • Ludwig, M, Morgenthal, T, Detsch, F, Higginbottom, TP, Lezama Valdes, M, Nauß, T, and Meyer, H. 2019. “Machine learning and multi-sensor based modelling of woody vegetation in the Molopo Area, South Africa.” Remote Sensing of Environment 222: 195–203. doi: 10.1016/j.rse.2018.12.019.
    • Meyer, H, Reudenbach, C, Wöllauer, S, and Nauss, T. 2019. “Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction.” Ecological Modelling 411: 108815.. doi: 10.1016/j.ecolmodel.2019.108815.

    2018

    • Meyer, N, Meyer, H, Welp, G, and Amelung, W. 2018. “Soil respiration and its temperature sensitivity (Q10): Rapid acquisition using mid-infrared spectroscopy.” Geoderma 323: 31–40. doi: 10.1016/j.geoderma.2018.02.031.
    • Higginbottom, TP, Symeonakis, E, Meyer, H, and Linden, S. 2018. “Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data.” ISPRS Journal of Photogrammetry and Remote Sensing 139: 88–102. doi: 10.1016/j.isprsjprs.2018.02.010.
    • Wang, Y, Lehnert, LW, Holzapfel, M, Schultz, R, Heberling, G, Görzen, E, Meyer, H, Seeber, E, Pinkert, S, Ritz, M, Fu, Y, Ansorge, H, Bendix, J, Seifert, B, Miehe, G, Long, R, Yang, Y, and Wesche, K. 2018. “Multiple indicators yield diverging results on grazing degradation and climate controls across Tibetan pastures.” Ecological Indicators 93: 1199–1208. doi: 10.1016/j.ecolind.2018.06.021.
    • Meyer, H, Reudenbach, C, Hengl, T, Katurji, M, and Nauss, T. 2018. “Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation.” Environmental Modelling and Software 101: 1–9. doi: 10.1016/j.envsoft.2017.12.001.
    • Reudenbach, C, and Meyer, H. 2018. uavRst: Unmanned Aerial Vehicle Remote Sensing Tools. R package version 0.5-2.
    • Meyer, H, Reudenbach, C, and Nauss, T. 2018. CAST: 'caret' Applications for Spatial-Temporal Models. R package version 0.1.0.

    2017

    • Messenzehl, K, Meyer, H, Otto, J, Hoffmann, T, and Dikau, R. 2017. “Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps) — A multivariate modeling approach.” Geomorphology 287: 29–45. doi: 10.1016/j.geomorph.2016.01.008.
    • Meyer, H, Drönner, J, and Nauss, T. 2017. “Satellite-based high-resolution mapping of rainfall over southern Africa.” Atmospheric Measurement Techniques 10 (6): 2009–2019. doi: 10.5194/amt-10-2009-2017.
    • Meyer, H, Lehnert, LW, Wang, Y, Reudenbach, C, Nauss, T, and Bendix, J. 2017. “From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: Do we need hyperspectral information?” International Journal of Applied Earth Observation and Geoinformation 55: 21–31. doi: 10.1016/j.jag.2016.10.001.
    • Meyer, H, Kühnlein, M, Reudenbach, C, and Nauss, T. 2017. “Revealing the potential of spectral and textural predictor variables in a neural network-based rainfall retrieval technique.” Remote Sensing Letters 8 (7): 647–656. doi: 10.1080/2150704X.2017.1312026.

    2016

    • Meyer, H, Katurji, M, Appelhans, T, Müller, MU, Nauss, T, Roudier, P, and Zawar-Reza, P. 2016. “Mapping Daily Air Temperature for Antarctica Based on MODIS LST.” Remote Sensing 8 (9). doi: 10.3390/rs8090732.
    • Meyer, H, Kühnlein, M, Appelhans, T, and Nauss, T. 2016. “Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals.” Atmospheric Research 169, Part B: 424–433. doi: 10.1016/j.atmosres.2015.09.021.
    • Ludwig, A, Meyer, H, and T, Nauss. 2016. “Automatic classification of Google Earth images for a larger scale monitoring of bush encroachment in South Africa.” International Journal of Applied Earth Observation and Geoinformation 50: 89–94. doi: 10.1016/j.jag.2016.03.003.
    • Lehnert, LW, Meyer, H, and Bendix, J. 2016. hsdar: Manage, analyse and simulate hyperspectral data in R. R package version 0.5.1.

    2015

    • Lehnert, LW, Meyer, H, Wang, Y, Miehe, G, Thies, B, Reudenbach, C, and Bendix, J. 2015. “Retrieval of grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach.” Remote Sensing of Environment 164: 197–207. doi: 10.1016/j.rse.2015.04.020.
    • Gasch, CK, Hengl, T, Gräler, B, Meyer, H, Magney, TS, and Brown, DJ. 2015. “Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T: The Cook Agronomy Farm data set.” Spatial Statistics 14, Part A: 70–90.
    • Nauss, T, Meyer, H, Detsch, F, and Appelhans, T. 2015. Manipulating satellite data with satellite. R package version 1.0.0.

    2014

    • Thies, B, Meyer, H, Nauss, T, and Bendix, J. 2014. “Projecting land-use and land-cover changes in a tropical mountain forest of Southern Ecuador.” Journal of Land Use Science 9 (1): 1–33.
    • Lehnert, L, Meyer, H, Meyer, N, Reudenbach, C, and Bendix, J. 2014. “A hyperspectral indicator system for rangeland degradation on the Tibetan Plateau: A case study towards spaceborne monitoring.” Ecological Indicators 39: 54–64. doi: 10.1016/j.ecolind.2013.12.005.

    2013

    • Peters, T, Drobnik, T, Meyer, H, Rankl, M, Richter, M, Rollenbeck, R, Thies, B, and Bendix, J. 2013. “Environmental changes affecting the Andes of Ecuador.” in Ecosystem services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador, Vol. 221 of Ecological Studies, edited by J Bendix, E Beck, A Bräuning, F Makeschin, R Mosandl, S Scheu and W Wilcke. Berlin: Springer VDI Verlag. doi: 10.1007/978-3-642-38137-9_2.
    • Windhorst, D, Silva, B, Peters, T, Meyer, H, Thies, B, Bendix, J, Frede, H, and Breuer, L. 2013. “Impacts of local land-use change on climate and hydrology.” in Ecosystem services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador, Vol. 221 of Ecological Studies, edited by J Bendix, E Beck, A Bräuning, F Makeschin, R Mosandl, S Scheu and W Wilcke. Berlin: Springer. doi: 10.1007/978-3-642-38137-9_20.
    • Roos, K, Bendix, J, Curatola, G, Gawlik, J, Gerique, A, Hamer, U, Hildebrandt, P, Knoke, T, Meyer, H, Pohle, P, Potthast, K, Thies, B, Tischer, A, and Beck, E. 2013. “Current provisioning services: pasture development and use, weeds (bracken) and management.” in Ecosystem services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador, Vol. 221 of Ecological Studies, edited by J Bendix, E Beck, A Bräuning, F Makeschin, R Mosandl, S Scheu and W Wilcke. Berlin: Springer VDI Verlag. doi: 10.1007/978-3-642-38137-9_15.
Top of page

Contact

University of Münster
Remote Sensing and Spatial Modelling Research Group

Heisenbergstraße 2
D-48149 Münster

Tel: +49(0)251-83 30 097
Fax: +49(0)251-83 38 338
hanna.meyer [at] uni-muenster.de
 
living.knowledge
  • Legal Disclosure
  • Privacy Statement
  • Accessibility

© 2025 Remote Sensing and Spatial Modelling Research Group - Institute of Landscape Ecology - University of Münster