Elke Enning

Tim de Laat: Actions of higher rank groups on uniformly convex Banach spaces. Oberseminar C*-Algebren.

Tuesday, 18.04.2023 16:15 im Raum SRZ 216/217

Mathematik und Informatik

I will explain that all affine isometric actions of higher rank simple Lie groups and their lattices on arbitrary uniformly convex Banach spaces have a fixed point. This vastly generalises a recent breakthrough of Oppenheim. Combined with earlier work of Lafforgue and of Liao on strong Banach property (T) for non-Archimedean higher rank simple groups, this confirms a long-standing conjecture of Bader, Furman, Gelander and Monod. As a consequence, we deduce that box space expanders constructed from higher rank lattices are superexpanders. This is joint work with Mikael de la Salle.

Angelegt am Thursday, 12.01.2023 11:47 von Elke Enning
Geändert am Monday, 03.04.2023 10:46 von Elke Enning
[Edit | Vorlage]

Oberseminare und sonstige Vorträge
Vorträge des SFB 1442
Veranstaltungen am Mathematischen Institut