Steffen Kionke (Karlsruher Institut für Technologie): Limits of topological invariants in the p-adic numbers. (Oberseminar Topologie)
Monday, 08.07.2019 14:00 im Raum M4
We introduce new invariants of topological spaces: the p-adic Betti numbers and the p-adic torsion. These invariants are p-adic limits of classical topological invariants and are, in this respect, similar to L2-invariants.
In other aspects, however, the p-adic invariants behave like antagonists of L2-invariants. For instance, p-adic Betti numbers can distinguish certain amenable groups, but are equal for all free groups. We discuss some examples and open problems and we explain how the p-adic Betti numbers can be used to study the growth of ordinary Betti numbers in towers of finite sheeted covering spaces.
Angelegt am 13.06.2019 von Anja Böckenholt
Geändert am 19.06.2019 von Anja Böckenholt
[Edit | Vorlage]