|
shupp_01

Oberseminar Differentialgeometrie: Jiawei Liu (Otto-von-Guericke-Universität Magdeburg): Stability of the Conical Kähler-Ricci flows on Fano manifolds

Montag, 27.05.2019 16:15 im Raum SR4
Mathematik und Informatik

Abstract: I will talk about the stability of the conical Kähler-Ricci flows on Fano manifolds. That is, if there exists a conical Kähler-Einstein metric with cone angle 2?? along the divisor, then for any ?' sufficiently close to ?, the corresponding conical Kähler-Ricci flow converges to a conical Kähler-Einstein metric with cone angle 2??' along the divisor. Here, we only use the condition that the Log Mabuchi energy is bounded from below. This is a weaker condition than the properness that we have adopted to study the convergence before. As corollaries, we give parabolic proofs of Donaldson's openness theorem and his existence conjecture for the conical Kähler-Einstein metrics with positive Ricci curvatures.



Angelegt am Mittwoch, 10.04.2019 10:04 von shupp_01
Geändert am Montag, 29.04.2019 10:59 von shupp_01
[Edit | Vorlage]

Veranstaltungen am Mathematischen Institut
Oberseminare und sonstige Vorträge
FB-Homepage