Oberseminar Differentialgeometrie: Daniele Valtorta, Universität Zürich, Vortrag: Singularities for Q-valued Dirichlet minimizing functions

am Montag, 30.10.2017 16:15 im Raum SR4
Mathematik und Informatik

We present new regularity results for the singular sets of Q-valued harmonic functions. This work is a collaboration with Camillo de Lellis, Andrea Marchese and Emanuele Spadaro (see arXiv: 1612.01813). For a Q-valued Dirichlet minimizing harmonic functions, we show that its singular set is m-2 rectifiable. Moreover, we also prove uniform Minkowski bounds for the set of Q-points. The proof is based on a Reifenberg-type theorem obtained in collaboration with Aaron Naber (see arXiv:1504.02043), and the technique is very versatile in nature and can be used to tackle many different problems in GMT. For example, this techinque can be adapted to study the singularities of thin obstacle problems and liquid crystals (see arXiv:1703.00678 - arXiv:1706.02734 ).

Angelegt am Montag, 11.09.2017 12:46 von shupp_01
Geändert am Donnerstag, 26.10.2017 09:21 von shupp_01
[Edit | Vorlage]

Oberseminare und sonstige Vorträge