Prof. Simon Lux, Dr.

Prof. Simon Lux, Dr.

Leonardo Campus 1
48149 Münster

T: +49 251 83-29411 (Office)

Academic Profile

External Profile

  • Honors

    1. Place for Solid State Science and Technology, Student Poster Session Award 219th ECS Meeting, Montréal, 2011 – The Electrochemical Society
  • Projects

    • SuSyPhos – Sustainable Synthesis and Recycling of Phosphorus-containing Materials in Lithium Ion Batteries ()
      EU-Project Hosted at University the of Münster: MWIKE NRW - EFRE/JTF-Programm - Innovationswettbewerb Green Economy.IN.NRW | Project Number: EFRE-20800147
    • SIB-DE_Forschung - Sodium-lon-Battery Deutschland (SIB:DE Initiative) - Eignung der Natriumionen-Technologie für die europäische Energie- und Mobilitätswende ()
      Participation in BMBF-Joint Project: Federal Ministry of Education and Research | Project Number: 03XP0627G
    • Na.Ion.NRW – Entwicklung einer nachhaltigen Natrium-Ionen Batterie „Made in NRW" ()
      Individual Granted Project: MWIKE NRW - EFRE/JTF-Programm - Innovationswettbewerb Energie.IN.NRW | Project Number: EFRE-20800352
  • Publications

    • , , , and . . “China's hold on the lithium-ion battery supply chain: Prospects for competitive growth and sovereign control.Journal of Power Sources Advances, 32: 100173. doi: 10.1016/j.powera.2025.100173.
    • , and . . “The intellectual property enabling gigafactory battery cell production: An in-depth analysis of international patenting trends.Journal of Energy Storage, 108: 115083. doi: 10.1016/j.est.2024.115083.

    • , , , , and . . “A battery value chain independent of primary raw materials: Towards circularity in China, Europe and the US.Resources, Conservation & Recycling, 201 107218. doi: 10.1016/j.resconrec.2023.107218.
    • , , , , and . . “Towards circular battery supply chains: Strategies to reduce material demand and the impact on mining and recycling.Resources Policy, 95 (105160) doi: 10.1016/j.resourpol.2024.105160.
    • , , , and . . “Battery Health Index: Combination of Physical and ML-Based SoH for Continuous Health Tracking.IEEE Internet of Things Journal, 11 (20) 10599554. doi: 10.1109/JIOT.2024.3429338.
    • , , , , , , , and . . “International M&A transaction volumes along the battery value chain: Strategic investment implications.Journal of Business Chemistry, 21 (3): 8695. doi: 10.17879/55918720299.

    • , , , , , , , and . “Probing surface chemistry changes using LiCoO 2 -only electrodes in Li-ion batteries.Journal of The Electrochemical Society, 165 (7): A1377A1377. doi: 10.1149/2.0431807jes.

    • , , , , , , , , and . . “Molecular spring enabled high-performance anode for lithium ion batteries.Polymers, 9 (12) doi: 10.3390/polym9120657.
    • , , , , , , and . . “Chemical reactivity descriptor for the oxide-electrolyte interface in Li-ion batteries.Journal of Physical Chemistry Letters, 8 (16): 38813887. doi: 10.1021/acs.jpclett.7b01655.
    • , , , , , , , , and . . “Enhanced lithium ion transport in garnet-type solid state electrolytes.Journal of Electroceramics, 38: 168175. doi: 10.1007/s10832-017-0080-3.

    • , , , , , , , , , , , and . “Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.Chemical Reviews, 116 (1): 140162. doi: 10.1021/acs.chemrev.5b00563.
    • , , , , , , , , , , , , and . “Kinetic study of parasitic reactions in lithium-ion batteries: A case study on LiNi0.6Mn0.2Co0.2O2.ACS applied materials & interfaces, 8 (5): 34463451. doi: 10.1021/acsami.5b11800.

    • , , , , , , and . . “The mechanism of SEI formation on single crystal Si(100), Si(110) and Si(111) electrodes.Journal of The Electrochemical Society, 162 (12): A2281–A2288. doi: 10.1149/2.0361512jes.
    • , , , , , , , , , , , , , and . “Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights.Journal of Physical Chemistry Letters, 6 (22): 46534672. doi: 10.1021/acs.jpclett.5b01727.
    • , , , , , , and . “Future generations of cathode materials: An automotive industry perspective.Journal of Materials Chemistry A, 3 (13): 67096732. doi: 10.1039/c5ta00361j.
    • , , and . “IR near-field study of the solid electrolyte interphase on a tin electrode.Journal of Physical Chemistry Letters, 6 (7): 11261129. doi: 10.1021/acs.jpclett.5b00263.
    • , , , , , , , , , , , , , and . “Optimizing areal capacities through understanding the limitations of lithium-ion electrodes.Journal of The Electrochemical Society, 163 (2): A138–A149. doi: 10.1149/2.0321602jes.
    • , , , , , , , , , , , , , , and . “Phase behavior and electrochemical characterization of blends of perfluoropolyether, poly(ethylene glycol), and a lithium salt.Chemistry of Materials, 27 (2): 597603. doi: 10.1021/cm504228a.
    • , , , , , , and . . “The mechanism of SEI formation on a single crystal Si (100) electrode.Journal of The Electrochemical Society, 162 (4): A603. doi: 10.1149/2.0391504jes/met.

    • , , , , , and . . “The mechanism of interactions between CMC binder and Si single crystal facets.Langmuir, 30 doi: 10.1021/la501791q.
    • , , , , and . . “The Effect of Linear Carbonates on HF Formation in LiPF6-based Electrolytes.ECS Transactions, 15 (58): 15. doi: 10.1149/05815.0001ecst.
    • , , , , , and . . “Electrochemical reactivity of pyrolytic carbon film electrodes in organic carbonate electrolytes.Electrochemistry Communications, 46: 58. doi: 10.1016/j.elecom.2014.05.030.
    • , , , , and . . “Porous polymer monoliths with incororated single layer graphene.Scientia Chromatographica, 6 (1): 2733. doi: 10.4322/sc.2014.017.
    • , , , , , , , , , , , , , , , and . . “The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes.Physical Chemistry Chemical Physics, 16 (34): 1829418300. doi: 10.1039/C4CP02921F.

    • , , , , , , , and . . “LiTFSI Stability in Water and Its Possible Use in Aqueous Lithium-Ion Batteries: pH Dependency, Electrochemical Window and Temperature Stability.Journal of The Electrochemical Society, 160 (10): A1694–A1700. doi: 10.1149/2.039310jes.
    • , , , , , , , and . . “Influence of Graphite Characteristics on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into a Graphite-based Cathode.Journal of The Electrochemical Society, 160 (11): A1979–A1991. doi: 10.1149/2.027311jes.
    • , , and . . “Interfacial Side-Reactions at a LiNi0.5Mn1.5O 4 Electrode in Organic Carbonate-Based Electrolytes.Electrochemistry Communications, 34: 2932. doi: 10.1016/j.elecom.2013.04.007.
    • , , , , and . . “Time-dependent determination of hf formation in lipf6-containing electrolytes in different cell types by spectroscopic ellipsometry.ECS Transactions, 50 (1): 27. doi: 10.1149/05001.0027ecst.
    • , , , and . . “HF formation in LiPF6-based organic carbonate electrolytes.ECS Electrochemistry Letters, 2 (12): A121. doi: 10.1149/2.005312eel.

    • , , , , , , and . . “Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes.Zeitschrift für Physikalische Chemie, 226 (5-6): 391407. doi: 10.1524/zpch.2012.0222.
    • , , , and . . “Stability and Impurities Investigations on Ionic Liquids with ICP-OES, IC/ICP-OES and IC/ESI-MS.” contributed to the 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , and . . “Determination of Nano-SiO2 Graphite Particles and Nano-Si coated Particles after Sodium/Potassium Carbonate Digestion with ICP-OES.” contributed to the 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , , , and . . “Graphite surface modifications by elevated temperature gas treatments.” contribution to the Kraftwerk Batterie 2012, Münster, Germany
    • , , , , , , and . . “Dual ion cells based on anion intercalation into graphite.” contribution to the Kraftwerk Batterie 2012, Münster, Germany
    • , , , , , , , , and . . “Impact of graphite surface modifications on graphite surface properties.” contribution to the Electrochemistry 2012 (GdCH), Technische Universität München, München, Germany
    • , , , , , , , , and . . “Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica.Journal of The Electrochemical Society, 159 (11): A1849–A1855. doi: 10.1149/2.070211jes.
    • , , , , , , , and . . “Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells.Journal of The Electrochemical Society, 159 (11): A1755–A1765. doi: 10.1149/2.011211jes.
    • , , , , , and . “The mechanism of HF formation in LiPF6 based organic carbonate electrolytes.Electrochemistry Communications, 14 (1): 4750. doi: 10.1016/j.elecom.2011.10.026.
    • , , , , , , , , and . . “Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries.Journal of Power Sources, 200: 8391. doi: 10.1016/j.jpowsour.2011.10.085.

    • , , , and . . “ICP Techniques for the Determination of Impurities in Lithium Ion Battery Starting Materials.” contributed to the GDCh-Wissenschaftsforum Chemie 2011, Bremen
    • , , , , and . . “LA-ICP-MS and ICP-OES for the Determination of Impurities in Li-Ion Battery Materials.” contributed to the Bunsenkolloquium 2011, Goslar
    • , , , , and . . “Application of ICP-OES and ICP-MS for the analysis of silver nanoparticles in consumer products.” contributed to the CANAS 2011, Leipzig
    • , , , , and . . “Combination of LA-ICP-MS and ICP-OES for the determination of impurities in lithium-ion battery starting materials.” contributed to the 44. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Dortmund
    • , , , , and . . “Silica dry coated graphite particles for improved performance of lithium ion batteries.” contribution to the Bunsenkolloquium - Grenzflächen in Lithium(ionen)-Batterien, Goslar, Germany
    • , , , , , , and . . “Modified graphites for improved anode performance in lithium-ion batteries.” contribution to the Bunsenkolloquium - Grenzflächen in Lithium(ionen)-Batterien, Goslar, Germany
    • , , , , , , , , and . . “Enhanced performance of silica dry-coated graphite.” contributed to the 219th ECS Meeting, Montréal, Montréal

    • , , , , , and . . “Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries.International Journal of Energy Research, 34 (2): 97106. doi: 10.1002/er.1557.
    • , , , , and . . “Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries.Journal of The Electrochemical Society, 157 (3): A320A325. doi: 10.1149/1.3291976.
    • , , , , , , and . “Greener and cheaper batteries containing fluorine-free binder in combination with ionic liquid based electrolytes.ECS Transactions, 25 (36): 2125. doi: 10.1149/1.3393836.
    • , , , , and . “Na-CMC as possible binder for LiFePO4/C composite electrodes: The role of the drying procedure.ECS Transactions, 25 (36): 265270. doi: 10.1149/1.3393862.
    • , , , , , , , , , and . . “Computational methods for the characterization of aqueous processed cellulose-based LiFePO4/C composite electrodes.” contribution to the 218th ECS Meeting, Las Vegas, Las Vegas, USA
    • , , , , , , , , , , and . . “Application of LA-ICP-MS/LA-ICP-OES and ICP-OES for the Determination of Impurities in Li-Ion Battery Compounds.” contribution to the 218th ECS Meeting, Las Vegas doi: 10.1149/MA2010-02/1/66.

    • , , , , , , , and . . “Mixtures of ionic liquids in combination with graphite electrodes: The role of Li-salt.ECS Transactions, 16 (35): 4549. doi: 10.1149/1.3123126.
    • , , , , , and . . “Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature.Journal of Power Sources, 192 (2): 599605. doi: 10.1016/j.jpowsour.2008.12.095.
    • , , , , , and . . “Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes I. Electrochemical characterization of the electrolytes.Journal of Power Sources, 192 (1): 599605. doi: 10.1016/j.jpowsour.2008.12.095.