News - 2022

Münster (upm/kk)

Plants use their roots to measure manganese concentration available in the soil

Researchers show for the first time: a specific group of cells in the tip of the root reacts to a manganese deficiency
© Uni MS - AG Kudla

Every living organism needs the element manganese as an essential nutrient. In plants, for example, it plays a major role in breaking down water into oxygen and hydrogen during photosynthesis. A team of German and Chinese researchers are the first to demonstrate, using the model species thale cress (Arabidopsis thaliana), how plants sense manganese deficiency and which processes then take place in the plant at the molecular level. The researchers showed that a hitherto undetected group of cells in the plant root plays a decisive role. The researchers hope that the results of their work will in the future lead to methods for making plants more resistant to manganese deficiency – a condition which often occurs in alkaline and calcareous soils.

more ...

Münster (upm/kk)

Researchers provide new insights into photosynthesis

Photosystem I in plants shows a hitherto unknown face / Molecular examination with maximum precision
© Nature Plants/10.1038/s41477-022-01253-4

Photosynthesis is the most important basis of life on Earth. In it, plants and single-cell algae use the energy of sunlight and convert this energy into sugar and biomass. In this process, oxygen is released. Plant biotechnologists and structural biologists from the Universities of Münster and Stockholm (Sweden) have clarified the structure of a new protein complex which catalyses energy conversion processes in photosynthesis. This protein complex is the photosystem I, which is known as a single protein complex (monomer) in plants. The team of researchers headed by Prof. Michael Hippler from the University of Münster and Prof. Alexey Amunts from the University of Stockholm has now shown, for the first time, that two photosystem I monomers in plants can join together as a dimer, and they describe the molecular structure of this new kind of molecular machine. The results, which have been published in the “Nature Plants” journal, provide molecular insights into the photosynthesis process to a hitherto unparalleled degree of precision. They could help to utilise more efficiently in future the reductive force (i.e. the preparedness to give up electrons) of photosystem I, for example to produce hydrogen as a source of energy.

more ...

Münster (upm/kk)

Plants can measure the intensity of salt stress

Biologists at the University of Münster have produced the first description of a calcium signal-controlled switch mechanism for adaptation to varying levels of salt stress / Study published in "Developmental Cell"
© Uni MS - AG Kudla

Unfavourable environmental conditions represent considerable stress for plants. A high level of salt content (sodium chloride, NaCl) in the soil is for example just such a stressor which has a negative impact on plants. Salinization is a serious problem in agriculture especially in dry regions of the world. Biologists at the University of Münster have now discovered, for the first time, that salt stress triggers calcium signals in a special group of cells in plant roots, and that these signals form a “sodium-sensing niche”. Also, the researchers identified a calcium-binding protein (CBL8) which contributes to salt tolerance specifically under severe salt stress conditions. The results of the study have now been published in the journal “Developmental Cell”.

more ...

Münster (upm/sr)

How calcium ions get into the cellular power stations of plants

Team led by University Münster researchers establishes transport route of this important signal transmitter
© AG Plant Energy Biology - Jan-Ole Niemeier

Calcium is a very special nutrient. In the cells of most living beings calcium ions function as so-called second messengers to transmit important signals. The same applies equally to animal, plant and fungal cells. Through collaboration of several research institutes at a national and international level members of the “Plant Energy Biology” working group at Münster University, led by Prof. Markus Schwarzländer, and of the team led by Prof. Alex Costa at the University of Milan, have now identified the molecular machinery which enables calcium ions to be taken up into the mitochondria of plant cells – and that this form of transport plays an important role in their response to being touched. The study has now been published in the journal “The Plant Cell”.

more ...

Münster (upm/sr)
Münster (upm/sr)

Proteinfaltung in Zeiten von Sauerstoffmangel

Studie untersucht Prozess, mit dem Pflanzen die Form von Eiweißmolekülen stabilisieren
© José Ugalde/Uni Bonn

Eiweißmoleküle, auch Proteine genannt, benötigen eine definierte Form, um zu funktionieren. Bei ihrer Herstellung werden ihre Bausteine daher auf ganz spezifische Weise miteinander verknüpft. Forschende der Universität Bonn nehmen nun einen zentralen Schritt in diesem Prozess unter die Lupe und untersuchen bei Pflanzen die Auswirkungen von vorübergehendem Sauerstoffmangel auf die Proteinfaltung. An der Studie waren auch Forschende der Universität Münster, der TU Kaiserslautern und der Universität Bielefeld beteiligt. Die Studie ist nun in der Fachzeitschrift Plant Cell erschienen.

weiter ...

Münster (bmm)
Münster (bmm)

Help for stressed-out cells in a crisis

Biologists discover a new function of mitochondria as the "patron saints" of protein folding
© Markus Schwarzländer, Philippe Fuchs

According to a team of researchers at the University of Münster, mitochondria provide unexpected help for cells in a crisis by respiring away harmful substances. A current study produced by the Institute of Biology and Biotechnology of Plants (IBBP) shows three things: that this mechanism can be triggered by reductive stress, that it protects the folding of certain proteins destined for export, and that the cell’s “powerhouse” consequently acts even more flexibly than was previously known.

more ...