Representation theory of p-adic groups and Isomorphism Conjectures
(WS 2017/2018)

Prof. Dr. Arthur Bartels, Prof. Dr. Peter Schneider

Termin: Mo, 16:15 - 17:45, Raum SR5 (Einsteinstraße 62)

The talks will be assigned at the end of the first session.

Datum Vortragende(r) Titel
09.10.2017 Arthur Bartels Introduction to Isomorphism Conjectures.
23.10.2017 Arthur Bartels The Farrell-Jones Conjecture for discrete CAT(0)-groups.
30.10.2017 Arthur Bartels Hecke algebras and Isomorphism Conjectures.
06.11.2017 Tamás Csige Smooth representations and modules over the Hecke alegbra.
13.11.2017 Verena Edenfeld Cuspidal representations.
20.11.2017 Markus Schmetkamp Induction and restriction.
27.11.2017 Marius Kley Structure theory of reductive p-adic groups.
04.12.2017 Grigori Avramidi Jacquet functors.
11.12.2017 Linus Kramer Buildings for p-adic groups.
18.12.2017 Peter Schneider Coeffcient systems on buildings and resolutions of representations.
08.01.2018 N.N.
15.01.2018 N.N.
22.01.2018 N.N.
29.01.2018 N.N.


[1] I. N. Bernstein and A. V. Zelevinski. Representations of the group GL(n; F); where F is a local non-Archimedean eld. Uspehi Mat. Nauk, 31(3(189)):5{70, 1976.

[2] J. Bernstein. Draft of: Representations of p-adic groups. Notes by Karl E. Rumelhart, 1992.

[3] P. Cartier. Representations of p-adic groups: a survey. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 111{155. Amer. Math. Soc., Providence, R.I., 1979.

[4] W. Casselman. introduction to the theory of admissible representaions of p-adic reductive groups. Draft, Notes by Paul Sally, 1995.

[5] J.-F. Dat. On the K0 of a p-adic group. Invent. Math., 140(1):171{226, 2000.

[6] J.-F. Dat. Quelques proprietes des idempotents centraux des groupes p-adiques. J. Reine Angew. Math., 554:69{103, 2003.

[7] W. Luck and H. Reich. The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory. In Handbook of K-theory. Vol. 1, 2, pages 703{842. Springer, Berlin, 2005.

[8] P. Schneider and U. Stuhler. Resolutions for smooth representations of the general linear group over a local eld. J. Reine Angew. Math., 436:19{32, 1993.

[9] P. Schneider and U. Stuhler. Representation theory and sheaves on the Bruhat-Tits building. Inst. Hautes  Etudes Sci. Publ. Math., (85):97{191, 1997.