© Gustav HolzegelPROF. DR. GUSTAV HOLZEGEL Mathematics Institute Einsteinstrasse 62 48149 Münster Office 519 Phone: +49 251 83 33743 gholzege@uni-muenster.de
Honors2020Alexander von Humboldt Professorship – Alexander von Humboldt Foundation2018ERC Consolidator Grant – European Research Council (ERC)2013ERC Starting Grant – European Research Council (ERC)TeachingSummer Term 2026Winter Term 2025/26Summer Term 2025Winter Term 2024/25Summer Term 2024Winter Term 2023/24Summer Term 2023Winter Term 2022/23Summer Term 2022Winter Term 2021/22Summer Term 2021 Summer Term 2026Lecture: Mathematik II für Studierende der Physik [104171][Mon, 10.00 a. m. – 12.00 p. m. | weekly | KP 404][Thu, 10.00 a. m. – 12.00 p. m. | weekly | KP 404]Advanced seminar: Topics in General Relativity [104173][14th Apr – 21st Jul 2026 | Tue, 12.00 p. m. – 2.00 p. m. | weekly]Practice: Übungen zur Mathematik II für Studierende der Physik [104172][Tue, 8.00 a. m. – 10.00 a. m. | weekly][Wed, 12.00 p. m. – 2.00 p. m. | weekly][Wed, 10.00 a. m. – 12.00 p. m. | weekly][Tue, 12.00 p. m. – 2.00 p. m. | weekly][Tue, 2.00 p. m. – 4.00 p. m. | weekly][Tue, 8.00 a. m. – 10.00 a. m. | weekly][Mon, 4.00 p. m. – 6.00 p. m. | weekly][Wed, 4.00 p. m. – 6.00 p. m. | weekly][Wed, 8.00 a. m. – 10.00 a. m. | weekly][Mon, 12.00 p. m. – 2.00 p. m. | weekly][Thu, 4.00 p. m. – 6.00 p. m. | weekly][Thu, 4.00 p. m. – 6.00 p. m. | weekly]Colloquium: Kolloquium Partielle Differentialgleichungen [104370](in cooperation with Prof. Dr. Christian Seis and Prof. Dr. Hendrik Weber)[14th Apr – 14th Jul 2026 | Tue, 2.00 p. m. – 4.00 p. m. | weekly]Winter Term 2025/26Lecture: Mathematik I für Studierende der Physik [102177][13th Oct 2025 – 26th Jan 2026 | Mon, 10.00 a. m. – 12.00 p. m. | weekly | KP 404][16th Oct 2025 – 29th Jan 2026 | Thu, 10.00 a. m. – 12.00 p. m. | weekly | KP 404]Advanced seminar: Topics in General Relativity [102174](in cooperation with Christopher Kauffman)[14th Oct 2025 – 3rd Feb 2026 | Tue, 12.00 p. m. – 2.00 p. m. | weekly | M A 503 (SR 5)]Practice: Übungen zur Mathematik I für Studierende der Physik [102179][6th Oct 2025 – 26th Jan 2026 | Mon, 12.00 p. m. – 2.00 p. m. | weekly][7th Oct 2025 – 20th Jan 2026 | Tue, 8.00 a. m. – 10.00 a. m. | weekly][7th Oct 2025 – 20th Jan 2026 | Tue, 2.00 p. m. – 4.00 p. m. | weekly][13th Oct 2025 – 26th Jan 2026 | Mon, 4.15 p. m. – 5.45 p. m. | weekly | M A 111 (SR 1C)][13th Oct 2025 – 26th Jan 2026 | Mon, 2.00 p. m. – 4.00 p. m. | weekly | M A 111 (SR 1C)][14th Oct 2025 – 27th Jan 2026 | Tue, 8.00 a. m. – 9.45 a. m. | weekly][14th Oct 2025 – 27th Jan 2026 | Tue, 12.00 p. m. – 2.00 p. m. | weekly | M A 111 (SR 1C)][14th Oct 2025 – 27th Jan 2026 | Tue, 4.00 p. m. – 6.00 p. m. | weekly | M A 111 (SR 1C)][14th Oct 2025 – 20th Jan 2026 | Tue, 8.00 a. m. – 9.45 a. m. | weekly | M A 111 (SR 1C)][15th Oct 2025 – 28th Jan 2026 | Wed, 10.00 a. m. – 12.00 p. m. | weekly][15th Oct 2025 – 4th Feb 2026 | Wed, 8.00 a. m. – 10.00 a. m. | weekly | M A 111 (SR 1C)][15th Oct 2025 – 21st Jan 2026 | Wed, 10.15 a. m. – 6.00 p. m. | weekly][16th Oct 2025 – 29th Jan 2026 | Thu, 4.15 p. m. – 6.00 p. m. | weekly][16th Oct 2025 – 22nd Jan 2026 | Thu, 8.00 a. m. – 9.45 a. m. | weekly | M A 111 (SR 1C)][Wed, 4.15 p. m. – 5.45 p. m. | weekly | M A 111 (SR 1C)][28th Jan 2026Wed, 12.00 p. m. – 2.00 p. m. | weekly | M A 111 (SR 1C)]Colloquium: Kolloquium Partielle Differentialgleichungen [102369](in cooperation with Prof. Dr. Christian Seis and Prof. Dr. Hendrik Weber)[14th Oct 2025 – 27th Jan 2026 | Tue, 2.00 p. m. – 4.00 p. m. | weekly | SRZ 203]Summer Term 2025Advanced seminar: Topics in General Relativity [100173](in cooperation with Christopher Kauffman)Colloquium: Kolloquium Partielle Differentialgleichungen [100342](in cooperation with Prof. Dr. Christian Seis and Prof. Dr. Hendrik Weber)Winter Term 2024/25Colloquium: Kolloquium Partielle Differentialgleichungen [108343](in cooperation with Prof. Dr. Christian Seis and Prof. Dr. Hendrik Weber)Summer Term 2024Seminar: Mathematical Methods of Classical Mechanics [106171](in cooperation with Prof. Dr. Hendrik Weber)Seminar: Non-linear Wave equations [106170](in cooperation with Christopher Kauffman)Advanced seminar: Topics in General Relativity [106169](in cooperation with Christopher Kauffman and Dr. Athanasios Chatzikaleas)Colloquium: Kolloquium Partielle Differentialgleichungen [106168](in cooperation with Prof. Dr. Christian Seis and Prof. Dr. Hendrik Weber)Winter Term 2023/24Lecture: General Relativity and the Analysis of Black Hole Spacetimes [104588]Advanced seminar: Topics in General Relativity [104589](in cooperation with Christopher Kauffman and Dr. Athanasios Chatzikaleas)Colloquium: Kolloquium Partielle Differentialgleichungen [104590](in cooperation with Prof. Dr. Christian Seis and Prof. Dr. Hendrik Weber)Summer Term 2023Advanced seminar: Topics in General Relativity [102114](in cooperation with Christopher Kauffman)Advanced seminar: Oberseminar Partielle Differentialgleichungen [102113](in cooperation with Prof. Dr. Christian Seis and Prof. Dr. Hendrik Weber)Winter Term 2022/23Lecture: Non-Linear Wave equations [100140](in cooperation with Christopher Kauffman)Advanced seminar: Oberseminar Partielle Differentialgleichungen [100143](in cooperation with Prof. Dr. Christian Seis and Prof. Dr. Hendrik Weber)Advanced seminar: Topics in General Relativity [100142](in cooperation with Christopher Kauffman)Practice: Übungen zu Non-Linear Wave equations [100141](in cooperation with Christopher Kauffman)Summer Term 2022Seminar: Topics in General Relativity [108140]Winter Term 2021/22Lecture: General Relativity and the Analysis of Black Hole Spacetimes [106701]Seminar: Topics in General Relativity [106700]Practice: Übungen zu General Relativity and the Analysis of Black Hole Spacetime [106549](in cooperation with Dr. Olivier Graf and Christopher Kauffman)Summer Term 2021Lecture: Non-linear Wave Equations [104260]Advanced seminar: Oberseminar zur Analysis [104369](in cooperation with Prof. Dr. Joachim Lohkamp, Prof. Dr. Angela Stevens, Dr. Sebastian Throm and Prof. Dr. André Schlichting)Practice: Übungen zu Non-linear Wave Equations [104261]ProjectsIn ProcessEXC 2044 - T06: Singularities and PDEs (2026 – 2032)Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC 2044/2, T6EXC 2044 - T07: Field theory and randomness (2026 – 2032)Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC 2044/2, T7CRC 1442 - B06: Einstein 4-manifolds with two commuting Killing vectors (2024 – 2028)Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: SFB 1442/2, B06FinishedEXC 2044 - B1: Smooth, singular and rigid spaces in geometry (2019 – 2025)Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC 2044/1EXC 2044 - C1: Evolution and asymptotics (2019 – 2025)Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC 2044/1EXC 2044 - C4: Geometry-based modelling, approximation, and reduction (2019 – 2025)Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC 2044/1The Black Hole Stability Problem and the Analysis of asymptotically anti-de Sitter spacetimes – BHSandAADS (2020 – 2024)EU-Project Hosted at University the of Münster: EC H2020 - ERC Consolidator Grant | Project Number: 772249Stability and Instability in the Mathematical Analysis of the Einstein equations – StabMAEinstein (2013 – 2018)Project Carried out outside the University Münster: EC FP 7 - ERC Starting Grant | Project Number: 337488Publications SelectionComplete ListSelection2024Collingbourne, Sam C., and Holzegel, Gustav. 2024. “Uniform Boundedness for Solutions to the Teukolsky Equation on Schwarzschild from Conservation Laws of Linearised Gravity.” Communications in Mathematical Physics 405 138. doi: 10.1007/s00220-024-04999-4.2023Holzegel, Gustav, and Shao, Arick. 2023. “The bulk-boundary correspondence for the Einstein equations in asymptotically anti-de Sitter spacetimes.” Preprint. Archive for Rational Mechanics and Analysis 247 (3) 56. doi: 10.1007/s00205-023-01890-9.Graf, Olivier, and Holzegel, Gustav. 2023. “Mode stability results for the Teukolsky equations on Kerr-anti-de Sitter spacetimes.” Classical and Quantum Gravity 40 (4) 045003. doi: 10.1088/1361-6382/acb0ac.Holzegel, Gustav. 2023. “The wave equation on the Schwarzschild spacetime with small non-decaying first-order terms.” Journal of Hyperbolic Differential Equations 20 (4): 825–834. doi: 10.1142/S0219891623500273.2020Holzegel, Gustav, Luk, Jonathan, Smulevici, Jacques, and Warnick, Claude. 2020. “Asymptotic properties of linear field equations in anti-de Sitter space.” Communications in Mathematical Physics 374: 1125–1178. doi: 10.1007/s00220-019-03601-6.2019Dafermos, Mihalis, Holzegel, Gustav, and Rodnianski, Igor. 2019. “Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case |a|≪M.” Annals of PDE 5: Paper No. 2, 118.. doi: 10.1007/s40818-018-0058-8.Dafermos, Mihalis, Holzegel, Gustav, and Rodnianski, Igor. 2019. “The linear stability of the Schwarzschild solution to gravitational perturbations.” Acta Mathematica 222 (1): 1–214. doi: 10.4310/ACTA.2019.v222.n1.a1.2016Holzegel, Gustav. 2016. “Conservation laws and flux bounds for gravitational perturbations of the Schwarzschild metric.” Classical and Quantum Gravity 33 (20): 205004.. doi: 10.1088/0264-9381/33/20/205004.Holzegel, Gustav, and Shao, Arick. 2016. “Unique continuation from infinity in asymptotically anti-de Sitter spacetimes.” Communications in Mathematical Physics 347 (3): 723–775. doi: 10.1007/s00220-016-2576-0.Speck, Jared, Holzegel, Gustav, Luk, Jonathan, and Wong, Willie. 2016. “Stable Shock Formation for Nearly Simple Outgoing Plane Symmetric Waves.” Annals of PDE 2 (2) 10. doi: 10.1007/S40818-016-0014-4.Complete List2024202320222021202020192017201620152014201320122010200720062024Dafermos, M, Holzegel, G, and Rodnianski, I. 2024. “A scattering theory construction of dynamical vacuum black holes.” Journal of Differential Geometry 126 (2): 633–740. doi: 10.4310/jdg/1712344221.Collingbourne, Sam C., and Holzegel, Gustav. 2024. “Uniform Boundedness for Solutions to the Teukolsky Equation on Schwarzschild from Conservation Laws of Linearised Gravity.” Communications in Mathematical Physics 405 138. doi: 10.1007/s00220-024-04999-4.2023Holzegel, Gustav, and Shao, Arick. 2023. “The bulk-boundary correspondence for the Einstein equations in asymptotically anti-de Sitter spacetimes.” Preprint. Archive for Rational Mechanics and Analysis 247 (3) 56. doi: 10.1007/s00205-023-01890-9.Graf, Olivier, and Holzegel, Gustav. 2023. “Mode stability results for the Teukolsky equations on Kerr-anti-de Sitter spacetimes.” Classical and Quantum Gravity 40 (4) 045003. doi: 10.1088/1361-6382/acb0ac.Holzegel, G, and Kauffman, C. 2023. “The wave equation on subextremal Kerr spacetimes with small non-decaying first order terms.” Preprint. arXiv doi: 10.48550/arXiv.2302.06387.Holzegel, Gustav. 2023. “The wave equation on the Schwarzschild spacetime with small non-decaying first-order terms.” Journal of Hyperbolic Differential Equations 20 (4): 825–834. doi: 10.1142/S0219891623500273.2022Dafermos, M, Holzegel, G, Rodnianski, I, and Taylor, M. 2022. “Quasilinear wave equations on asymptotically flat spacetimes with applications to Kerr black holes.” Preprint. arXiv doi: 10.48550/arXiv.2212.14093.2021Dafermos, M, Holzegel, G, Rodnianski, I, and Taylor, M. 2021. “The non-linear stability of the Schwarzschild family of black holes.” Preprint. arXiv doi: 10.48550/arXiv.2104.08222.2020Holzegel, Gustav, Luk, Jonathan, Smulevici, Jacques, and Warnick, Claude. 2020. “Asymptotic properties of linear field equations in anti-de Sitter space.” Communications in Mathematical Physics 374: 1125–1178. doi: 10.1007/s00220-019-03601-6.Holzegel, G, and Kauffman, C. 2020. “A note on the wave equation on black hole spacetimes with small non-decaying first order terms.” Preprint. arXiv doi: 10.48550/arXiv.2005.13644.2019Dafermos, Mihalis, Holzegel, Gustav, and Rodnianski, Igor. 2019. “Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case |a|≪M.” Annals of PDE 5: Paper No. 2, 118.. doi: 10.1007/s40818-018-0058-8.Dafermos, Mihalis, Holzegel, Gustav, and Rodnianski, Igor. 2019. “The linear stability of the Schwarzschild solution to gravitational perturbations.” Acta Mathematica 222 (1): 1–214. doi: 10.4310/ACTA.2019.v222.n1.a1.2017Holzegel, G, and Shao, A. 2017. “Unique continuation from infinity in asymptotically anti-de Sitter spacetimes II: Non-static boundaries.” Communications in Partial Differential Equations 42 (12): 1871–1922. doi: 10.1080/03605302.2017.1390677.2016Holzegel, Gustav. 2016. “Conservation laws and flux bounds for gravitational perturbations of the Schwarzschild metric.” Classical and Quantum Gravity 33 (20): 205004.. doi: 10.1088/0264-9381/33/20/205004.Holzegel, G, Klainerman, S, Speck, J, and Wong, W. 2016. “Small-data shock formation in solutions to 3D quasilinear wave equations: An overview.” Journal of Hyperbolic Differential Equations 13 (1): 1–105. doi: 10.1142/S0219891616500016.Holzegel, Gustav, and Shao, Arick. 2016. “Unique continuation from infinity in asymptotically anti-de Sitter spacetimes.” Communications in Mathematical Physics 347 (3): 723–775. doi: 10.1007/s00220-016-2576-0.Speck, Jared, Holzegel, Gustav, Luk, Jonathan, and Wong, Willie. 2016. “Stable Shock Formation for Nearly Simple Outgoing Plane Symmetric Waves.” Annals of PDE 2 (2) 10. doi: 10.1007/S40818-016-0014-4.2015Holzegel, G, and Warnick, C. 2015. “The Einstein–Klein–Gordon–AdS system for general boundary conditions.” Journal of Hyperbolic Differential Equations 12 (2): 293–342. doi: 10.1142/S0219891615500095.2014Holzegel, G, and Warnick, C. 2014. “Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes.” Journal of Functional Analysis 226 (4): 2436–2485. doi: 10.1016/j.jfa.2013.10.019.Holzegel, G, and Smulevici, J. 2014. “Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes.” Analysis and PDE 7 (5): 1057–1090. doi: 10.2140/apde.2014.7.1057.2013Holzegel, G, and Smulevici, J. 2013. “Decay Properties of Klein-Gordon Fields on Kerr-AdS Spacetimes.” Communications on Pure and Applied Mathematics 66 (11): 1751–1802. doi: 10.1002/cpa.21470.Holzegel, G, and Smulevici, J. 2013. “Stability of Schwarzschild-AdS for the sphericallysymmetric Einstein-Klein-Gordon system.” Communications in Mathematical Physics 317: 205–251. doi: 10.1007/s00220-012-1572-2.2012Holzegel, G. 2012. “Well-posedness for the massive wave equation on asymptotically anti-de Sitter spacetimes.” Journal of Hyperbolic Differential Equations 9 (2): 239–261. doi: 10.1142/S0219891612500087.Holzegel, G, and Smulevici, J. 2012. “Self-gravitating Klein–Gordon fields in asymptotically anti-de Sitter spacetimes.” Annales Henri Poincare 13: 991–1038. doi: 10.1007/s00023-011-0146-8.2010Holzegel, G. 2010. “On the massive wave equation on slowly rotating Kerr-AdS spacetimes.” Communications in Mathematical Physics 294: 169–197. doi: 10.1007/s00220-009-0935-9.Holzegel, G. 2010. “Stability and decay rates for the five-dimensional Schwarzschild metric under biaxial perturbations.” Advances in Theoretical and Mathematical Physics 14 (5): 1245–1372. doi: 10.4310/ATMP.2010.v14.n5.a1.2007Holzegel, G, Schmelzer, T, and Warnick, C. 2007. “Ricci flows connecting Taub–Bolt and Taub–NUT metrics.” Classical and Quantum Gravity 24 (24): 6201–6217. doi: 10.1088/0264-9381/24/24/004.2006Dafermos, M, and Holzegel, G. 2006. “On the nonlinear stability of higher dimensional triaxial Bianchi-{IX} black holes.” Advances in Theoretical and Mathematical Physics 10 (4): 503–523. doi: 10.4310/ATMP.2006.v10.n4.a2.Holzegel, G. 2006. “On the instability of Lorentzian Taub–NUT space.” Classical and Quantum Gravity 23 (11): 3951–3962. doi: 10.1088/0264-9381/23/11/017.Gibbons, GW, and Holzegel, G. 2006. “The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions.” Classical and Quantum Gravity 23 (22): 6459–6478. doi: 10.1088/0264-9381/23/22/022.