WINTER, Prof. Prof. h.c.mult. Dr. Martin


Prof. Dr. Martin Winter
Prof. Dr. Martin Winter
© FZ Jülich

MEET - Münster Electrochemical Energy Technology
Raum: M.1.003
Corrensstraße 46
D-48149 Münster

Tel.: +49 251 83-36033
martin.winter@uni-muenster.de

Für Interview-Anfragen bitte direkt hier melden:
Tel.: +49 251 83-36720
meet.pr@uni-muenster.de

Sekretariat
Tel.: +49 251 83-36031
Fax: +49 251 83-36032
sylvia.zedler@uni-muenster.de

ORCID ID: 0000-0003-4176-5811

Position: Wissenschaftliche Leitung

  • Forschungsschwerpunkte

    Der Chemiker Martin Winter arbeitet und forscht seit 30 Jahren im Bereich der elektrochemischen Energiespeicherung und Energiewandlung. Sein Fokus liegt auf der Entwicklung neuer Materialien, Komponenten und Zelldesigns für Lithium-Ionen-, Lithiummetall-Batterien und alternativen Batteriesystemen.

  • Akademische Ausbildung

    • Seit 2016: Professur für „Materialwissenschaften, Energie und Elektrochemie" am Institut für Physikalische Chemie, Universität Münster
    • Seit 2015: Gründungsdirektor des Helmholtz-Institut Münster HI MS „Ionics in Energy Storage“
    • 2013-2016: Professur für „Angewandte Materialwissenschaften zur elektrochemischen Energiespeicherung und Energiewandlung" am Institut für Physikalische Chemie, Universität Münster
    • 2008-2012: Stiftungsprofessur (gesponsort durch Volkswagen, Evonik Industries und Chemetall (heute Albemarle)) für „Angewandte Materialwissenschaften zur elektrochemischen Energiespeicherung und Energiewandlung" am Institut für Physikalische Chemie, WWU Münster
    • 2007: Universitäts-Professor und Leiter des Instituts für Chemische Technologie Anorganischer Stoffe der TU Graz (Österreich)
    • 1999: Habilitation
    • 1996: Postdoktorand am Institut für Chemische Technologie Anorganischer Stoffe der TU Graz (Österreich)
    • 1995: Promotion in den Naturwissenschaften (Prof. Jürgen Besenhard), Postdoktorand im Paul Scherrer Institut, Villigen (Schweiz)
    • 1993: Studium der Chemie an der Universität Münster
  • Koordinations- und Leitungsaktivitäten

    (Auswahl)

    • Seit 07/2020: Initiator und Sprecher der Internationalen Forschungsschule BACCARA für 90 internationale Doktorand*innen an der Universität Münster

    • Seit 03/2020: Mitglied des Executive Boards der Fraunhofer-Einrichtung Forschungsfertigung Batteriezelle FFB (800 Mio. € Förderung)

    • Seit 04/2019: Koordinator: Deutsch-Amerikanische Batteriekooperation (BMBF und DOE)
    • Seit 01/2019: Gründungsmitglied: Nationale Plattform Zukunft der Mobilität (NPM) der Bundesregierung
    • Seit 09/2018: Stellv. Koordinator: Kompetenzcluster Festbatt (BMBF)
    • Seit 09/2017: Initiator und Koordinator der Deutsch-Taiwanesische Batteriekooperation (BMBF und NTSC, Taiwan)
    • Seit 10/2015: Sprecher der Projektallianz „Batterie 2020“ (BMBF)
    • Seit 03/2014: Vorstandsmitglied des Kompetenznetzwerks Lithium-Ionen-Batterien
    • Seit 05/2013: Leiter des wissenschaftlichen Beirats des Batterieforum Deutschland
    • 2014: Initiator der Deutsch-Japanischen Kooperation zu fortschrittlichen Sekundärbatterien
    • 2011: Initiator der Israelisch-Deutschen Kooperation im Bereich fortschrittlicher Batterien
    • 2010 - 2018: Mitglied der Nationalen Plattform Elektromobilität (NPE), Beratung der Bundeskanzlerin und der deutschen Bundesregierung in Batterietechnologie
    • 2009 - 2013: Sprecher der Innovationsallianz LIB2015 des BMBF
    • 2009 - 2011 Sprecher des Kompetenzverbunds-Nord „Elektrochemie & Elektromobilität” (BMBF)
    • 12/2008 Koordinator der Taskforce „Batterietechnologie” im Rahmen des nationalen Entwicklungsplans Elektromobilität; verantwortlich für die Planung der deutschen Forschungs- und Entwicklungsstrategie für elektrische Antriebe
    • 2008 - 2013 Chair Elect, Chair and Immediate Past Chair der Division 3 „Electrochemical Energy Conversion and Storage” der „International Society of Electrochemistry“ (ISE)
    • seit 2008: Mitglied des Vorstands des „International Meeting on Lithium Batteries“ (IMLB)

    • 2007 - 2010 Vorstandsmitglied der Gesellschaft Deutscher Chemiker, Fachgruppe Elektrochemie
  • Mitgliedschaften

    • Deutsche Akademie der Technikwissenschaften (acatech)
    • International Society of Electrochemistry (ISE)
    • The Electrochemical Society (ECS)
    • Deutsche Bunsen-Gesellschaft für Physikalische Chemie (DBG)
    • Materials Research Society (MRS)
    • Gesellschaft Deutscher Chemiker (GDCh)
    • Deutscher Hochschulverband (DHV)
    • Universitätsgesellschaft Münster
    • Nordrhein-Westfälische Akademie der Wissenschaften und der Künste

     

  • Auszeichnungen

    (Auswahl)

    • 2024: NAATBatt Lifetime Achievement Award
    • 2023: Ernennung zum MRS Fellow durch die Materials Research Society (MRS)
    • 2022: Henry B. Linford Award der Electrochemical Society (ECS)
    • 2021: Korrespondierendes Mitglied der Slovenian Academy of Engineering
    • 2021: Einheitsbotschafter des Landes Nordrhein-Westfalen
    • 2020: Alessandro Volta Medaille der Electrochemical Society (ECS)
    • 2018: Bundesverdienstkreuz 1. Klasse
    • 2017: Ehrenprofessur der National Taiwan Tech University of Science and Technology (NTUST)
    • 2016: Braunschweiger Forschungspreis
    • 2015: Carl Wagner Memorial Award der Electrochemical Society (ECS)
    • 2015: Battery Division Research Award der ECS
    • 2015: Fellow der International Society of Electrochemistry (ISE)
    • 2015: Technology Award der International Battery Materials Association (IBA)
    • 2013: Fellow der ECS
    • 2012: MEET Batterieforschungszentrum (anerkannt als ein “Ort des Fortschritts”) durch das Land Nordrhein-Westfalen
    • 2003: Kardinal Theodor Innitzer-Förderpreis im Bereich Naturwissenschaften, Österreich
    • 2002: Battery Division Technology Award of ECS
    • 2002: Josef-Krainer-Würdigungspreis für Chemische Technologie, Österreich
    • 2001: Research Award der IBA
    • 1997: Dissertationspreis der Fachgruppe „Angewandte Elektrochemie“ der Gesellschaft Deutscher Chemiker (GDCh) für die beste Doktorarbeit in den Jahren 1995-1997
    • 1995: Ehrenurkunde der Westfälischen Wilhelms-Universität Münster für ein herausragendes Promotionsexamen
 
  • Publikationen

    • , , , , und . . „Front Cover - Novel quantification method for lithium ion battery electrolyte solvents in aqueous recycling samples using SPE/GC-FID.Advanced Energy and Sustainability Research, Nr. 6 (2) 2570011. doi: 10.1002/aesr.202570011.
    • , , , , und . . „Analysis of Deposition Patterns and Influencing Factors of Lithium and Transition Metals Deposited on Lithium Ion Battery Graphitic Anodes by LA-ICP-MS.Spectroscopy, Nr. 40 (1): 3033. doi: 10.56530/spectroscopy.ft6765o3.
    • , , , und . . „Ein Überblick über Analysemethoden im Batterierecycling - Auf dem Weg zu einem nachhaltigen und wirtschaftlich tragfähigen Recycling.G.I.T Laborfachzeitschrift, Nr. 2
    • , , , , , , , und . . „ToF-SIMS Sputter Depth Profiling of Interphases and Coatings on Lithium Metal Surfaces.COMMUNICATIONS CHEMISTRY, Nr. 8 31. doi: 10.1038/s42004-025-01426-0.

    • , , , , , , , , und . . „Interphase design of LiNi0.6Mn0.2Co0.2O2 as positive active material for lithium ion batteries via Al2O3 coatings using magnetron sputtering for improved performance and stability.Batteries & Supercaps, Nr. Early View: e2023005. doi: 10.1002/batt.202300580.
    • , , , , und . . „SPE/GC-FID: Developing a Quantitative Method for Analyzing LIB Electrolyte Residues in Industrial Wastewaters.“ präsentiert auf der BACCARA Power Day 2024, Münster
    • , , , , , , , , , und . . „Systematic “Apple-to-Apple” Comparison of Single-Crystal and Polycrystalline Ni-Rich Cathode Active Materials: From Comparable Synthesis to Comparable Electrochemical Conditions.Small structures, Nr. 7 2400119. doi: 10.1002/sstr.202400119.
    • . . „Fluoroethylene Carbonate: Bis(2,2,2,) Trifluoroethyl Carbonate as High Performance Electrolyte Solvent Blend for High Voltage Application in NMC811|| Silicon Oxide-Graphite Lithium Ion Cells.Small Methods, Nr. online first 2400063. doi: 10.1002/sstr.202400063.
    • , , , , und . . „ETV-ICP-OES as a versatile technique for the elemental analysis of lithium ion batteries.“ präsentiert auf der Advanced Battery Power Conference , Münster
    • . . „Tunable LiZn-Intermetallic Coating Thickness on Lithium Metal and Its Effect on Morphology and Performance in Lithium Metal Batteries.Advanced Materials Interfaces, Nr. 2300836 doi: 10.1002/admi.202300836.
    • , , , , , und . . „Wet Mechanical Treatment of Spent Lithium Ion Batteries – Analytical Insights into Contaminated Process Water.“ präsentiert auf der Advanced Battery Power, Münster
    • , , , , , , , , , , und . . „Lithium-ion battery cell formation: status and future directions towards a knowledge-based process design.Energy and Environmental Science, Nr. 17 (8): 26862733. doi: 10.1039/D3EE03559J.
    • , , , , , , und . . „Pre-lithiation of Si electrodes using physical vapor deposition.“ präsentiert auf der Advanced Battery Power, Münster
    • , , , , , , und . . „Effect of Lithium Vapor Deposition on the Performance of High Capacity Silicon Electrodes.“ präsentiert auf der Advanced Automotive Battery Conference (AABC Europe), Strasbourg
    • , , , , , , , , , , und . . „The InnoRec Process: A Comparative Study of Three Mainstream Routes for Spent Lithium-ions Battery Recycling Based on the Same Feedstock.Sustainability, Nr. 16 (9) 3876. doi: 10.3390/su16093876.
    • , , , und . . „Additive bei Hochvolt-Anwendungen in Lithium-Ionen-Batterien - Aufklärung von Verhalten und Mechanismen mit Hilfe Flüssigchromatographie-Massenspektrometrie.chrom+food FORUM, Nr. 04
    • , , , , , , , , , , , , und . . „Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes.Advanced Energy Materials, Nr. 14: 2400840. doi: 10.1002/aenm.202400840.
    • , , , , , , , und . . „Influence of Vinylene Carbonate and Fluoroethylene Carbonate on Open Circuit and Floating SoC Calendar Aging of Lithium-Ion Batteries.Batteries, Nr. 10 (8) 275. doi: 10.3390/batteries10080275.
    • , , , , und . . „Chromatography in battery recycling.Wiley Analytical Science Magazine, Nr. 03: 1520.
    • , , , , und . . „Introduction to solid-state battery research.Wiley Analytical Science Magazine, Nr. 4: 2126.
    • , , , , und . . „Einführung in die Feststoffbatterieforschung.G.I.T Laborfachzeitschrift, Nr. 5: 3235.
    • , , , , , , , , und . . „Analyzing the effect of electrolyte quantity on the aging of lithium-ion batteries.Advanced Science, Nr. 11 (39) 2405897. doi: 10.1002/advs.202405897.
    • , , , , , , und . . „Vacuum thermal evaporation in battery research: insights and case studies.“ präsentiert auf der 22nd International Meeting on Lithium Batteries (22nd IMLB), Hongkong
    • , , und . . „Practical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?Journal of Solid State Electrochemistry, Nr. 4 doi: 10.1007/s10008-023-05792-4.
    • , , , und . . „Lithium batteries - Secondary systems – Lithium-ion battery | Pre-lithiation in lithium ion batteries – An overview.“ In Encyclopedia of Electrochemical Power Sources, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, herausgegeben von Jürgen Garche. Amsterdam: Elsevier. doi: 10.1016/B978-0-323-96022-9.00298-X.
    • , , , , , , , , und . . „Radical Polymer-based Positive Electrodes for Dual-Ion Batteries: Enhancing Performance with γ-Butyrolactone-based Electrolytes.ChemSusChem, Nr. 17 e202400626. doi: 10.1002/cssc.202400626.
    • , , , , , , , , und . . „Toward High Specific Energy and Long Cycle Life Li/Mn-Rich Layered Oxide || Graphite Lithium-Ion Batteries via Optimization of Voltage Window.Advanced Energy and Sustainability Research, Nr. 5 (8) 2400129. doi: 10.1002/aesr.202400129.
    • , , , , , , , und . . „Enabling Aqueous Processing of Ni-Rich Layered Oxide Cathodes via Systematic Modification of Biopolymer (Polysaccharide)-Based Binders.Advanced Energy and Sustainability Research, Nr. online first 2400117. doi: 10.1002/aesr.202400117.
    • , , , , , , , und . . „Ultrahigh Ni-Rich (90%) Layered Oxide-Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material.SMALL SCIENCE, Nr. online first 2400135. doi: 10.1002/smsc.202400135.
    • , , und . . „Impact of Different Amounts of Lithium Plating on the Thermal Safety of Lithium Ion Cells.Journal of The Electrochemical Society, Nr. 171 (7): 070538070538. doi: 10.1149/1945-7111/ad637a.
    • , , , , , , , , , , , , und . . „Sulfonyl diimidazole to stabilize fluoroethylene carbonate-based SEI in high-voltage Li ion cells with a SiOx containing negative electrode.Energy Storage Materials, Nr. 72: 103735103735. doi: 10.1016/j.ensm.2024.103735.
    • , , , , und . . „Determination of polysulfide anions and molecular sulfur via coupling HPLC with ICP-MS.Journal of Analytical Atomic Spectrometry, Nr. 39: 24802487. doi: 10.1039/d4ja00231h.
    • , , , , , , , , und . . „Non-aqueous battery electrolytes: high-throughput experimentation and machine learning-aided optimization of ionic conductivity.Journal of Materials Chemistry A, Nr. 12 (30): 1912319136. doi: 10.1039/d3ta06249j.
    • , , , , und . . „Novel quantification method for lithium ion battery electrolyte solvents in aqueous recycling samples using SPE/GC-FID.Advanced Energy and Sustainability Research, Nr. 6 (2) 2400311. doi: 10.1002/aesr.202400311.
    • , , , , , , , und . . „The role of lithium metal electrode thickness on cell safety.Cell Reports Physical Science, Nr. 6 (1) 102354. doi: 10.1016/j.xcrp.2024.102354.
    • , , , , , und . . „Detailed Study of Electrolyte Residues in Shredded Lithium Ion Battery Recyclate.“ präsentiert auf der BACCARA Power Day 2024, Münster
    • , , , und . . „Dependency of sample introduction on the analysis of electrolyte residues in LIB recycling material via GC-MS.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Freising
    • , , , und . . „How the Sample Introduction Influences the Result: Identification of Electrolyte Residues in LIB Recycling Material via GC-MS.“ präsentiert auf der Advanced Battery Power Conference, Münster
    • , , , und . . „Quantitative Analysis of Volatile Electrolyte Residues in Blackmass Using Thermal Desorption-GC-MS/FID.“ präsentiert auf der Batteries Event, Lyon
    • , , , , , , und . . „PRIMARY SEI ON LITHIUM METAL ELECTRODES.“ präsentiert auf der International Battery Association (IBA), Halifax
    • , , , , , und . . „Characterization of process water from lithium ion battery recycling.“ präsentiert auf der International Battery Association (IBA), Halifax
    • , , und . . „Advanced Battery Power Conference.“ präsentiert auf der Advanced Battery Power Conference, Münster
    • , , , und . . „MANUFACTURING DEFECTS IN LITHIUM ION BATTERIES AND THEIR SAFETY RISKS.“ präsentiert auf der Annual Conference on Mass Spectrometry Imaging and Integrated Topics IMSIS, Münster
    • , , , , und . . „Development of a surface cleaning method for ToF-SIMS analysis of Battery Materials.“ präsentiert auf der Annual Conference on Mass Spectrometry Imaging and Integrated Topics IMSIS, Münster
    • , , , , , , , und . . „ToF-SIMS Investigation of Solid-State Electrolyte Degradation Behavior Against Different Conducting Agents.“ präsentiert auf der Solid-State Batteries VI, Gießen
    • , , , , , , und . . „CHROMATOGRAPHIC INVESTIGATIONS OF DEGRADATION PRODUCTS FOR FLUOROETHYLENE-CARBONATE BASED ELECTROLYTES.“ präsentiert auf der Advanced Battery Power Conference, Münster
    • , , , , , , und . . „CHROMATOGRAPHIC INVESTIGATIONS OF DEGRADATION PRODUCTS FOR FLUOROETHYLENE-CARBONATE BASED ELECTROLYTES.“ präsentiert auf der The 15th International Conference on Advanced Lithium Batteries for Automotive Applications, Montreal
    • , , , , , und . . „Recycling of Electrolyte from Lithium Ion Batteries: A Study on Supercritical Carbon Dioxide Extraction with Co-solvents.“ präsentiert auf der Advanced Battery Power Conference, Münster
    • , , , , und . . „Quantification of the State-Of-Charge Heterogeneity of NMC Cathode Materials using SP-ICP-OES.“ präsentiert auf der Advanced Battery Power Conference, Münster
    • , , , , und . . „Investigation of the charge state of lithium ion battery active materials by means of single particle ICP-OES.“ präsentiert auf der 11th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , und . . „Analysis of plant material from phytoremediation processes of soils contaminated with lithium ion battery materials using plasma-based methods.“ präsentiert auf der 11th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „HYPHENATING HPLC AND ICP-MS: THE CASE OF POLYSULFIDE ANIONS.“ präsentiert auf der 11th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „DIRECT POLYSULFIDES QUANTIFICATION IN THE ELECTROLYTES OF LI-S BATTERIES USING HPLC-ICP-MS TECHNIQUE.“ präsentiert auf der Advanced Battery Power Conference, Münster
    • , , , und . . „HYPHENATING HPLC AND ICP-MS FOR POLYSULFIDE SPECIATION IN THE ELECTROLYTES OF LI-S BATTERIES.“ präsentiert auf der BASF Summer Course, Ludwigshafen
    • , , , und . . „DIRECT POLYSULFIDES QUANTIFICATION IN THE ELECTROLYTES OF LI-S BATTERIES USING HPLC-ICP-MS TECHNIQUE.“ präsentiert auf der 11th Workshop “Lithium-Sulfur Batteries”, Dresden
    • , , , , und . . „OPTIMIZING LITHIUM ION BATTERY RECYCLING: ELECTROLYTE AND ORGANIC BINDER EXTRACTION VIA SUPERCRITICAL CARBON DIOXIDE.“ präsentiert auf der Advanced Battery Power Conference, Münster
    • , , , , , und . . „EXTENDING THE LIFE OF LITHIUM IRON PHOSPHATE (LFP) CATHODE ACTIVE MATERIAL: A SECOND LIFE APPROACH.“ präsentiert auf der Batteries Event, Lyon
    • , , , , , und . . „SECOND LIFE FOR LITHIUM IRON PHOSPHATE (LFP) CATHODES: A SUSTAINABLE APPROACH TO MATERIAL LIFESPAN EXTENSION.“ präsentiert auf der The 15th International Conference on Advanced Lithium Batteries for Automotive Applications, Montreal

    • , , , , , , , , und . . „Al‐doped ZnO‐Coated LiNi1/3Mn1/3Co1/3O2 Powder Electrodes: The Effect of a Coating Layer on The Structural and Chemical Stability of The Electrode / Electrolyte Interface.Advanced Materials Interfaces, Nr. 11 (2) doi: 10.1002/admi.202300668.
    • , , , , und . . „Method development for direct elemental analysis of lithium ion battery materials by means of ETV-ICP-OES.“ präsentiert auf der 7th PhD Seminar of the German Working Group for Analytical Spectroscopy (DAAS) in the GDCh Division of Analytical Chemistry, Berlin
    • , , , , , und . . „Comprehensive Characterization of Process Water in Lithium-Ion Battery Recycling - an Analytial Guide.“ präsentiert auf der ABAA - 14th International Conference on Advanced Lithium Batteries for Automobile Applications, Ho-Chi-Minh-City
    • , , , , , , , und . . „The Mechanism of Lithium Deposition in Open-Porous 3D Copper Micro-Foam Electrodes for Zero-Excess Lithium Metal Batteries (ZELMBs).“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , , , und . . „The influence of LiNO3 on the electrochemical performance of anode-free LMBs with carbonate-based electrolytes.“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , und . . „Defining Aging Marker Molecules: Targeted Identification of Electrolyte Additives for Advanced Reverse-Engineering.“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , , und . . „Lithium ion battery electrolyte degradation of NMC622||AG and NMC811||AG+SiOx cells using chromatographic analytical techniques.“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , und . . „Aging Behavior of Sulfur-Containing Electrolyte Additives: Advanced Reverse-Engineering for Post-Mortem Analysis of Lithium-Ion Batteries.“ präsentiert auf der Baccara Power Day, Münster
    • , , und . . „Investigating the phytoremediation potential of brown mustard for soils contaminated with Li-ion battery materials.“ präsentiert auf der Baccara Power Day, Münster
    • , , , , , und . . „Suppressing gas evolution in Li4Ti5O12 -based pouch cells by high temperature formation.Journal of Power Sources, Nr. 575 doi: 10.1016/j.jpowsour.2023.233207.
    • , , , , , , , und . „Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries.Journal of Materials Chemistry A, Nr. 11 (33): 1782817840. doi: 10.1039/D3TA04060G.
    • , , , , , , , , , , , , , und . . „Impact of exposing lithium metal to monocrystalline vertical silicon nanowires for lithium-ion microbatteries.Communications Materials, Nr. 4 (1) 58. doi: 10.1038/s43246-023-00385-0.
    • . . „Lithium Metal Thin Films Obtained by Vacuum Thermal Evaporation and Calendering.“ präsentiert auf der European Advanced Automotive Battery Conference (13th AABC Europe 2023), Mainz
    • , , , , , und . . „Defining Aging Marker Molecules of Sultone-based Electrolyte Additives for Targeted Identification in Spent Lithium Ion Batteries.“ präsentiert auf der Advanced Battery Power, Aachen
    • , , , und . . „State-of-charge of individual active material particles in lithium ion batteries: a perspective of analytical techniques and their capabilities.Physical Chemistry Chemical Physics, Nr. 25: 2427824286. doi: 10.1039/D3CP02932H .
    • , , , , , und . . „Comprehensive thermal analysis of surface films formed on lithium ion battery negative electrodes.“ präsentiert auf der Advanced Battery Power , Aachen
    • , , , , und . . „Investigating the Electrolyte-volume-dependent Aging of Lithium-ion Batteries by means of Instrumental Analytical Techniques.“ präsentiert auf der Advanced Battery Power, Aachen
    • , , , , , , , , , und . . „High-Voltage Instability of Vinylene Carbonate (VC): Impact of Formed Poly-VC on Interphases and Toxicity.Advanced Science, Nr. 11 (1) 2305282. doi: 10.1002/advs.202305282.
    • , , , , , , , und . . „The Influence of Polyethylene Oxide Degradation in Polymer-Based Electrolytes for NMC and Lithium Metal Batteries.Advanced Energy and Sustainability Research, Nr. 4 (12) 2300153. doi: 10.1002/aesr.202300153.
    • , , , , und . . „Formation and Suppression of Toxic Organofluorophosphates in Lithium Ion Batteries: Making the High-Voltage Additive Lithium Difluorophosphate Viable for Commercial Applications.“ Beitrag präsentiert auf der 243rd ECS Meeting, Boston doi: 10.1149/MA2023-012645mtgabs.
    • , , , , , und . . „Analysis of the Decomposition of Sulfur-Based Electrolyte Additives in Spent LiNi0.6Co0.2Mn0.2O2||AG Cells.“ Beitrag präsentiert auf der 243rd ECS Meeting , Boston doi: 10.1149/MA2023-012649mtgabs.
    • , , , , , , , , , , , und . . „Rethinking the Role of Formerly Sub-Sufficient Industrial/Synthesized SEI Additive Compounds - a New Perspective.“ Beitrag präsentiert auf der 243rd ECS Meeting, Boston doi: 10.1149/MA2023-0172753mtgabs.
    • , , , , und . . „Chromatographie im Batterierecycling - Auf dem Weg zur nachhaltigen Energiewirtschaft.G.I.T Laborfachzeitschrift, Nr. 11/12: 3033.
    • . . „Pre-Lithiation of Silicon-Based Anode Materials: Concepts and Realization.“ Beitrag präsentiert auf der 244th ECS Meeting, Gothenburg doi: 10.1149/MA2023-022149mtgabs.
    • , , , , , , , , , , , und . . „Cover Page - Molecular-Cling-Effect of Fluoroethylene Carbonate Characterized via Ethoxy(pentafluoro)cyclotriphosphazene on SiOx/C Anode Materials – A New Perspective for Formerly Sub-Sufficient SEI Forming Additive Compounds.Small, Nr. 19 (44) doi: 10.1002/smll.202370362.
    • , , , , , , , , und . . „Quantifying the Inactivation of Battery Electrode Material Particles.“ Beitrag präsentiert auf der 244th ECS Meeting October, Göteburg doi: 10.1149/MA2023-022206mtgabs.
    • , , , und . . „Identification and Quantification of Lithium Ion Battery Electrolyte Residues in Blackmass Via Headspace-GC-MS/FID.“ Beitrag präsentiert auf der 244th ECS Meeting October, Göteburg doi: 10.1149/MA2023-02653058mtgabs.
    • , , , , , und . . „Determining the Origin of Lithium Inventory Loss in NMC622|| Graphite Lithium Ion Cells Using an LiPF6-Based Electrolyte.Journal of The Electrochemical Society, Nr. 170 (1) 010530. doi: 10.1149/1945-7111/acb401.
    • , , , , , , , , und . . „Experimental Considerations of the Chemical Prelithiation Process via Lithium Arene Complex Solutions on the Example of Si-Based Anodes for Lithium-Ion Batteries.Advanced Energy and Sustainability Research, Nr. 5 doi: 10.1002/aesr.202300177.
    • , , und . . „Perspective on the mechanism of mass transport-induced (tip-growing) Li dendrite formation by comparing conventional liquid organic solvent with solid polymer-based electrolytes.Journal of Electrochemical Science and Technology, Nr. 13 (5) doi: 10.5599/jese.1724 .
    • , , , , , und . . „Transient Self-Discharge after Formation in Lithium-Ion Cells: Impact of State-of-Charge and Anode Overhang.Journal of The Electrochemical Society, Nr. 170 (8): 080524. doi: 10.1149/1945-7111/acf164.
    • , , , , , und . . „Revealing the Impact of Different Iron-Based Precursors on the ‘Catalytic’ Graphitization for Synthesis of Anode Materials for Lithium Ion Batteries.ChemElectroChem, Nr. 10 (5) e202201073. doi: 10.1002/celc.202201073.
    • , , , , , , , , , und . . „Failure mechanism of LiNi0.6Co0.2Mn0.2O2 cathodes in aqueous/non-aqueous hybrid electrolyte.Journal of Materials Chemistry A, Nr. 11 (7): 36633672. doi: 10.1039/d2ta08650f.
    • , , , , , , , , , und . . „Coordinating Anions “to the Rescue” of the Lithium Ion Mobility in Ternary Solid Polymer Electrolytes Plasticized With Ionic Liquids.Advanced Energy Materials, Nr. 13 (1) 2202789. doi: 10.1002/aenm.202202789.
    • , , , , , und . . „Building Bridges: Unifying Design and Development Aspects for Advancing Non-Aqueous Redox-Flow Batteries.Batteries, Nr. 9 (1) 4. doi: 10.3390/batteries9010004.
    • , , , , , , , , , , , , und . . „On the direct correlation between the copper current collector surface area and ‘dead Li’ formation in zero-excess Li metal batteries.Journal of Materials Chemistry A, Nr. 11 (14): 77247734. doi: 10.1039/d3ta00097d.
    • , , , , , , , , und . . „Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries.iScience, Nr. 26 (9) 107517. doi: 10.1016/j.isci.2023.107517.
    • , , und . . „Recycling and Analysis of Lithium Ion Battery Electrolyte via Supercritical Fluid Extraction.“ präsentiert auf der Advanced Battery Power Conference, Aachen
    • , , , und . . „Identification of aging phenomena emerging in lithium-sulfur-battery electrolytes via RPLC-IT-TOF-MS.“ präsentiert auf der Advanced Battery Power Conference, Aachen
    • , , , , und . . „Implementation of Single Particle ICP-OES to Quantify the State-of-Charge of Lithium-Ion Battery Active Materials.“ präsentiert auf der 7th PhD Seminar of the German Working Group for Analytical Spectroscopy (DAAS) in the GDCh Division of Analytical Chemistry, Berlin
    • , , und . . „Machine learning-assisted prediction of lithium-ion batteries lifetime.“ präsentiert auf der AI Summer School 2023 , Wien
    • , , , , und . . „Effects of Supercritical Fluid Extraction on the Recyclability of Lithium Iron Phosphate Batteries and their subsequent Regeneration Possibilities.“ präsentiert auf der Advanced Battery Power Conference, Aachen
    • , , , und . . „Front Cover - Method Development for the Investigation of Mn2+/3+, Cu2+, Co2+ and Ni2+ with Capillary Electrophoresis Hyphenated to Inductively Coupled Plasma – Mass Spectrometry.Electrophoresis, Nr. 41 (1-2) doi: 10.1002/elps.202370011.
    • , , , , , , und . . „Accessing the primary SEI on lithium metal – A method for low concentrated compound analysis.ChemSusChem, Nr. 16 (9) e202201912. doi: 10.1002/cssc.202201912.
    • , , , , , , , , , und . . „Effective SEI Formation via Phosphazene-Based Electrolyte Additives for Stabilizing Silicon-Based Lithium-Ion Batteries.Advanced Energy Materials, Nr. 13 (26) doi: 10.1002/aenm.202203503.
    • , , , , , , , , und . . „Immobilizing Poly(vinylphenothiazine) in Ketjenblack-Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material.Advanced Functional Materials, Nr. 33 (9) 2210512. doi: 10.1002/adfm.202210512.
    • , , , , , , und . . „Front Cover - Accessing the primary SEI on lithium metal – A method for low concentrated compound analysis.ChemSusChem, Nr. 16 (9) e202300496. doi: 10.1002/cssc.202300496.
    • , , , , , und . . „Back Cover - Defining Aging Marker Molecules of 1,3-Propane Sultone for Targeted Identification in Spent LiNi0.6Co0.2Mn0.2O2||AG Cells.Energy Technology, Nr. 11 (5) 2370054. doi: 10.1002/ente.202370054.
    • , , , , , , , , , , , und . . „Molecular-Cling-Effect of Fluoroethylene Carbonate Characterized via Ethoxy(pentafluoro)cyclotriphosphazene on SiOx/C Anode Materials – A New Perspective for Formerly Sub-Sufficient SEI Forming Additive Compounds.Small, Nr. 19 (44) 2302486. doi: 10.1002/smll.202302486.
    • , , , , , , , , , und . . „Cover Page - Effective SEI Formation via Phosphazene-Based Electrolyte Additives for Stabilizing Silicon-Based Lithium-Ion Batteries.Advanced Energy Materials, Nr. 13 (26) doi: 10.1002/aenm.202370113.

    • . . „Insights in utilizing NiCo2O4/Co3O4 nanowires as anode material in Li-ion batteries.Batteries & Supercaps, Nr. 6 (3) e202200465. doi: 10.1002/batt.202200465.
    • , , , , , , , und . . „Enabling Aqueous Processing of Ni‐Rich Layered Oxide Cathode Materials by Addition of Lithium Sulphate.ChemSusChem, Nr. 15 (23) e202202161. doi: 10.1002/cssc.202202161.
    • . . „Revealing the Role, Mechanism, and Impact of AlF3 Coatings on the Interphase of Silicon Thin Film Anodes (Adv. Energy Mater. 41/2022).Advanced Energy Materials, Nr. 12 2270169. doi: 10.1002/aenm.202270169.
    • , , , , , , und . . „Single-crystal’ Ni-rich layered oxide cathodes for lithium ion batteries – a fair performance comparison between different particle sizes.“ präsentiert auf der Swiss Battery Days, Zürich
    • , , , , , , , , , , und . . „Revealing the Role, Mechanism, and Impact of AlF3 Coatings on the Interphase of Silicon Thin Film Anodes.Advanced Energy Materials, Nr. 12 (41) 2201859. doi: 10.1002/aenm.202201859.
    • , , , , , , , und . . „Practical Implementation of Magnetite-Based Conversion-Type Negative Electrodes via Electrochemical Prelithiation.ACS applied materials & interfaces, Nr. 14 (30): 3466534677. doi: 10.1021/acsami.2c06328.
    • , , , , , , und . . „Comparative Study on Chitosans as Green Binder Materials for LiMn2O4 Positive Electrodes in Lithium Ion Batteries.ChemElectroChem, Nr. xxx e202200600. doi: 10.1002/celc.202200600.
    • , , , , , , und . . „Opportunities and Challenges of Li2C4O4 as Pre-Lithiation Additive for the Positive Electrode in NMC622||Silicon/Graphite Lithium Ion Cells.Advanced Science, Nr. 9 (24) 2201742. doi: 10.1002/advs.202201742.
    • , , , und . . „Quasi in Situ Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy on High-Energy and High-Power Negative Active Materials for Lithium Ion Batteries.“ präsentiert auf der IMLB 2022 - 21st International Meeting on Lithium Batteries, Sydney
    • , , , , , und . . „Negative Sulfur-Based Electrodes and their Application in Battery Cells: Dual-Ion Batteries as an Example.Journal of Solid State Electrochemistry, Nr. 26: 20772088. doi: 10.1007/s10008-022-05215-w.
    • , , , und . . „Finding the Sweet Spot: The Effect of a Smaller Operating Voltage Window on Performance and Lifetime of Silicon Nanoparticle Anodes.“ präsentiert auf der AABC Europe 2022, Mainz
    • , , , , , , , , , und . . „Cover Picture "Suppressing Electrode Crosstalk and Prolonging Cycle Life in High-Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes".ChemElectroChem, Nr. 9 (13) e202200579. doi: 10.1002/celc.202200579.
    • , , , , , , , , , , , , und . . „Effective stabilization of NCM622 cathodes in aqueous/non-aqueous hybrid electrolytes by adding a phosphazene derivate as co-solvent.Journal of Power Sources, Nr. 541 231670. doi: 10.2139/ssrn.4076090.
    • , , , , , , , , , und . . „Pre-Lithiation of Silicon Anodes by Thermal Evaporation of Lithium for Boosting the Energy Density of Lithium Ion Cells (Adv. Funct. Mater. 22/2022).Advanced Functional Materials, Nr. 32 (22) 2270127. doi: 10.1002/adfm.202270127.
    • , , , , , , und . . „Front Cover Picture, “Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassium-Ion Batteries (Batteries & Supercaps 06/2022)”.Batteries & Supercaps, Nr. 5 (6) e202200207. doi: 10.1002/batt.202200207.
    • , , , , , , und . . „Cover Profile, “Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassium-Ion Batteries”.Batteries & Supercaps, Nr. 5 (6) e202200206. doi: 10.1002/batt.202200206.
    • , , , , , , , , , und . . „Suppressing Electrode Crosstalk and Prolonging Cycle Life in High-Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes.ChemElectroChem, Nr. 9 (13) e202200469. doi: 10.1002/celc.202200469.
    • , , , , , , , , , , und . . „Advanced Dual-Ion Batteries with High-Capacity Negative Electrodes Incorporating Black Phosphorus.Advanced Science, Nr. 9 (20): 2201116. doi: 10.1002/advs.202201116.
    • , , , , , , , und . . „Improved Capacity Retention for a Disordered Rocksalt Cathode via Solvate Ionic Liquid Electrolytes.Batteries & Supercaps, Nr. 5 (7): e202200075. doi: 10.1002/batt.202200075.
    • , , und . . „Quasi In Situ Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy during Cyclic and Calendaric Aging of Silicon Nanoparticle Anodes.“ präsentiert auf der Advanced Battery Power, Münster
    • , , , , , und . . „Investigation of Lithium Polyacrylate Binders for Aqueous Processing of Ni-rich Lithium Layered Oxide Cathodes for Lithium Ion Batteries.ChemSusChem, Nr. 15 (11): e202200401. doi: 10.1002/cssc.202200401.
    • , , , , , , , , , und . . „Pre-lithiation of Silicon Anodes by Thermal Evaporation of Lithium for Boosting the Energy Density of Lithium Ion Cells.Advanced Functional Materials, Nr. 32 (22): 2201455. doi: 10.1002/adfm.202201455.
    • , , , , , , und . . „Cover Picture "Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries (Adv. Energy Mater. 8/2022)".Advanced Energy Materials, Nr. 12 (8): 2270029. doi: 10.1002/aenm.202270029.
    • , , , , , , und . . „Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassium-Ion Batteries.Batteries & Supercaps, Nr. 5 (6): e202200045. doi: 10.1002/batt.202200045.
    • , , , , , , und . . „Insights into the Impact of Activators on the ‘Catalytic’ Graphitization to Design Anode Materials for Lithium Ion Batteries.ChemElectroChem, Nr. 9 (21) e202200819. doi: 10.1002/celc.202200819.
    • , , , , , , , , , , , , und . . „Simultaneous Formation of Interphases on both Positive and Negative Electrodes in High-Voltage Aqueous Lithium-Ion Batteries.Small, Nr. 18 (5) 2104986. doi: 10.1002/smll.202104986.
    • , , , , , , , , , , , , , , und . . „“Water-in-Eutectogel” Electrolytes for Quasi-Solid-State Aqueous Lithium-Ion Batteries.Advanced Energy Materials, Nr. 12 (23) 2200401. doi: 10.1002/aenm.202200401.
    • , , , , und . . „Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: A US case study.Journal of Energy Storage, Nr. 46 doi: 10.1016/j.est.2021.103891.
    • , , und . . „Organo-fluorophosphates as aging products during formation in lithium-ion batteries.“ präsentiert auf der 14. Kraftwerk Batterie Fachtagung, Virtual
    • , , , , und . . „Investigation of homogeneity and reversibility of deposited lithium on the anode surfaces.“ präsentiert auf der 14. Kraftwerk Batterie Fachtagung, Virtual
    • , , , , und . . „N-METHYL-2-PYRROLIDONE CONTAMINATION IN LABORATORY AIR DURING THE COATING OF LITHIUM ION BATTERY ELECTRODES.“ präsentiert auf der Batterieforum Deutschland, Virtual
    • , , , und . . „Implementation of Orbitrap Mass Spectrometry for Improved GC-MS Target Analysis in Lithium Ion Battery Electrolytes.MethodsX, Nr. 9: 101621. doi: 10.1016/j.mex.2022.101621.
    • , , , , , , und . . „Recycling of Lithium-Ion Batteries – Current State of the Art, Circular Economy and Next Generation Recycling.Advanced Energy Materials, Nr. 12 (17) (Special Issue: Advanced Battery Materials ‐ Battery2030+): 2102917. doi: 10.1002/aenm.202102917.
    • , , und . . „Visualization of Degradation Mechanisms of Negative Electrodes Based on Silicon Nanoparticles in Lithium-Ion Batteries via Quasi In Situ Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy.Journal of Physical Chemistry C, Nr. 126 (27): 1101611025. doi: 10.1021/acs.jpcc.2c03294.
    • , , , , und . . „Comparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats.Journal of The Electrochemical Society, Nr. 169 (3): 30533. doi: 10.1149/1945-7111/ac5c08.
    • . . „A Method to Determine Fast Charging Procedures by Operando Overvoltage Analysis.Journal of The Electrochemical Society, Nr. 169: 070525. doi: 10.1149/1945-7111/ac81f7.
    • , , , , , , , , , , und . . „Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid-Electrolyte-Interphase Protective Layer.ACS applied materials & interfaces, Nr. 14 (34): 3882438834. doi: 10.1021/acsami.2c10175.
    • , , , , , , , , , , und . . „Aging-Driven Composition and Distribution Changes of Electrolyte and Graphite Anode in 18650-Type Li-Ion Batteries.Advanced Energy Materials, Nr. 12 (45) 2201652. doi: 10.1002/aenm.202201652.
    • , , , und . . „Method Development for the Investigation of Mn2+/3+, Cu2+, Co2+ and Ni2+ with Capillary Electrophoresis Hyphenated to Inductively Coupled Plasma – Mass Spectrometry.Electrophoresis, Nr. 44 (1-2): 8995. doi: 10.1002/elps.202200139.
    • , , , , , und . . „Strategies for formulation optimization of composite positive electrodes for lithium ion batteries based on layered oxide, spinel, and olivine-type active materials.Journal of Power Sources, Nr. 551 232179. doi: 10.1016/j.jpowsour.2022.232179.
    • , , , , , , und . . „State-of-Charge Distribution of Single-Crystalline NMC532 Cathodes in Lithium-Ion Batteries: A Critical Look at the Mesoscale.ChemSusChem, Nr. 15 (21) e202201169. doi: 10.1002/cssc.202201169.
    • , , , , , , , und . . „Optimization of graphite/silicon-based composite electrodes for lithium ion batteries regarding the interdependencies of active and inactive materials.Journal of Power Sources, Nr. 552 232252. doi: 10.1016/j.jpowsour.2022.232252.
    • , , , , , und . . „Making Aqueously Processed LiNi0.5Mn0.3Co0.2O2‑Based Electrodes Competitive in Performance: Tailoring Distribution and Interconnection of Active and Inactive Electrode Materials through Paste Surfactants.ACS Applied Energy Materials, Nr. 5 (11): 1315513160. doi: 10.1021/acsaem.2c02755.
    • , , , , , und . . „Reidentification of Polymeric Lithium Battery Materials by Fingerprint Analysis with Pyrolysis-Gas Chromatography-Mass Spectrometry (PY-GC-MS).“ präsentiert auf der AABC Europe 2022, Mainz
    • , , , und . . „QUANTITATIVE DETERMINATION OF LITHIUM PLATING ON GRAPHITE ANODE SURFACES UTILIZING GC-BID.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „ASSESSING LITHIUM MIGRATION IN LITHIUM ION BATTERIES AT DIFFERENT STATES OF CHARGE BY COMBINING ISOTOPE DILUTION ANALYSIS WITH PLASMA-BASED TECHNIQUES.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „INVESTIGATION OF THE C-RATE DEPENDENT GASSING DURING FORMATION OF LITHIUM-ION BATTERIES UTILIZING GAS CHROMATOGRAPHY - BARRIER DISCHARGE IONIZATION DETECTOR.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „THE INFLUENCE OF ADDITIVES ON PRIMARY SEI-DEVELOPMENT ON LITHIUM METAL – AN ACCUMULATION STUDY.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „SPATIALLY RESOLVED POST-MORTEM ANALYSIS OF LITHIUM DISTRIBUTION AND TRANSITION METAL DEPOSITIONS ON CYCLED ELECTRODES VIA LASER ABLATION-ICP-OES / -MS METHODS.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „INVESTIGATION OF THE MESOSCALE STATE-OF-CHARGE DISTRIBUTION IN LITHIUM ION BATTERY CATHODE MATERIALS BY MEANS OF SINGLE-PARTICLE INDUCTIVELY COUPLED PLASMA-BASED ANALYTICAL TECHNIQUES.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , und . . „Studies on the reactivity of ceramic-coated separators toward lithium-ion battery electrolytes.“ präsentiert auf der International Meeting on Lithium Batteries 2022, Sydney
    • , , , und . . „ELEMENTAL ANALYSIS OF LATERAL AND DEPTH ANALYSIS OF LIBS – INVESTIGATING THE LITHIUM DISTRIBUTION FOR PRE−LITHIATED GRAPHITE ANODES.“ präsentiert auf der International Meeting on Lithium Batteries 2022, Sydney
    • , , , und . . „New Approaches to the Analysis of the SEI Formation on Lithium Metal.“ präsentiert auf der International Meeting on Lithium Batteries 2022, Sydney
    • , , , , , und . . „Analysis of Lithium Ion Battery Recycling Material – from Detailed Feedstock Characterization to Targeted Process Control.“ präsentiert auf der International Meeting on Lithium Batteries 2022, Sydney
    • , , , und . . „NOVEL STATE OF CHARGE STUDIES BY MEANS OF DEPTH-RESOLVED ISOTOPE DILUTION ANALYSIS IN THE FIELD OF LITHIUM ION BATTERIES.“ präsentiert auf der Anwendertreffen Analytische Glimmentladungsspektrometrie, Dresden
    • , , , , und . . „Organofluorophosphates as Oxidative Degradation Products in High-Voltage Lithium Ion Batteries with NMC or LNMO Cathodes.Journal of The Electrochemical Society, Nr. 169 (11) 110534. doi: 10.1149/1945-7111/aca2e8.
    • , , , , , , , , , und . . „Insights into Electrolytic Pre-Lithiation: A Thorough Analysis Using Silicon Thin Film Anodes“.Small, Nr. 19 (8) 2206092. doi: 10.1002/smll.202206092.
    • . . „On the Practical Applicability of the Li Metal-Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries.Advanced Energy Materials, Nr. 13 (3) 2203256. doi: 10.1002/aenm.202203256.
    • , , , , , , , , , , und . . „Inside Cover - Aging-Driven Composition and Distribution Changes of Electrolyte and Graphite Anode in 18650-Type Li-Ion Batteries.Advanced Energy Materials, Nr. 12 (45) 2201652. doi: 10.1002/aenm.202270189.
    • , , , , , , , und . . „Lithium Difluorophosphate Electrolyte Additive: a Boon for good High Voltage Li Ion Batteries, but a Bane for high Thermal Stability and low Toxicity: Towards a Synergistic Dual-Additive Approach with Fluoroethylene Carbonate to Circumvent this Dilemma.ChemSusChem, Nr. 16 (6) e202202189. doi: 10.1002/cssc.202202189.
    • , , , und . . „Different Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique.Chemistry of Materials, Nr. 34 (23): 10272. doi: 10.1021/acs.chemmater.2c02376.
    • , , , und . . „Different Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique.Chemistry of Materials, Nr. 34 (23): 10272. doi: 10.1021/acs.chemmater.2c02376.
    • , , , und . . „Different Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique.Chemistry of Materials, Nr. 34 (23): 1027210278. doi: 10.1021/acs.chemmater.2c02376.
    • , , , , , , und . . „Evaluating the Polymer Backbone – Vinylene versus Styrene – of Anisyl‐substituted Phenothiazines as Battery Electrode Materials.Batteries & Supercaps, Nr. 6 (2): e202200. doi: 10.1002/batt.202200464.
    • , , , , , und . . „Defining Aging Marker Molecules of 1,3-Propane Sultone for Targeted Identification in Spent LiNi0.6Co0.2Mn0.2O2||AG Cells.Energy Technology, Nr. 11 (5) 2200189. doi: 10.1002/ente.202200189.
    • , , , und . . „Untersuchung der Ladungszustandsverteilung auf Partikelebene - Einzelpartikelanalytik von Lithium-Ionen-Batterien.G.I.T Laborfachzeitschrift, Nr. 4: 3841.
    • , , , , , und . . „Recovery of Graphite and Cathode Active Materials from Spent Lithium-Ion Batteries by Applying Two Pretreatment Methods and Flotation Combined with a Rapid Analysis Technique.Metals, Nr. 12 (4) (Thermal Conditioning of Metals and EoL-Products for Improved Recycling Efficiency): 677. doi: 10.3390/met12040677.
    • , , , , und . . „Den Lösemittelmolekülen auf der Spur - Gasanalytik isotopenmarkierter Batterie-Elektrolyte.G.I.T Laborfachzeitschrift, Nr. 4: 3437.
    • , , , und . . „NOVEL STATE OF CHARGE STUDIES BY MEANS OF DEPTH-RESOLVED ISOTOPE DILUTION ANALYSIS IN THE FIELD OF LITHIUM ION BATTERIES.“ präsentiert auf der 5th International Glow Discharge Spectroscopy Symposium, Oviedo
    • , , , , , und . . „SEI development study – Accumulation and identification of SEI-derived species from lithium metal anodes.“ präsentiert auf der 14. Kraftwerk Batterie Fachtagung, Virtual
    • , , , , , und . . „The Battery Component Readiness Level (BC-RL) framework: A technology-specific development framework.Journal of Power Sources Advances, Nr. 14 100089. doi: 10.1016/j.powera.2022.100089.
    • , , , , , , , und . . „Direct Investigation of the Interparticle-based State-of-Charge Distribution of Polycrystalline Lithium Transition Metal Oxides in Lithium Ion Batteries by Classification Single Particle Inductively Coupled Plasma Optical Emission Spectroscopy.Journal of Power Sources, Nr. 527: 231204. doi: 10.1016/j.jpowsour.2022.231204.
    • , , , , , , , , , und . . „Comprehensive Characterization of Shredded Lithium-Ion Battery Recycling Material.Chemistry - A European Journal, Nr. 28 (22): e202200485. doi: 10.1002/chem.202200485.
    • , , , , , , , , , , , , , und . . „Identification of Soluble Degradation Products in Lithium - Sulfur and Lithium - Metal Sulfide Batteries.Separations, Nr. 9 (3) (Topical Collection: State of the Art in Analysis of Energies): 57. doi: 10.3390/separations9030057.
    • , , , , , , , , , und . . „Dendrite-Free Zinc Deposition Induced by Zinc Phytate Coating for Long-life Aqueous Zinc Batteries.Batteries & Supercaps, Nr. 5 (6): e202100376. doi: 10.1002/batt.202100376.
    • , , , , , , , und . . „Cover Picture "Front Cover: Synergistic Effects of Surface Coating and Bulk Doping in Ni-Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High-Energy Lithium Ion Batteries (ChemSusChem 4/2022)".ChemSusChem, Nr. 15 (4): e202200079. doi: 10.1002/cssc.202200079.
    • , , , , , , , und . . „Cover Profile "Synergistic Effects of Surface Coating and Bulk Doping in Ni-Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High-Energy Lithium-Ion Batteries".ChemSusChem, Nr. 15 (4): e202200078. doi: 10.1002/cssc.202200078.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+.Advanced Energy Materials, Nr. 12 (17): 2102785. doi: 10.1002/aenm.202102785.
    • , , , , , , und . . „Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries.Advanced Energy Materials, Nr. 12 (8): 2103045. doi: 10.1002/aenm.202103045.
    • , , , , , , , und . . „Synergistic Effects of Surface Coating and Bulk Doping in Ni-rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High-Energy Lithium Ion Batteries.ChemSusChem, Nr. 15 (4): e202102220. doi: 10.1002/cssc.202102220.

    • , , , , , , , , , , , , und . . „Understanding the Role of Commercial Separators and their Reactivity towards LiPF6 on the Failure Mechanism of High-Voltage NCM523 || Graphite Lithium Ion Cells.Advanced Energy Materials, Nr. 12 (2): 2102599. doi: 10.1002/aenm.202102599.
    • , , , und . . „Contribution of Nano-Design Approaches to Future Electrochemical Energy Storage Systems.“ In Nanomaterials for Electrochemical Energy Storage - Challenges and Opportunities (Frontiers of Nanoscience), herausgegeben von Rinaldo Raccichini and Ulderico Ulissi. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-821434-3.00005-3.
    • , , , , , , , , und . . „Demonstrating Apparently Inconspicuous, but Sensitive Impacts on Rollover Failure of Lithium Ion Batteries at High Voltage.ACS applied materials & interfaces, Nr. 13 (48): 5724157251. doi: 10.1021/acsami.1c17408.
    • , , , , und . . „19F MAS NMR Study on Anion Intercalation into Graphite Positive Electrodes from Binary-Mixed Highly Concentrated Electrolytes.Journal of Power Sources Advances, Nr. 12: 100075. doi: 10.1016/j.powera.2021.100075.
    • , , , , , , und . . „Lithiation Mechanism and Improved Electrochemical Performance of TiSnSb-based Negative Electrodes for Lithium-Ion Batteries.Chemistry of Materials, Nr. 33 (21): 81738182. doi: 10.1021/acs.chemmater.1c01809.
    • , , , und . . „Practical Implementation of Silicon-Based Negative Electrodes in Lithium Ion Full Cells – Challenges and Solutions.“ In Lithium-ion Batteries Enabled by Silicon Anodes, herausgegeben von Chunmei Ban and Kang Xu. N/A: Selbstverlag / Eigenverlag.
    • , , , und . . „Solvent Co-Intercalation-Induced Activation and Capacity Fade Mechanism of Few‑/Multi Layered MXenes in Lithium Ion Batteries.Small, Nr. 17 (47): 2104130. doi: 10.1002/smll.202104130.
    • , , , und . . „Tailored 3D-Microstructured Electrode Substrates for Increased Performance in Zero-Excess Lithium Metal Batteries.“ präsentiert auf der 240th ECS Meeting, Orlando, FL doi: 10.1149/MA2021-02194mtgabs.
    • , , , , , , und . . „Improved Lithium-Ion Transport Within the LiNi0.8Co0.15Al0.05O2 Secondary Cathode Particles Through a Template-Assisted Synthesis Route.ACS Sustainable Chemistry & Engineering, Nr. 9 (37): 1256012574. doi: 10.1021/acssuschemeng.1c03179.
    • , , , , , und . . „Opportunities and Limitations of Ionic-Liquid- and Organic Carbonate Solvent-Based Electrolytes for Mg-Ion-Based Dual-Ion Batteries.ChemSusChem, Nr. 14 (20): 44804498. doi: 10.1002/cssc.202101227.
    • , , , , , , , , und . . „Increasing the Lithium Ion Mobility in Poly(Phosphazene)-Based Solid Polymer Electrolytes through Tailored Cation Doping.Journal of The Electrochemical Society, Nr. 168 (7): 070559. doi: 10.1149/1945-7111/ac148d.
    • , , , , , , , , , und . . „Re-evaluating common electrolyte additives for high-voltage lithium ion batteries.Cell Reports Physical Science, Nr. 2 (8): 100521. doi: 10.1016/j.xcrp.2021.100521.
    • , , , , , und . . „Identification of LixSn Phase Transitions During Lithiation of Tin-Nanoparticle-Based Negative Electrodes from Ex Situ 119Sn MAS NMR and Operando 7Li NMR and XRD.ACS Applied Energy Materials, Nr. 4 (7): 72787287. doi: 10.1021/acsaem.1c01405.
    • , , , , , , und . . „Scalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries.ACS applied materials & interfaces, Nr. 13 (22): 26074–26083. doi: 10.1021/acsami.1c05889.
    • , , , , , , , , , und . . „Mechanistic Insights into the Pre-Lithiation of Silicon/Graphite Negative Electrodes in ‘Dry State’ and After Electrolyte Addition Using Passivated Lithium Metal Powder.Advanced Energy Materials, Nr. 11 (25): 2100925. doi: 10.1002/aenm.202100925.
    • , , , , , , , , , und . . „Cover Picture "Li‐Ion Batteries: Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte (Adv. Energy Mater. 14/2021)".Advanced Energy Materials, Nr. 11 (14): 2170053. doi: 10.1002/aenm.202170053.
    • , , , , , , , , und . . „Inside back cover “Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells”.Journal of Materials Chemistry A, Nr. 9 (12): 7991. doi: 10.1039/D1TA90066H.
    • , , , und . . „Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries.Communications Materials, Nr. 2: 37. doi: 10.1038/s43246-021-00143-0.
    • , , , , , , , , und . . „Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells.Journal of Materials Chemistry A, Nr. 9: 75467555. doi: 10.1039/d0ta11775g.
    • , , , , und . . „A Thorough Analysis of Two Different Pre-Lithiation Techniques for Silicon/Carbon Negative Electrodes in Lithium Ion Batteries.Batteries & Supercaps, Nr. 4: 11631174. doi: 10.1002/batt.202100024.
    • , , , , , , , , , , , und . . „Back Cover "Graphite Lithium‐Ion Cells: On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High‐Voltage Conditions (Adv. Energy Mater. 10/2021)".Advanced Energy Materials, Nr. 11: 2170039. doi: 10.1002/aenm.202170039.
    • , , , , , , , , , , , und . . „Waste to life: Low-cost, self-standing, 2D carbon fiber green Li-ion battery anode made from end-of-life cotton textile.Electrochimica Acta, Nr. 368 137644. doi: 10.1016/j.electacta.2020.137644.
    • , , , , , , , , , , , , und . . „Stabilizing the Solid-Electrolyte Interphase with Polyacrylamide for High-Voltage Aqueous Lithium-Ion Batteries.Angewandte Chemie International Edition, Nr. 60 (42): 2281222817. doi: 10.1002/anie.202107252.
    • , , , , , , und . . „Beyond fluorine: Sustainable ternary polymer electrolytes for lithium batteries.Green Chemistry, Nr. 23 (24): 99359944. doi: 10.1039/d1gc02451e.
    • , , , , und . . „Comprehensive Insights into the Porosity of Lithium-Ion Battery Electrodes: A Comparative Study on Positive Electrodes Based on LiNi0.6Mn0.2Co0.2O2 (NMC622).Batteries, Nr. 7: 70. doi: 10.3390/batteries7040070.
    • , , , , , und . . „Enabling Aqueous Processing for LiNi0.5Mn1.5O4-Based Positive Electrodes in Lithium-Ion Batteries by Applying Lithium-Based Processing Additives.Advanced Energy and Sustainability Research, Nr. 1: 2100075. doi: 10.1002/aesr.202100075.
    • , , , , , und . . „Lithium Powder Synthesis and Preparation of Powder-Based Composite Electrodes for Application in Lithium Metal Batteries.Energy Technology, Nr. 2100871 doi: 10.1002/ente.202100871.
    • , , , , , , und . . „Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells.Journal of Energy Storage, Nr. 41: 102812. doi: 10.1016/J.EST.2021.102812.
    • , , , und . . „Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells.Journal of Energy Storage, Nr. 44: 103208. doi: 10.1016/J.EST.2021.103208.
    • , , , , , , , , und . . „Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells.Journal of Energy Storage, Nr. 44: 103479. doi: 10.1016/J.EST.2021.103479.
    • , , , , und . . „Understanding the Effectiveness of Phospholane Electrolyte Additives in Lithium-Ion Batteries under High-Voltage Conditions.ChemElectroChem, Nr. 8 (5): 972982. doi: 10.1002/celc.202100107.
    • , , , , , , , und . . „Insights into the Solubility of Poly (vinylphenothiazine) in Carbonate-Based Battery Electrolytes.ACS applied materials & interfaces, Nr. 13 (10): 1244212453. doi: 10.1021/acsami.0c20012.
    • , , , , , und . . „Cation-Assisted Lithium-Ion Transport for High-Performance PEO-based Ternary Solid Polymer Electrolytes.Angewandte Chemie International Edition, Nr. 60 (21): 1191911927.
    • , , , , , , , , und . . „Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries.ACS Applied Energy Materials, Nr. 4 (10): 10909–10920. doi: 10.1021/acsaem.1c01879.
    • , , , und . . „Development of a fast online sample preparation for speciation analysis of lithium ion battery electrolyte decomposition products by liquid chromatography hyphenated to ion trap-time of flight-mass spectrometry and to inductively coupled plasma-sector field-mass spectrometry.Journal of Chromatography A, Nr. 1658: 462594. doi: 10.1016/j.chroma.2021.462594.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „Strategies towards enabling lithium metal in batteries: interphases and electrodes.Energy and Environmental Science, Nr. - doi: 10.1039/D1EE00767J.
    • , , , , , , , und . . „Quantitative Manganese Dissolution Investigation in Lithium-Ion Batteries by Means of X-ray Spectrometry Techniques.Journal of Analytical Atomic Spectrometry, Nr. 36: 20562062. doi: 10.1039/D0JA00491J.
    • , , , , , , , , , , , , , , , , , , , , , , , , , und . . „The passivity of lithium electrodes in liquid electrolytes for secondary batteries.Nature Reviews Materials, Nr. 2021 doi: 10.1038/s41578-021-00345-5.
    • , , , , , und . . „The origin of gaseous decomposition products formed during SEI formation analyzed by isotope labeling in lithium ion battery electrolytes.Batteries & Supercaps, Nr. 4 (11): 17311738. doi: 10.1002/batt.202100208.
    • , , und . . „Why does aging occur in lithium ion batteries? Advancements in the quantification of transition metal species.Wiley Analytical Science Magazine, Nr. 10
    • , , und . . „Standardisierung der Totalreflexions-Röntgenfluoreszenzanalyse durch neuartige nanoskalige Kalibrierproben (TRFA-KAL) - Abschlussbericht zum Verbundvorhaben.Hannover.
    • , , und . . „Warum altern Lithium-Ionen-Batterien? - Entwicklungen zur Quantifizierung von Übergangsmetallspezies.G.I.T Laborfachzeitschrift, Nr. 10: 1719.
    • , , , , , , , , und . . „Dibenzo[a,e]Cyclooctatetraene‐Functionalized Polymers as Potential Battery Electrode Materials.Macromolecular Rapid Communications, Nr. 42 (18): 2000725. doi: 10.1002/marc.202000725.
    • , , , , , , und . . „Degradation phenomena of lithium metal powder electrodes in liquid electrolyte.“ Beitrag präsentiert auf der Advanced Battery Power 2021, Online
    • , , , und . . „Asymmetric Anions for enhanced Ionic Liquid-based Electrolytes in O2-Li-Batteries.“ Beitrag präsentiert auf der Advanced Battery Power - Kraftwerk Batterie 2021, Online
    • , , , , , , , , , und . . „Galvanic Couples in Ionic Liquid‐Based Electrolyte Systems for Lithium Metal Batteries—An Overlooked Cause of Galvanic Corrosion?Advanced Energy Materials, Nr. 2101021 doi: 10.1002/aenm.202101021.
    • , , , , , , , , und . . „Galvanic Corrosion as a Challenge for the Application of Ionic Liquids in O2ǁLi Cell Chemistries.“ Beitrag präsentiert auf der Advanced Battery Power - Kraftwerk Batterie 2021, Online
    • , , , , , und . . „The Impact of the C-rate on Gassing during Formation of NMC622 II Graphite Lithium Ion Battery Cells.Batteries & Supercaps, Nr. 4 (6): 13441350. doi: 10.1002/batt.202100056.
    • , , , , und . . „Direct multi-element analysis of polydisperse microparticles by Classification-Single Particle ICP-OES in the field of lithium ion battery electrode materials.Analytical Chemistry, Nr. 90 (20): 7532–7539. doi: 10.1021/acs.analchem.1c01283.
    • , , , , und . . „Analysis of isotope labeled lithium-ion battery electrolytes – tracing solvent molecule decomposition during first cycles.“ präsentiert auf der 13. Kraftwerk Batterie Fachtagung, Virtual
    • , , , und . . „First insights into the chemo-mechanical interplay of particle micro cracking and electronic contact loss in LIB electrode materials by SP-ICP-OES.“ präsentiert auf der 13. Kraftwerk Batterie Fachtagung, Virtual
    • , , und . . „Elemental lateral and depth analysis of LIBs – Investigating the lithium distribution of pre-lithiated graphite anodes.“ präsentiert auf der Swiss Battery Days, Virtual
    • , , , und . . „Analyzing the Reactions of Electrolyte and Cathode in Li/S and Li/Metal Sulfide Batteries.“ präsentiert auf der AABC Europe, Virtual
    • , , , und . . „Capabilities of Isotope Labeling for Mechanistic Understanding of LIB Electrolyte Decomposition.“ präsentiert auf der AABC Europe, Virtual
    • , , , , und . . „Application of Gas Chromatography hyphenated to Atmospheric Pressure Chemical Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry (GC-APCI-Q-TOF-MS) for Structure Elucidation of Degradation Products based on the Cation in Pyr14TFSI.Journal of The Electrochemical Society, Nr. 168 (2, Focus Issue on Molten Salts and Ionic Liquids II): 026501. doi: 10.1149/1945-7111/abdde7.
    • , , , , , , , , und . . „Bridging the Gap between Small Molecular π-Interactions and Their Effect on Phenothiazine-Based Redox Polymers in Organic Batteries.ACS Applied Energy Materials, Nr. 4 (8): 7622–7631. doi: 10.1021/acsaem.1c00917.
    • , , , , , , , und . . „Solvent Co-Intercalation into Few-Layered Ti3C2Tx MXenes in Lithium Ion Batteries Induced by Acidic or Basic Post-Treatment.ACS Nano, Nr. 15 (2): 32953308. doi: 10.1021/acsnano.0c10153.
    • , , , , , , , und . . „Case study of N-carboxyanhydrides in silicon-based lithium ion cells as a guideline for systematic electrolyte additive research.Cell Reports Physical Science, Nr. 2 (2): 100327. doi: 10.1016/j.xcrp.2021.100327.
    • , , , , , , und . . „Effect of Li plating during formation of lithium ion batteries on their cycling performance and thermal safety.Journal of Power Sources, Nr. 484 doi: 10.1016/j.jpowsour.2020.229306.
    • , , , , , , , , , und . . „Understanding the Outstanding High-Voltage Performance of NCM523 || Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, Nr. 11 (14): 2003738. doi: 10.1002/aenm.202003738.
    • , , , , , und . . „Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure.Nature Energy, Nr. 2021 doi: 10.1038/s41560-020-00748-8.
    • , , , , , , , , , , , und . . „On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High-Voltage Conditions.Advanced Energy Materials, Nr. 11 (10): 2003756. doi: 10.1002/aenm.202003756.
    • , , , , , , , und . . „Cover Profile "Exploiting the Degradation Mechanism of NCM523 || Graphite Lithium Ion Full-Cells Operated at High Voltage".ChemSusChem, Nr. 14: 491. doi: 10.1002/cssc.202002870.
    • , , , , , , , und . . „Front Cover "Exploiting the Degradation Mechanism of NCM523 || Graphite Lithium Ion Full-Cells Operated at High Voltage (ChemSusChem 2/2021)".ChemSusChem, Nr. 14: 487. doi: 10.1002/cssc.202002871.
    • , , , , , , und . . „Enabling Mg-Based Ionic Liquid Electrolytes for Hybrid Dual-Ion Capacitors.Batteries & Supercaps, Nr. 4: 504512. doi: 10.1002/batt.202000246.
    • , , , , , und . . „Finding the Sweet Spot: Li/Mn-Rich Cathode Materials with Fine-tuned Core-Shell Particle Design for High-Energy Lithium Ion Batteries.Electrochimica Acta, Nr. 366: 137413. doi: 10.1016/j.electacta.2020.137413.
    • , , , , , , , und . . „Exploiting the Degradation Mechanism of NCM523 || Graphite Lithium Ion Full-Cells Operated at High Voltage.ChemSusChem, Nr. 14: 595613. doi: 10.1002/cssc.202002113.
    • , , , , , , , , , und . . „Study of electrochemical performance and thermal property of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with a novel oligomer additive for high-safety lithium-ion batteries.Chemical Engineering Journal, Nr. 405: 126727. doi: 10.1016/j.cej.2020.126727.
    • , , , , , , , , , , und . . „Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries.Chemical Engineering Journal, Nr. 407: 126603. doi: 10.1016/j.cej.2020.126603.

    • , , , , , und . . „Impact of the Crystalline Li15Si4 Phase on the Self Discharge Mechanism of Silicon Negative Electrodes in Organic Electrolytes.ACS applied materials & interfaces, Nr. 12 (50): 5590355912. doi: 10.1021/acsami.0c16742.
    • , , , , , und . . „Approaching Electrochemical Limits of MgxClyz+ Complex-Based Electrolytes for Mg Batteries by Tailoring the Solution Structure.Journal of The Electrochemical Society, Nr. 167 (16): 160505. doi: 10.1149/1945-7111/abc7e4.
    • , , , , , , , , , , , , , , , und . . „Inside Front Cover "Aqueous Dual-Ion Batteries: Enabling Natural Graphite in High-Voltage Aqueous Graphite || Zn Metal Dual-Ion Batteries (Adv. Energy Mater. 41/2020)".Advanced Energy Materials, Nr. 10 (41): 2070169. doi: 10.1002/aenm.202070169.
    • , , , , , , , , , , , , und . . „Hexafluorophosphate-Bis(trifluoromethanesulfonyl)imide anion co-intercalation for increased performance of dual-carbon battery using mixed salt electrolyte.Journal of Power Sources, Nr. 479: 229084. doi: 10.1016/j.jpowsour.2020.229084.
    • , , , , , , , , und . . „Mechanistic Elucidation of Anion Intercalation into Graphite from Binary-Mixed Highly Concentrated Electrolytes via Complementary 19F MAS NMR and XRD Studies.Journal of The Electrochemical Society, Nr. 167: 140526. doi: 10.1149/1945-7111/abc437.
    • , , , , , , , , , , , , , , , und . . „Enabling Natural Graphite in High-Voltage Aqueous Graphite || Zn Metal Dual-Ion Batteries.Advanced Energy Materials, Nr. 10: 2001256. doi: 10.1002/aenm.202001256.
    • , , , und . . „Production of Nickel-Rich Layered Cathode Materials for High-Energy Lithium Ion Batteries via a Couette-Taylor-Flow-Reactor.Material Matters, Nr. 15 (2): 5357.
    • , , , , , , , , und . . „Identical Materials but Different Effects of Film-Forming Electrolyte Additives in Li Ion Batteries: Performance of Benchmark System as the Key.Chemistry of Materials, Nr. 32 (15): 62796284. doi: 10.1021/acs.chemmater.0c01952.
    • , , , , , und . . „Inside Front Cover "Toward Green Battery Cells: Perspective on Materials and Technologies (Small Methods 7/2020)".Small Methods, Nr. 4 (7): 2070023. doi: 10.1002/smtd.202070023.
    • ,