|
Anke Pietsch

Dr. André Guerra (ETH Zürich): Differential inclusions, quasiconformal maps, and the Monge?Ampère equationl

Tuesday, 12.12.2023 14:15 im Raum SRZ 203

Mathematik und Informatik

In the complex plane, there is a correspondence between solutions of the Monge?Ampère equation and solutions of a certain differential inclusion associated to SO(2). Under this correspondence, the W^{2,1+epsilon} regularity of solutions to Monge?Ampère is rephrased as a quantitative unique continuation principle for solutions of the differential inclusion. We will sketch a proof of the latter, which relies on quasiconformal maps and the rigidity estimate for SO(2). Based on joint work with G. De Philippis and R. Tione



Angelegt am 27.11.2023 von Anke Pietsch
Geändert am 27.11.2023 von Anke Pietsch
[Edit | Vorlage]

Kolloquium FB10 und Sondervorträge
Kolloquium Holzegel/Seis/Weber